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Introduction
The research project has developed algorithms and methods supporting diagnostic and treatment 
decisions in the fields of medicine as follows: 

• Glycaemic control of intensive-care and diabetic patients;

• Medical image reconstruction (SPECT and PET imaging, organ and tissue identification on 

the images, partial volume effect correction of the images);

• Medical image processing (dental root canal identification).

In the following sections the main research results are briefly summarized. The most relevant 
publications related to the specific results are referenced and attached to this report. In addition, an 
annotated list of selected publications is given to help the identification of the most important 
publications from the relatively long (more than 120 items) full publication list of the project given 
in the OTKA project reporting system.  

Research results summary by field

Glycaemic control of intensive-care patients 

Robust control methods have been developed for intensive-care glycaemic treatment and for 
diabetic patients [2], [6-10].   

The STAR (Stochastic TARgeted) protocol has been adopted for insulin-dosing and feeding 
protocols in Hungary by collaboration with research partners from New Zealand, as well as the 
models forming the foundation of the algorithms has been adopted for liver transplanted patients 
[1], [3-5], [11].

The protocols have been validated by clinical trials; several hospitals use the developed protocols in
the every-day treatment in Hungary and New Zealand. 

Medical image reconstruction 

A novel parallel algorithm of real 3D SPECT image reconstruction has been developed providing 
better image quality than previous reconstructions without increasing the execution time of 
imaging, thus enabling the clinical application of the results. Novel algorithms for PET image 
reconstruction has been developed to improve the PET imaging quality. The SPECT reconstruction 
algorithms have been included into the official reconstruction library of the Mediso Ltd., now 
available for their customers. The PET algorithms are embedded into the PET detector simulator of 
Mediso Ltd. user for designing new gamma cameras. [12-17]   



Medical image processing: 

Novel algorithms for the automated identification of dental root canals and their medial line from 
different kinds of CT records that provide significant support in the diagnostic decisions. New 
algorithms suggested for MR brain image segmentation significantly improving the accuracy of the 
segmentation and reducing the running time of the image processing. The CT image processing 
methods are used regularly for research tasks at Semmelweis University. [18-21] 

Result facts summary
The research results are published in more than 120 referenced and reviewed international 
publications. One of the participating researchers earned his PhD degree. Significant portion of the 
theoretical results has been applied in practice. Using the results of the project new research has 
been initiated, both in international cooperation and with collaboration with Hungarian institutions: 

• EU financed FP7-PEOPLE-2012-IRSES - Marie Curie Action: eTime - Engineering 

Technology-based Innovation in Medicine (Project reference: 318943); 

• Hungarian R&D projects: PETMRI7T – Development of a multimodal PET/MRI imaging 

device (grant id: 1/2014-VKSZ_14);

• Hungarian basic research project: OTKA K116574:  Stochastic models for next generation 

accurate model-based glycaemic control in intensive care: from all new models and methods
to clinical validation.
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Abstract

Introduction: This study examines the likelihood and evolution of overall and hypoglycemia-inducing variability of insulin
sensitivity in ICU patients based on diagnosis and day of stay.

Materials and Methods: An analysis of model-based insulin sensitivity for n~390 patients in a medical ICU (Christchurch,
New Zealand). Two metrics are defined to measure the variability of a patient’s insulin sensitivity relative to predictions of a
stochastic model created from the same data for all patients over all days of stay. The first selectively captures large
increases related to the risk of hypoglycemia. The second captures overall variability. Distributions of per-patient variability
scores were evaluated over different ICU days of stay and for different diagnosis groups based on APACHE III: operative and
non-operative cardiac, gastric, all other. Linear and generalized linear mixed effects models assess the statistical significance
of differences between groups and over days.

Results: Variability defined by the two metrics was not substantially different. Variability was highest on day 1, and
decreased over time (pv0:0001) in every diagnosis group. There were significant differences between some diagnosis
groups: non-operative gastric patients were the least variable, while cardiac (operative and non-operative) patients
exhibited the highest variability.

Conclusions: This study characterizes the variability and evolution of insulin sensitivity in critically ill patients, and may help
inform the clinical management of metabolic dysfunction in critical care.
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Introduction

Stress induced hyperglycemia is a significant issue in critical

care, affecting up to 30–50% of patients and increasing morbidity

and mortality [1,2]. Controlling glycemia has proved difficult due

to the associated risk of hypoglycemia when highly dynamic

patients are treated with exogenous insulin [3]. Both extremes, as

well as glycemic variability, have been independently linked to

increased morbidity and mortality [4–6], creating a difficult

clinical problem.

More specifically, inter- and intra- patient metabolic variability

drive outcome glycemic variability and hypoglycemic risk [7]

making good control difficult. In particular, sudden and large rises

in insulin sensitivity can result in a hypoglycemic event when

exogenous insulin is given over a typical 3–4 hour measurement

interval. It is critical to determine the size and likelihood of these

intra-patient variations, to enable a more complete understanding

of the inherent risks in glycemic control.

Very few studies have examined time-varying evolution of

insulin sensitivity and its variability in the critically ill. Langouche

et al noted [8] that insulin sensitivity rose between days 1 and 5

over their large cohorts, but provided no daily or diagnostic

specific evolution. Lin et al showed [9] that hour to hour changes

for a clinically validated model-based insulin sensitivity metric

could be quite large as a function of current insulin sensitivity level

for a medical Intensive Care Unit (ICU) cohort that covered all

diagnostic categories and days of ICU stay. However, no studies to

date have explicitly described the evolution of intra-patient insulin

sensitivity and its variability on a daily basis, or for different

diagnostic categories.

Such information would provide insight into the risk of

hypoglycemia by diagnostic category and day of ICU stay.

Additionally, insight into the likelihood of glycemic variability

resulting from greater or lesser intra-patient variability of insulin

sensitivity could be attained. This research presents a first rigorous
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Table 1. Demographic data of patients.

Group Day 1 Day 2

n Age Sex n Age Sex

NOpC 28 59.5 (61.5)+16.5 (24) 35.7 18 58.4 (59.5)+16.1 (19) 38.9

OpC 35 72.9 (73)+7.12 (10.8) 22.9 21 72.9 (73)+6.54 (10) 23.8

NOpG 16 64.3 (67)+12.8 (15) 25 13 64.4 (71)+14.2 (18.5) 23.1

OpG 42 67.9 (72)+12.4 (13) 35.7 29 69.9 (72)+10.8 (11.3) 27.6

NOpO 119 54.7 (59)+18 (27) 46.2 101 54.5 (59)+18 (28) 42.6

OpO 21 50.8 (56)+19.2 (31) 38.1 16 54.9 (57.5)+18.5 (31) 43.8

Group Day 3 Day 4+

n Age Sex n Age Sex

NOpC 11 64.2 (63)+10.6 (16.3) 18.2 11 64.2 (63)+10.6 (16.3) 18.2

OpC 18 73.2 (73.5)+6.46 (9) 27.8 18 73.2 (73.5)+6.46 (9) 27.8

NOpG 13 64.4 (71)+14.2 (18.5) 23.1 13 64.4 (71)+14.2 (18.5) 23.1

OpG 23 69.2 (71)+9.46 (11.5) 26.1 23 69.2 (71)+9.46 (11.5) 26.1

NOpO 88 54.2 (58)+17.9 (26.5) 45.5 88 54.2 (58)+17.9 (26.5) 45.5

OpO 15 54.7 (57)+19.1 (33.5) 40 15 54.7 (57)+19.1 (33.5) 40

The distribution (according to length-of-stay and diagnosis group) and the most important demographic indicators of the patients. Data are shown in an n, age,
percentage of females format, with age statistics arranged in Mean (Median) + SD (IQR) manner. Columns indicate minimum (and not exact) length-of stay, so the same
patient may appear in several cells.
doi:10.1371/journal.pone.0057119.t001

Figure 1. SI variability and its metrics. Illustration of the evolution of SI for a given patient (FT5002). Background colors represent the
cumulative distribution function of the prediction for SI nz1ð Þ based on SI nð Þ using the whole cohort; its 25th, 50th (i.e. median) and 75th percentile
is explicitly shown. Lower part of the Figure highlights the calculation of the two metrics using Hour #102 (Day #4.25, marked on the upper part) as
an example.
doi:10.1371/journal.pone.0057119.g001
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statistical analysis of inter- and intra- patient insulin sensitivity

variability as a function of diagnostic category and day of stay.

Materials and Methods

Ethics statement
The Upper South Regional Ethics Committee, New Zealand,

granted ethics approval for the audit, analysis, and publication of

these data. Data collection is described in detail in [10].

Patient data
Clinical data from n~390 patients (47,836 hours) in the

SPRINT medical ICU cohort [10] are used to identify hourly,

model-based insulin sensitivity (SI ) values (SI nð Þ). SPRINT is a

model-based, clinically validated tight glycemic control (TGC)

protocol that provides explicit control for both nutrition intake and

insulin input [10].

Hour-to-hour changes are evaluated for the cohort over all days

of ICU stay using a stochastic model [9] that provides kernel

density estimation-based distributions of SI nz1ð Þ values for each

current SI nð Þ value using all 47,836 data points. Table 1 shows

the patient demographic details, including diagnostic categories.

These were created based on the APACHE III codes, and consist

of operative and non-operative groups for cardiac, gastric and all

other patients (with abbreviations OpC, NOpC, OpG, NOpG,

OpO and NOpO, respectively). For the daily statistics, only

patients who had at least 24 hours of glycemic control and ICU

stay were used.

Variability metrics
Actual SI nz1ð Þ values for each day of ICU stay and each

diagnostic category (cardiac, gastric, all other, both operative and

non-operative in all three types) are compared to the distributions

provided by the stochastic model of Lin et al [9] that covers all

diagnostic categories and all days of ICU stay. The results thus

show the relative and absolute evolution of SI variability

(SI nð Þ?SI nz1ð Þ) for a given diagnostic category over time,

relative to all patients and days of stay, which should highlight

times or diagnostic groups with greater or lesser than average risk.

The percentile of the actual SI nz1ð Þ values on their predicted

distribution will be illustrated with histograms. If the prediction is

perfect (that is, the distribution of actual values is identical to the

predicted distribution), every 10% wide interval of the histogram

contains 10% of the measurements. This ideal case therefore

corresponds to a flat distribution. Kurtic distributions are seen

when the actual values were more concentrated at the median

than the predicted distribution, suggesting confidence bands could

have been tightened. In contrast, U-shaped distributions indicate

cases where confidence bands should be widened due to increased

variability.

Two metrics are used to assess variability for each patient over a

given day, and results are aggregated by diagnostic category. First,

a quadratic metric is defined as the average of squared deviations

of the percentile of the actual SI nz1ð Þ value on its predicted

distribution (from the overall cohort model) from the ideal 50th

percentile. This value increases the more variable a given patient.

The quadratic metric thus measures overall intra-patient variabil-

ity.

Second, a one-sided threshold metric counts the number of

SI nz1ð Þ values for a given patient that exceed the 90th percentile

of SI nz1ð Þ in the whole-cohort model of Lin et al [9]. This

metric thus counts the number of large positive changes in

SI nz1ð Þ that would induce large drops in glucose level on dosing

exogenous insulin based on the SI nð Þ value. A value greater than

10% for a given patient, day or diagnostic category indicates a

greater risk for these changes compared to the overall cohort on all

days of ICU stay. This metric thus specifically assesses hypogly-

cemic risk due to intra-patient variability in insulin sensitivity and

its daily evolution.

Hence, these two metrics measure overall variability and

hypoglycemic risk from variability. Clinically, the quadratic

measure is one of risk to glycemic control performance and

outcome arising due to variability in insulin sensitivity, and the

one-sided threshold assesses risk to patient safety in glycemic

control.

These metrics are illustrated on Figure 1, which shows the

evolution of the insulin sensitivity of a 67 years old male patient

(FT5002) with septic shock principal diagnosis (all other, non-

operative category) through 162 hours. Each patient has such a

trajectory. For every hour, the distribution of SI nz1ð Þ was

predicted based on SI nð Þ using the model of Lin et al [9], which is

illustrated with the underlying colormap representing the cumu-

lative distribution function of the predicted distribution. 50th

percentile (i.e. median) of this predicted distribution of SI nz1ð Þ is

explicitly shown. The Figure also illustrates how these metrics are

calculated, showing the predicted distribution and the actual SI
for a given hour.

Analysis of variability
An overall variability score can be calculated for a given

diagnosis group by averaging the overall variability scores for

patients belonging to that group. However, if the individual length

of stay differs, simple arithmetic averaging would assign unequal

weights for each patient’s measurements. To avoid the problems

associated with unequal weighting due to patient discharge, only

series of equal length were averaged. In particular, results and

analysis were divided by the first 24 hours (‘‘day 1’’), second

24 hours (‘‘day 2’’), third 24 hours (‘‘day 3’’), and remaining time

in ICU (‘‘day 4+’’). Thus only complete 24 hour intervals were

used (except for day 4+, of course) to avoid bias.

Per-patient average penalty score distributions by diagnosis

group each day are shown using violin plots [11]. Violin plots bear

similarities to boxplots, but use kernel density estimation to directly

convey information on the shape of the distribution for more

accurate comparison.

Statistical methods
To have an overall impression on the effect of the time spent in

ICU on the SI variability, a LOWESS estimator [12] was plotted

for the scatterplot of quadratic metric and time spent (in minutes)

per diagnosis group on Figure 2. It is immediately obvious that

time has a complex effect on SI variability, which exhibits a

biphasic behaviour in most of the cases. This might be worthy of

pursuit, despite the fact that the estimation at long length of stays is

unreliable due to relatively lower sample size.

However, now we will confine our attention to investigate the

early, seemingly mostly linear response of the first few days. (To

Figure 2. Evolution of quadratic SI variability per diagnosis group. LOWESS estimators for the scatterplot between minute-precision length
of stay and quadratic metric of SI variability, segregated according to diagnosis group. Dashed vertical lines indicate the end of the first four days.
doi:10.1371/journal.pone.0057119.g002
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illustrate this, the first four day is marked on Figure 2.) We

restricted the database to observations having Time v 8 000 min-

utes (i.e. the first 5.5 days of stay) for the estimation of the

forthcoming models, hence limiting it to the ‘‘linearity region’’ of

the SI variability vs. time function, as evidenced by Figure 2. The

linear functional form is also more tractable and easier to estimate.

To account for the grouping of the data, linear mixed-effects

modelling was used to find significant differences in SI variability

metrics between diagnosis groups and/or days [13,14]. The

(longitudinal) data were arranged in a two-way classification, with

time a within-subject factor and diagnosis group considered a

between-subject factor. In our model, the fixed effects were the

Time (time spent in ICU in minutes as a continuous variable) and

the Diagnosis (as a nominal factor with 6 levels) without intercept

(‘‘cell means coding’’). Minute-precision length-of-stay (Time) was

used for measuring time to make the estimation of the mixed-

effects model possible. The random effect was added with per-

patient grouping, with both random intercept and random slope

permitted with respect to time, both of which was deemed

necessary with LR-test (pv0:001 for both quadratic and one-sided

penalty) [15]. The inclusion of an AR(1) autocorrelation of the

within-subject errors was not found to be necessary for the

quadratic penalty (p~0:9961) [15]. The fixed effects interaction

terms between Time and Diagnosis were found to be insignificant

(p~0:8227 for quadratic penalty, p~0:2077 for one-sided

penalty) showing that that the slope with respesct to the time

spent in ICU does not depend on the diagnosis group, and were

thus eliminated. (Effect of Diagnosis was significant (pv0:0001 for

both penalty), so the intercept does depend on the diagnosis

group.) The resulting statistical model for the quadratic penalty of

SI variability was therefore the following:

Variabilityi,j~ b0,NOpC
:Classi,NOpCzb0,NOpG

:Classi,NOpGz . . .
�

zb0,OpO
:Classi,OpOzb0,i

�
z b1zb1,ið Þ:Timei,jzei,j ,

ð1Þ

where i identifies the patient, j identifies the measurement (i.e.

Timei,j is the time of the jth measurement on patient i), Classi,C is

the indicator variable for Class C (i.e. takes the value of 1 if patient

i is in class C, 0 otherwise). For the one-sided threshold penalty –

as the response is essentially binary – generalized linear mixed

effects (GLME) modeling [16] was used instead of the traditional

linear mixed effects (LME) modeling. The link function was

chosen to be logistic, and the distribution family was binomial. For

the quadratic penalty, LME modeling was used, but the penalty

score was (monotonically) logit-transformed beforehand to map

the skewed distribution on 0,0:25½ � to an approximately normal

one on the real line [15]. This sacrifies the interpretability of the

coefficients for the correct specification of the model, but the

former was of little concern for us, as we will not use the numerical

values of the coefficients for further analysis. Linearity for the

transformed data was still feasible.

The coefficients are denoted with b for the fixed, and with b for

the random effects. The fixed effects coefficient of Time

characterizes – for the whole population – how variability changes

over time, with positive value implying increasing variability,

negative implying decreasing variability, and the absolute value

showing the size of this effect. The fixed effects coefficients of

diagnosis groups show the estimated variability of a patient in the

given diagnosis group when admitted to the ICU.

Restricted maximum likelihood (REML) was used for the

estimation of LME models and Laplace-approximation for

GLME. Residual variance was rather high in both cases,

indicating that the models were only able to capture a small part

of the variation – but this is to be expected, given that we use no

information other than time spent in ICU and diagnosis group.

After performing ANOVA to assess the significance of main

effects, post-hoc testing on significant effects was carried out using

Tukey’s Honestly Significant Differences (HSD) method [17],

providing the correction that takes the multiple comparisons

situation into account.

Data processing
Data processing was done using Mathworks Matlab (version

2009a). Statistical analysis was performed under the R statistical

program package [18], version 2.15.1 with nlme package for LME

modeling [19] and lme4 package for GLME modeling [20].

Results

Figure 3 shows the distribution of the percentile of actual

SI nz1ð Þ on its predicted distribution for different days and

diagnosis groups. Figure 4 shows the violin plot of the distributions

of per-patient overall variability metrics in different diagnosis

groups, segregated according to ICU day and diagnosis group.

Parameters of the fitted GLME model (for one-sided threshold

penalty) and LME model (for quadratic penalty) are shown in

Table 2.

The distributions in Figure 3 suggest poor coverage of the

whole-cohort model on day 1, almost ubiquitously across diagnosis

groups. On day 2, every diagnosis group ‘‘flattens’’, except for

Operative - Cardiac. On day 3, the predictions are acceptable in

every diagnosis group in that the actual distribution of SI nz1ð Þ
largely matches the whole cohort-predicted distribution. Finally,

on day 4 and onwards the coverage is very over-conservative in the

Operative - All other category.

Figure 4 (top row) suggests that one-sided threshold penalties

exhibit much larger, typically positively-skewed variations. There

is a slight trend in the central tendency, as median variability in

this metric appears to decrease as time increases. A trend towards

reduced spread in this (one-sided) variability over time is more

pronounced, indicating decreasing risk of hypoglycemia over time

when all else is equal.

In contrast, quadratic penalties are much more centrally

concentrated, and have a smaller coefficient of variation. The

continuous lowering of variability over time in every group is also

seen, but a reduction in spread is not as pronounced. The two

metrics are consistent in assigning ‘‘higher’’ and ‘‘lower’’

variabilities similarly over time and diagnostic group, albeit on

different scales.

As can be seen from Table 2, time trend was significant

(pv0:0001) with a coefficient of {0:1234/day for the one-sided

threshold penalty, and {0:1810/day for the (transformed)

quadratic penalty, indicating the decreasing variability over time

in both cases. These results also imply a decreasing risk of

hypoglycemia inducing variability in insulin sensitivity over time,

matching trends in Figure 4.

Figure 3. Distribution of predictions according to diagnosis and day of stay. Histograms of the percentile of actual SI nz1ð Þ values on their
predicted distribution grouped according to day (rows) and diagnosis group (columns). Dashed line indicates the ideal (uniform) case of perfect
prediction. The number of hourly measurements which was used to construct the histogram is shown in the title.
doi:10.1371/journal.pone.0057119.g003
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Post-hoc testing for diagnosis groups also revealed significant

differences. Using Tukey’s HSD method (see Table 3), Non-

operative - Cardiac group had significantly (p~0:0175) higher

variability than Non-operative - Gastric for the one-sided

threshold penalty. Non-operative - All other category also

exhibited marginally significantly (p~0:0832) lower SI variability

than Non-operative - Cardiac patients. The Operative - Cardiac

exhibited significantly (p~0:0444) higher variability than Non-

operative Gastric for the (transformed) quadratic penalty. These

results suggest that the Non-operative - Gastric group is amongst

the least variable groups, while the Cardiac groups exhibit the

highest variability irrespective of day. These results are consistent

with Figure 4, though it is worth noting that cardiac patients

‘‘change place’’ from day 1 to day 2 irrespective of penalty: Non-

operative - Cardiac patients are more variable than Operative -

Cardiac group on day 1, but this order is reversed from day 2

onwards.

Discussion

Clinically, those results indicate a decreasing likelihood of

hypoglycemia induced by large rises (variations) in insulin

sensitivity over short measurement and intervention intervals as

days of ICU stay increase based on the one-sided threshold results.

The overall risk of increased variability of both forms (one-sided

and quadratic metrics) by diagnostic category is highest for

Cardiac patient groups.

This latter observation is matching the increased hypoglycemia

observed in glycemic control studies in these cohorts (e.g. [21]).

The highest variability on day 1 is consistent with the increased

hypoglycemia and range observed in the first 24 hours in the study

by Bagshaw et al [4], which was associated with increased risk of

death. The overall higher variability (quadratic measure) on day 1

in all groups is also reflective of increased hypoglycemia and

variability reported in most glycemic control studies irrespective of

cohort [3,4].

The major strength of the present study is that it also provides a

rigorous statistical framework, which makes the quantification of

these effects possible. It is, however, limited in some sense because

it is inherently linked to the SPRINT protocol (as it interprets

variability as the deviation of the actual SI from its prediction

provided by the particular algorithm in that protocol).

The physiological causes of this variability have links to the

counter-regulatory and oxidative stress responses, and inflamma-

tory acute immune response typically seen in hyperglycemic

critically ill patients. That the variability declines over days 1–4 as

the acute phase passes also matches expectations and physiological

observations. Drug therapies, such as glucocorticoid or inotrope

use [22] among others, may also be implicated as a causative

factor. However, the high level of patient-specificity observed

within any group makes determining specific causes or magnitude

of effect difficult.

For glycemic control, high levels of variability combined with

infrequent BG measurement are a major disincentive to higher

insulin doses and/or low glycemic targets. The only study to

reduce both mortality and hypoglycemia [10] was notable in

modulating both insulin and nutrition inputs to achieve good

control with lesser insulin and thus reduce hypoglycemic risk.

Hence, either higher targets [23] and/or adding nutritional intake

into consideration in providing glycemic control [24] must be

considered for at least some diagnostic groups (e.g Cardiac

patients) and days of ICU stay (day 1) based on these results.

Table 3. Significance of the effect of diagnosis group with
Tukey-HSD correction for multiple comparisons.

Comparison One-sided penalty
(Transformed) Quadratic
penalty

Estimate p Estimate p

OpC - NOpC 20.3285 0.4188 0.0606 0.9992

NOpG - NOpC 20.7724 0.0172 20.5451 0.1505

OpG - NOpC 20.2984 0.5130 20.1889 0.8637

NOpO - NOpC 20.4096 0.0835 20.2317 0.6190

OpO - NOpC 20.5104 0.1438 20.3434 0.5038

NOpG - OpC 20.4440 0.3607 20.6057 0.0444

OpG - OpC 0.0300 1.0000 20.2495 0.4946

NOpO - OpC 20.0811 0.9890 20.2923 0.1525

OpO - OpC 20.1819 0.9335 20.4040 0.2077

OpG - NOpG 0.4740 0.2765 0.3563 0.5179

NOpO - NOpG 0.3628 0.5024 0.3135 0.5799

OpO - NOpG 0.2621 0.9034 0.2017 0.9539

NOpO - OpG 20.1112 0.9503 20.0428 0.9992

OpO - OpG 20.2120 0.8732 20.1545 0.9518

OpO - NOpO 20.1008 0.9919 20.1117 0.9817

Estimates of differences and the p-values for the test of their significance (using
Tukey-HSD post hoc testing for the multiple comparisons situation) for the
pairwise comparison of diagnostic categories.
doi:10.1371/journal.pone.0057119.t003

Table 2. Fixed effect coefficients of the fitted models for the
one-sided and the quadratic penalty.

Variable
One-sided
penalty

(Transformed)
Quadratic penalty

Non-operative - Cardiac 21.5807 20.5033

Operative - Cardiac 21.9092 20.4427

Non-operative - Gastric 22.3532 21.048

Operative - Gastric 21.8791 20.6922

Non-operative - All other 21.9903 20.7350

Operative - All other 22.0911 20.8467

Time (per minute) 20.00008571 20.0001257

Time (per day) 20.1234224 20.1810

pv0:0001 pv0:0001

Summary of the estimated fixed effect coefficients of the LME model for (logit-
transformed) quadratic penalty and the GLME model for the one-sided
threshold penalty, and the p-value for the test of significance for Time. The
coefficient of Time is given both per minute and per day (24:60~1440 times
the former).
doi:10.1371/journal.pone.0057119.t002

Figure 4. Distribution of per-patient variability scores according to diagnosis and day of stay. Violin plots of per-patient overall
variability scores segregated according to day and diagnosis group. Upper row shows one-sided threshold penalty metric, while lower row shows the
quadratic penalty metric. Thick vertical lines indicate the interquartile range, the crossing horizontal line is at the median. Dots indicate the mean.
doi:10.1371/journal.pone.0057119.g004
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Conclusions

Inter-patient variability in insulin sensitivity peaks on day 1

across diagnostic groups and metrics. Operative - All other

patients are more predictable after day 4 than an all patients and

days of stay model accounted for, shown by conservative coverage.

The distribution of overall intra-patient variability assessed per-

patient and the mixed-effects model shows there are distinctive

differences between diagnosis groups, irrespective of the time spent

in the ICU. In particular, the Non-operative - Gastric group

exhibits the smallest variability, while Cardiac groups are amongst

the most variable. Clinically, these results show decreasing risk of

hypoglycemia as length of stay increases, as well as some reduction

in glycemic variability when all else is equal. The overall results

can be used to guide the design and implementation of glycemic

management specific to diagnosis group and ICU day of stay to

improve control and reduce risk.
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Abstract—Single Photon Emission Computed Tomography
(SPECT) is a widely used imaging technique in nuclear medicine.
In SPECT imaging the Maximum Likelihood Expectation Maxi-
mization (MLEM) algorithm is a popular reconstruction tech-
nique, although the MLEM based image reconstruction is a
time consuming process especially in the case if we use it with
attenuation correction and compensation for the distance depen-
dent spatial resolution of the detector. In this research we have
developed a new MLEM based iterative SPECT reconstruction
algorithm reducing significantly the reconstruction time. The new
reconstruction method is divided into two phases. In the phases
different spatial resolution of the reconstructed volume is used. In
the first phase of the reconstruction we scaled down the original
spatial resolution of the detected images in order to decrease
the amount of data to process and - simultaneously - decrease
the computational complexity of the reconstruction algorithm.
In the second phase we increased the spatial resolution of the
reconstructed image to the original one. In this phase we applied
reverse diffusion based partial volume effect (PVE) correction to
partially compensate the negative effects of the low resolution.
The method has been tested with mathematical phantoms (with
a bullet phantom and with the NCAT phantom) with additional
noise. Convergence curves shows that the suggested method is
able to reconstruct with similar quality than the high resolution
reconstruction while the execution time of the algorithm has been
significantly reduced.

Index Terms—SPECT; Iterative reconstruction; MLEM; Par-
tial Volume Effect; PVE correction

I. INTRODUCTION

Single Photon Emission Computed Tomography (SPECT)
[1] is a widely used imaging technique in nuclear medicine.
During SPECT imaging a radiolabelled substance is injected
into the human body. The injected tracer is concentrated in
specific parts of the body that are of medical interest for
disease detection. A rotating gamma camera is then obtaining
2D views (projection images) of the 3D distribution of the
radionuclide at different angular positions (Fig. 1). After data
acquisition the 3D distribution of the radioactive substance can
be reconstructed using appropriate reconstruction algorithm.

Fig. 1. During SPECT imaging a radionuclide is injected into the body. A
gamma camera is rotated around the body and projection images are collected.
After data acquisition the 3D distribution of the radioactive substance can be
reconstructed using appropriate reconstruction algorithm. [2]

In our recent work, we have developed a fast GPU based
iterative SPECT reconstruction algorithm with attenuation
correction and compensation for the distance dependent spatial
resolution (DDSR) of the detector [2] [3]. The algorithm
resulted in an improved spatial resolution and were verified
for cardiac perfusion SPECT imaging. A decreased activity
around the apical region has been discovered during verifi-
cation. This apical lesion could be observed systematically
on mathematical and physical phantoms as well as on patient
studies [3]. This phenomenon is originating from the Partial
Volume Effect (PVE).

An evident method to decrease the PVE in SPECT imaging
is to reconstruct in higher resolution (i.e. with decreased
voxel size). However, using smaller voxels results in a large
amount of data to process. Consequently, execution time is
significantly increased. Other PVE correction techniques are
used pixel based in order to reduce the tissue fraction effect
[4] [5] [6].



In this work we developed a reconstruction method that
begins with an iterative reconstruction using a given voxel
size, then interpolating the volume in a volume with smaller
voxel size (high resolution) and at the end iterating in the high
resolution volume. With this method result with similar quality
has been achieved as processing a reconstruction with a high
resolution volume while the execution time is significantly
decreased.

II. METHODS

A. Maximum Likelihood Expectation Maximization

The Maximum Likelihood Expectation Maximization
(MLEM) iterative reconstruction algorithm [7] [8] and its ac-
celerated version using ordered subset [9] is a set of successive
forward projections and backprojections where the (k + 1)
estimation is defined by the following formula:

fk+1
j = fk

j · 1∑I
i=1 aij

·
I∑

i=1

bi∑J
n=1 f

k
n · ani

· aij (1)

There are J different image voxels and I detector locations.
aij is the probability that a photon emitted in voxel j is
detected in detector location i.

The Poisson probabilistic phenomena of the radioactive de-
cay is taken into account in MLEM. The algorithm calculates
the activity distribution which has produced the measured
values with the highest likelihood.

The most important distortion effects in SPECT imaging are
the gamma photon attenuation in non-homogeneous medium
and the distance dependent spatial resolution of the detector
(Fig. 2.). In order to achieve a proper reconstruction these
effects should be corrected for.

Fig. 2. The gamma camera produce a distance dependent point spread
function resulting in a Gaussian blurring. [2]

In the forward projection step we have incorporated the
effect of gamma photon attenuation and the distance depen-
dent blurring of the gamma camera [2]. As a consequence
of applying these correction in the MLEM, the execution
time of the reconstruction algorithm increased extremely. The
reconstruction process becomes even more time consuming if
high resolution volumes are used.

B. PVE reduction using the reverse diffusion method

The Partial Volume Effect reduction technique by interpo-
lation with revers diffusion is an upscaling method developed
originally for Magnetic Resonance Imaging [5].

In this method subvoxels are created and the value of the
subvoxels are considered as material that are able to move
between subvoxels. The material is allowed to flow towards
the highest gradient direction (illustrated in Fig. 3. in 1 dimen-
sional case) resulting in a reverse diffusion process that can
be described with a partial differential equation. The reverse
diffusion process is highly unstable therefor is controlled by
some simple constrained. The method is described in detail in
[5].

(a) (b)

(c) (d)

Fig. 3. PVE reduction by interpolation with reverse diffusion is illustrated
in 1 dimensional case. (a) is the original signal. (b) is the discretized version
of (a) and is suffered from PVE. (c) is the subsampled signal, each value
in subvoxels can be increased or decreased. (d) is the result of the reverse
diffusion process.

C. Incorporating the PVE reduction technique into MLEM

We have developed a method that utilize the PVE reduction
technique while reconstructing the activity distribution in
SPECT imaging. The method includes the following steps:

1) doing SPECT data acquisition in high resolution;
2) creating projection images in lower resolution: down-

scaling the projection images with a factor of 2;
3) reconstructing with 3D MLEM in lower resolution;
4) upscaling the 3D reconstruction volume with a factor of

2 using PVE reduction;
5) continue reconstruction with 3D MLEM in higher spatial

resolution (original resolution).
If popular interpolation techniques such as nearest neigh-

bourhood or linear interpolation were used in the method
described above the discretization of the lower resolution
would remain in the reconstructed image after continuing the
reconstruction. Using the PVE correction step in the method
similar image quality can achieved while the execution time of
the reconstruction process is comparable to the reconstruction
with lower resolution.

III. RESULTS AND DISCUSSION

The method has been tested with two mathematical phan-
toms (Fig. 4.). We have created a bullet phantom (Fig. 4



(a)) that has a similar structure like in myocardial perfusion
imaging the heart wall. We have used the NCAT phantom [10]
that is the exact voxelized model of a human thorax (Fig. 4
(b)).

(a) Bullet phantom (b) NCAT phantom

Fig. 4. Mathematical phantoms used in verification. (a): bullet phantom. (b):
NCAT phantom.

Projection image series has been generated using the for-
ward projector of our fast GPU based SPECT reconstruction
algorithm that involved gamma photon attenuation and DDSR
effect. A number of 128 projection images in size of 256x256
were generated with pixel size of 1mm. The projection images
has been downscaled to 128x128 size with pixel size of 2mm.

The projection images in 128x128 were reconstructed in
a 1283 volume using 40 OSEM iteration, the number of
subsets was set to 8. After that the reconstruction volume has
been upscaled to 256x256 size using nearest neighbourhood
interpolation, linear interpolation and with PVE reduction
technique. Then the reconstruction has been continued in high
resolution, 10 has been performed additionally.

In the case of the bullet phantom only the blurring effect of
the detector has been simulated while in the case of the NCAT
phantom gamma photon attenuation has been also incorporated
into the forward projection. The method has been tested in
presence of additional Poisson noise.

Convergence curves has been generated while the distance
of images in each iteration was calculated according to the
following formula:

cc = 100 ·

(
1−

∣∣∣∣∣ C1,2(v1, v2)√
C1,2(v1, v1) · C1,2(v2, v2)

∣∣∣∣∣
)

(2)

Where v1 and v2 are vectors formed from the two volumes.
C is the covariance matrix. The distance calculated this way
is invariant to linear scaling.

Reconstructed slices are shown in Fig. 5. It can be seen that
the reconstructed slice upscaled with nearest neighbourhood
interpolation has lower quality but it is visually not clear
whether a linear interpolation or the upscaled with PVE
reduction is closer to the 2563 reconstructed volume. But
convergence curves (Fig. 6.) show that using PVE reduction
while upscaling the volume result in a ”jump” in the con-
vergence curve to the high resolution reconstruction. Using

(a) (b)

(c) (d)

Fig. 5. Bullet phantom reconstructed slices. (a): 2563 reconstruction 40
iterations. (b): 1283 reconstruction, 40 iterations, upscaled with nearest
neighbourhood interpolation. (c): 1283 reconstruction, 40 iterations, upscaled
with linear interpolation. (d): 1283 reconstruction, 40 iterations, upscaled with
PVE reduction.

Fig. 6. Bullet phantom convergence curve. Blue: reconstruction in high
resolution. Green: reconstructing while upscaling with nearest neighbourhood
interpolation. Cyan: reconstructing while upscaling with linear interpolation.
Red: reconstructing while upscaling with PVE reduction.



nearest neighbourhood or linear interpolation results in a closer
volume but does not reach the high resolution image.

Fig. 7. NCAT phantom convergence curve. Only the detector response
has been simulated. Blue: reconstruction in high resolution. Green: recon-
structing while upscaling with nearest neighbourhood interpolation. Cyan:
reconstructing while upscaling with linear interpolation. Red: reconstructing
while upscaling with PVE reduction.

The convergence curves of the NCAT phantom simulating
only detector blurring is shown in Fig. 7. In this case the
convergence curve get closer when PVE reduction is used (but
not so much as in case of the bullet phantom) while applying
other interpolation techniques does not significantly affect the
reconstruction.

The convergence curves of the NCAT phantom simulating
detector blurring and gamma photon attenuation as well is
shown in Fig. 9. Including the effect of gamma photon
attenuation in the simulation does not resulted in a signif-
icant difference in the convergence curves. Note that the
convergence curves with only detector blurring simulation
are running lower. This is because a reconstruction with
attenuation correction converges slower. Reconstructed slices
show similar result as in the case of the bullet phantom. It
can be seen that the reconstructed slice upscaled with nearest
neighbourhood interpolation has lower quality but it is visually
not clear whether a linear interpolation or the upscaled with
PVE reduction is closer to the 2563 reconstructed volume.

IV. CONCLUSION

We developed a method that is a combination of the MLEM
SPECT reconstruction algorithm and a PVE reduction tech-
nique. Applying this method a high resolution reconstruction
can be achieved while the execution time is significantly
reduced.

The method has been tested with mathematical phantoms
while a realistic SPECT system with important distortion
effects (gamma photon attenuation and distance dependent

(a) (b)

(c) (d)

Fig. 8. Bullet phantom reconstructed slices. (a): 2563 reconstruction 40
iterations. (b): 1283 reconstruction, 40 iterations, upscaled with nearest
neighbourhood interpolation. (c): 1283 reconstruction, 40 iterations, upscaled
with linear interpolation. (d): 1283 reconstruction, 40 iterations, upscaled with
PVE reduction.

Fig. 9. NCAT phantom convergence curve. Detector response and gamma
photon attenuation has been simulated as well. Blue: reconstruction in high
resolution. Green: reconstructing while upscaling with nearest neighbourhood
interpolation. Cyan: reconstructing while upscaling with linear interpolation.
Red: reconstructing while upscaling with PVE reduction.



blurring of the detector) with additional Poisson noise has been
simulated. The convergence curves show promising results.
In order to prove the applicability of the method further
verification with physical phantoms and patient studies should
be performed.

Let us note that the suggested method would work with
other PVE reduction techniques as well.

ACKNOWLEDGMENT

This work was supported by Mediso Ltd and by the
Hungarian National Research Found (OTKA) Grants No.
CK80316 and K82066. This work is connected to the scientific
program of the ”Development of quality-oriented and harmo-
nized R+D+I strategy and functional model at BME” project,
supported by the New Hungary Development Plan (Project ID:
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Abstract

Background: Shape of the dental root canal is highly patient specific. Automated
identification methods of the medial line of dental root canals and the reproduction of
their 3D shape can be beneficial for planning endodontic interventions as severely
curved root canals or multi-rooted teeth may pose treatment challenges. Accurate
shape information of the root canals may also be used by manufacturers of endodontic
instruments in order to make more efficient clinical tools.

Method: Novel image processing procedures dedicated to the automated detection
of the medial axis of the root canal from dental micro-CT and cone-beam CT records
are developed. For micro-CT, the 3D model of the root canal is built up from several
hundred parallel cross sections, using image enhancement, histogram based fuzzy
c-means clustering, center point detection in the segmented slice, three dimensional
inner surface reconstruction, and potential field driven curve skeleton extraction in
three dimensions. Cone-beam CT records are processed with image enhancement
filters and fuzzy chain based regional segmentation, followed by the reconstruction of
the root canal surface and detecting its skeleton via a mesh contraction algorithm.

Results: The proposed medial line identification and root canal detection algorithms
are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used
in the validation procedure. The overall success rate of the automatic dental root canal
identification was about 92% in both procedures. The algorithms proved to be
accurate enough for endodontic therapy planning.

Conclusions: Accurate medial line identification and shape detection algorithms of
dental root canal have been developed. Different procedures are defined for micro-CT
and cone-beam CT records. The automated execution of the subsequent processing
steps allows easy application of the algorithms in the dental care. The output data of
the image processing procedures is suitable for mathematical modeling of the central
line. The proposed methods can help automate the preparation and design of several
kinds of endodontic interventions.

Background
The shape of the root canal varies from patient to patient, and from tooth to tooth.
Severely curved root canals or multi-rooted teeth may pose several challenges in the
endodontic treatment. Thus the shape information of root canals can be efficiently used
for better intervention planning. Accurate shape information of the root canals may also

© 2012 Benyó; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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be used by manufacturers of endodontic instruments in order to make more efficient
clinical tools.
The new 3D imaging technologies like cone-beam computed tomography (CBCT) that

are available in more and more dental practices show great promise in this field [1-4] as
they make possible the extraction of the dental root canal shape information. However,
the development of root canal shape extraction methods raises a set of challenges due to
X-ray dose regulations that cause limited image quality [5]. Moreover, in order to design
methods to meet the needs of dental practice the image processing methods should be
highly automated.
In order to provide an efficient and effective tool that assists endodontic intervention

planning, this research focuses on the automatic recognition of the root and root canals
and mathematical description of root canal curvatures. The integration of the image
processing steps in novel imaging systems may significantly improve endodontic prac-
tice in the near future. In addition, the attempt to automatically locate and classify the
root canals may result in decreased chair time for both the patient and the practitioner,
reducing clinical burden, effort and cost.
Modern medical imaging devices enable recording several cross sections of the teeth,

which can be fed to image processing techniques to extract the shape of the root canal.
This problem has been solved several different ways, based on recorded data originating
from various imaging tools. Analui et al [6] elaborated a geometric approach for modeling
and measurement of root canal of human dentition based on stereo digital radiography.
Hong et al [7] used 2D radiographic images to build up a 3D tooth model, while Endo
et al [8] turned to ultrasonic imaging and implemented a fuzzy logic based root canal
detection. Lee et al [9] used micro-CT images and 3D reconstruction software to measure
the three-dimensional canal curvature in maxillary first molars via mathematical model-
ing. Several other 3D dental structure reconstruction systems were elaborated, including
Willershausen et al [10] who used X-ray images, and van Soest et al [11], who applied
optical coherence tomography records for 3D structure reconstruction. Germans et al
[12] presented an imaging system based on virtual reality that can navigate through the
reconstructed 3D structure andmakemeasurements concerning the curvature of the root
canal.
Recently, further solutions have emerged: Park et al [13] proposed a root canal config-

uration identification method specialized for the first molar, based on micro-CT records.
Neves et al [14] elaborated a quantitative evaluation technique for caries excavation. Eval-
uation methods for the morphology of the root canal were given by Verma and Love [15],
and Yamada et al [16]. The root canal of the incisors were studied by Kaya et al [17], who
evaluated the changes in the canal’s shape due to aging, and Li et al [18], who investi-
gated the effect of manual instrumentation technique on root canal geometry. Recently
elaborated modeling tools suitable for the characterization of root canals were given in
[19,20].
For further reading in the topic, the reader is referred to the reviews elaborated by Peters

[1], Dong et al [21], and Swain and Xu [2].
Medial lines of tubular structures are often approximated with 3D curve skeletons [22].

Curve skeleton extraction methodology has a strong foundation. Methods based on thin-
ning or boundary propagation iteratively remove so-called simple points (whose presence
does not affect the topology), from the surface of the object. This is generally achieved
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using a hit-or-miss transform extended to three dimensions [23,24]. Approaches based
on distance fields define and compute the minimum distance of each discrete interior
point to the surface of the object, an approximate the curve skeleton with the ridges of
this distance field [25]. Geometric models generally use a graph-based representation for
the approximation of the medial surface or curve of the object [26]. Generalized poten-
tial field methods define an internal potential field that differs from the distance field (e.g.
electrostatic field generated by placing point charges to all discrete boundary locations
[27]), and extract a hierarchical structure composed of critical and saddle points of the
field.
3D curve skeletons are composed of loci having at least two closest points on the bound-

ary of the object. This property makes curve skeletons suitable to approximate the center
line of the root canal. Curve skeletons preserve the topology of the object, and embody the
hierarchy of its components, which is relevant at the detection of bifurcations. In order
to suit the needs of dental imaging application, an approach has to be chosen that yields
the smoothest curve and shows little sensitivity to slight changes of the object’s boundary.
For further details on the topic of 3D curve skeletons, the reader is referred to [22], which
is an excellent repository of such methods and their properties.
The general shortcoming of all reported methods that they provide solution only for a

single - or atmost some subsequent - steps of the root canal identification. The integration
of the methods into an automated procedure requires significant enhancement of the
algorithms.
This paper introduces predominantly automated image processing procedures for the

segmentation of teeth and root canals, and identification of the medial line of the root
canal, using a fuzzy chain relation and 3D curve skeletons. Two different procedures will
be proposed and validated on micro-CT and one for CBCT records, respectively.

Methods
Processing micro-CT records

Dental micro-CT records consist of single channel intensity images, representing high-
resolution (1500–3000dpi) scans of parallel cross sections of a certain tooth. A set
of images may contain several hundred scanned horizontal planes, which usually are
linearly distributed along an axis orthogonal to the scanned planes. The distribu-
tion of voxel intensity levels varies from slice to slice, but there are a few rules
which most slices obey. In this order, the anatomical structure is reflected by voxel
intensities. In normal cases, cross sections contain a light gray spot corresponding
to the dentin, usually lighter at its edges (that is because the enamel), possibly sur-
rounding one or more darker regions, which represent the root canal containing soft
tissues. The cementum, when visible, is usually somewhat lighter than the dentin.
Noise is manifested by granular texture and circular texture visible in the light areas.
Figure 1 shows two dental cross sections originating from two different micro-CT
records.
The main goal of the proposed image processing procedure is to identify the 3D struc-

ture of the root canal built up from the inner darker regions identified from all cross
sections. Afterwards, curve that corresponds to the central line is identified and tracked.
The detected central line must follow the topology of the root canal, by reflecting its
curves and bifurcations.
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Figure 1 Slices frommicro-CT volumes, with typical artifacts.

Figure 2 exhibits the diagram of the image overall processing procedure proposed. The
following subsections discuss the functionality of each box of the diagram.

StepMCT1 - Preprocessing

The automatic image segmentation must be preceded by some image enhancement steps.
In our application, the following preprocessing steps are employed:

1. A simple median filter, which reduces the high frequency noise that is most visible
in the dentin’s texture.

Figure 2 Steps of the proposed algorithm.
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2. Establishing the region of interest (ROI) by trimming the image: this way we get rid
of the dark areas that represent outer space. It is necessary to store the exact
coordinates of the ROI.

3. Some basic morphological operators are used to remove texts from the original
image and regularize the boundary of the root canal.

After this preprocessing step, the image is ready for segmentation.

StepMCT2 - Segmentation in 2D

The final result of the planar segmentation should be a binary image. Even if the image
enhancement techniques have already suppressed the disturbing textures, high quality
segmentation is obtained by applying a double partitioning.
This step produces two different partitions that are both obtained using the histogram

based enhanced version (EnFCM) [28] of the fuzzy c-means algorithm [29], which parti-
tions the input slice or volume into a predefined number (c) of classes. The first partition
is achieved by performing EnFCM on the ROI of the slice, setting the number of clus-
ters to c = 4. In the followings, this partition will be referred to as local partition, as it is
computed from the local data of the slice. The second partition is produced by a simple
thresholding operation, using a previously computed threshold τglobal that was obtained
by EnFCM from the whole data set, using c = 2 clusters. The latter partition is called
global partition of the slice, because it uses the global threshold extracted from the data
of the whole volume. Theoretically this would involve computing the global histogram.
Instead of that, in order to reduce computation time, the global threshold is estimated
using only 2% of the slices, which are linearly distributed along the axis.
The global threshold produces a binary image. The local partition contains 4 differ-

ent colors, corresponding to the prototypes of the 4 clusters, v1 . . . v4. Let us suppose the
intensity values are ordered increasingly, that is, vi+1 > vi, ∀i = 1 . . . c − 1. The 4 clus-
ters are then separated in two classes, using the threshold τlocal = (vi+1 − vi)/2, where
i = argmax

j
{vi+1 − vi, i = 1 . . . c − 1}. In most cases, both binary images are good quality

partitions, but there are exceptions, when one of these algorithms fails. In these cases the
correct partition must be selected.

StepMCT3 - Decisionmaking

To provide an intelligent selection of the correct binary partition, a decision tree has
been built based on 250 slices representing above mentioned exceptions. The decision
is made in a four dimensional search space, corresponding to parameters: τglobal, and
τi = (vi+1−vi)/2, where i = 1 . . . 3. The output of the tree is the decisionwhether the local
or the global binary partition is the correct one. During the training process, we employed
the entropy minimization technique until all the leaves of the tree became homogeneous.
After having the decision tree trained, decision making is performed quickly. Finally, a
binary image is obtained, where the inner dark regions have to be localized.

StepMCT4 - Region growing and selection

The identification of dark spots situated within the light area of the binary image, is
performed by an iterative region growing method. As long as there are dark pixels in
the segmented image, a dark pixel is arbitrarily chosen and a region is grown around it.
Outer space (which is also dark) is obviously discarded, and the detected dark spots are
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separately stored. Each branch of the root canal, which is present in the cross section,
should normally be represented by a single dark region within the slice. Unfortunately,
mostly because of imaging artifacts or complex shaped canals, there are some cases, when
a single canal branch is manifested by more than one dark region. These cases can be
detected automatically, but their treatment sometimes requires manual intervention.
Each dark spot has its center point, which can be computed two different ways: 1) as the

center of gravity of the spot; 2) by means of morphological thinning. The center of gravity
is easier to compute, but sometimes falls outside the spot. Morphological thinning always
gives a quasi-centrally located center point, but entails more computational load.
The automatic selection of detected spots can be performed by several different proto-

cols, which are summarized in Table 1. Protocol P1 can be used in cases of incisor teeth
only, when a priori anatomical information makes the presence of a single spot highly
probable.

StepMCT5 - Automatic shape regularization

Due to the artifacts present in the original micro-CT records, the dark spot detected in
certain slices may contain irregularities. There are several kinds of such cases: some can
be treated by automatic regularization techniques, while there are also cases that require
manual interaction. For example, a light "island" within the dark spot is easily removable.
Strange shaped "peninsulas" can be treated by large masked median filter or morpho-
logical opening/closing. There are also cases where the real root canal is detected as
several separate dark spots situated very close from each other, which need to be unified.
Automatic unification is possible using morphological operations or distance transform.

StepMCT6 - Correlation checking

The accurate segmentation of the micro-CT images may demand manual intervention.
Fortunately, the necessity of such steps is visible from the correlation of detected dark
spots within adjacent cross sections. Other words, there cannot be a relevant change in
the structure found within neighbor slices.Wherever there is a large distance between the
center points detected in neighboring slices (see for example Figure 3), either we have a
bifurcation, or some intervention is likely to be beneficial. In case of bifurcation, the num-
ber of dark spots in the neighbor slices should differ, but correlate with the next neighbor
slice for each point. Thus, detecting the need for manual intervention is automated in the
proposed process.

StepMCT7 -Manual interactions to improve accuracy

The user has the opportunity to change the result of the automatic segmentation within
any of the slices. As it was justified in the previous section, the user is advised where
the interaction is required. This means that the algorithm automatically detects the cases

Table 1 Implemented spot selection protocols

Name Description

P1 - Only one spot Always extracts the largest dark spot from the slice.

P2 - At most two/three/four Extracts the second/third/fourth spot if it is present and

larger than a small threshold size.

P3 - Adaptive It may extract any number of spots, according to some

predefined rules that concern the size of different spots.



Benyó BioMedical Engineering OnLine 2012, 11:81 Page 7 of 17
http://www.biomedical-engineering-online.com/content/11/81

Figure 3 Checking the correlation of dark spot centers in neighbor slices. It can reveal the presence of
bifurcations (around slice 70) and the need for manual interaction (around slice 310). Both events can be
localized and identified automatically.

when the manual intervention is likely to be beneficial and asks for manual intervention.
The implemented manual interventions are summarized in Table 2.

StepMCT8 - Reconstruct the spatial shape of the root canal

The inner dark spots localized within each slice are put together in space to form a three
dimensional object that describes the shape of the root canal. The center line of this object
will be searched for using a procedure based on 3D curve skeleton extraction.

StepMCT9 - 3D curve skeleton extraction

As mentioned in [22], there are various approximation algorithms for the 3D curve skele-
ton of voxelized objects. We need to employ such an approach which provides a smooth
curve with low amount of branches, and extremely insensitive to zigzagged surfaces. This
sort of curve skeleton is reportedly produced by potential field methods. The actual skele-
ton extraction algorithm implemented into the medial line identification procedure is the
hierarchical formulation of the potential field based problem, described in [30].

Table 2 List of implementedmanual interventions

Name Description

M1 Overrule the decision dictated by the decision tree.

M2 Change the local threshold to any desired value.

M3 Discard some of the automatically detected dark spots.

M4 Unify several dark spots using a parametric active contour

model (snake) initialized by the user.
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StepMCT10 - Corrections of the extracted skeleton

The 3D curve skeleton accurately handles critical cases like root canal bifurcations, or
slices that are far from being orthogonal to the root canal’s direction. Under such cir-
cumstances, the curve skeleton is an excellent approximation of the center line. However,
at all endings of the root canal, the curve skeleton is either shorter than it should be as
the iterative thinning has its effect from every direction, or it has several short branches
connected to high curvature points of the surface of the reconstructed 3D object.
To produce an accurate center line with the skeleton extraction algorithm, the diver-

gence parameter of Cornea’s potential field approach must be chosen to be low enough
so that the endings of the skeleton towards superficial high curvature points are not
present. Further, to avoid the shortened endings of the skeleton, we need to virtually
lengthen all endings of the reconstructed tubular 3D object with as many slices (identi-
cal to the peripheral one) as necessary. The number of such virtually added slices is well
approximated as the shortest radius of the dark spot in the peripheral slice.
Most steps of the algorithm summarized in Figure 2 are performed automatically. Only

the box drawn with dotted line comprises any possible manual interactions. This step
is not mandatory in simple cases, such as incisor teeth or images with low amount of
artifacts.

Processing cone-beam CT records

Cone-beam CT image volumes usually consist of hundreds of parallel equidistant slices,
each slice being a single-channel intensity image (some examples are shown in Figure 4).
Voxels are isovolumetric, having their size between 100−300μm.At such a low resolution,
the root canals frequently have the width of single or a few voxels, and in order to have
accurate identification, partial volume effect has to be handled properly. Voxel intensities
are recorded as absolute values in Hounsfield units (HU).

Step CBCT1 - Image enhancement

The signal-to-noise ratio is in direct proportion with the X-ray dose received by the
scanned patient. As the dose should be kept minimal [5], the noise level in the image vol-
ume is frequently high. Under such circumstances, an efficient filtering technique needs
to be applied to reduce the adverse effect of high frequency noise upon segmentation,

Figure 4 Examples of slices from CBCT volumes.
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without altering or significantly reducing detectable edges. To perform this operation, the
context sensitive averaging filter proposed in [31] is employed.

Step CBCT2 - Segmentation

Region growing methods usually start from a seed point and grow homogeneous regions
around it, by including those neighbor voxels into the region that satisfy a predefined
homogeneity criterion. The most frequently used homogeneity criterion is based on
voxel intensities, and usually states that a region is homogeneous whenever the standard
deviation of voxel intensities within the region is below a predefined threshold. Such seg-
mentation methods frequently have difficulties in noisy environments. High frequency
noises can yield several few-voxel regions, while intensity inhomogeneity also hinders the
formation of large continuous regions.
The proposed segmentation method is very similar to the classical region growing

approach, but there is an important difference that enables it to grow regions beyond
noisy voxels. The proposed method is defined as follows.
Let X = {x1, x2, . . . , xN } be the set of voxels in the image volume, where N represents

the number of voxels. A fuzzy subset of X is defined as a set of ordered pairs:

F = {(xi,μF(xi))|i = 1 . . .N}, (1)

where μF : X →[ 0, 1] is called the membership function F in X. We can define a fuzzy
relation in X as a fuzzy subset of X2 written as:

� = {((xi, xj),μF(xi, xj))|i, j = 1 . . .N}, (2)

with μ� : X2 →[ 0, 1]. The so-called α-cut of a fuzzy subset F is the crisp set:

X(F)
α = {x ∈ X|μF(x) ≥ α}. (3)

The fuzzy relation �α is called a fuzzy link between xi and xj, if:

∃α ∈ (0, 1] : μ�(xi, xj) ≥ α. (4)

If a fuzzy relation �α holds over a set X = {x1, x2, . . . , xN }, then we may write
xi�αxj ∀xi, xj ∈ X.
Two elements xi and xj of a setX are α-chained, if there exists a sequence of fuzzy linked

elements ξ1, ξ2, . . . , ξk in X, such as:

xi�αξ1�αξ2�α . . . �αξk−1�αξk�αxj. (5)

In the proposed segmentation algorithm, two points will be in the same segment when-
ever they are α-chained through neighbor voxels. The only questions that remain are how
to define the relation � to distinguish voxels belonging to different types of tissues, and
which is the right value of α that assures a suitable granularity of detected segments?
The goal is to detect a tooth (or a molar) as a single continuous 3D region, and the root

canal as another volumetric region inside the tooth. To achieve the above goal, a fuzzy
relation for the voxels needs to be defined reflecting the pairwise similarity between the
two voxels. Two voxels should be similar if they are close to each other both in physical
position and observed intensity.
Similarly to the coefficients of the context dependent filter defined in [31], a fuzzy

relation � is defined in such a way that it contains the product of two factors:

μ�(xi, xj) = δ(xi, xj) × σ(xi, xj). (6)
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The first factor is a term that depends on the physical distance between the voxels: the
closer two voxels are from each other, themore similar they are. The second factor reflects
the similarity between the intensity of the two voxels. Here again, equal intensities have
the highest similarity, and the larger the difference in intensities, the lower is the degree
of similarity.
Two terms are thus defined according to the following rules:

δ(xi, xj) = 1√
1 + κδd(xi, xj)

. (7)

σ(xi, xj) = 1√
1 + κσ | log v(xi)

v(xj) |
. (8)

Trade-off parameters κδ and κσ enable fine tuning the behavior of the segmentation
algorithm. High values of κδ reduces the proposed method to conventional region grow-
ing, while low values enable the algorithm to join regions of similar intensity, which are
not physically connected. High values of κσ determine the algorithm to create regions of
piecewise constant intensity, while low ones enable regions to swallow neighbor voxels
whose intensity significantly differs from the intensity of the region.

Step CBCT3 - 3D object reconstruction

From the segmented image volume, the outer surface of molars and incisors is performed
by the corrected version of the marching cube method [32]. This is also employed to
reconstruct the shape of the root canal. All surfaces are obtained as triangulated mesh.

Step CBCT4 -Medial line extraction

Medial lines of tubular structures are often modeled by 3D curve skeletons [22]. Potential
field based methods [27] usually assure smooth curve skeletons of better quality, but they
need a much higher resolution of the object. For cone-beam CT volumes, the low reso-
lution of images does not allow employing potential field based curve skeleton extraction
methods. As the surface of the root canal is reconstructed as a mesh, it was straightfor-
ward to choose to apply the so-called 3D curve skeleton extraction via mesh contraction
[33].

Results
Accuracy tests

Themicro-CT image processing procedure was tested on 25 image volumes that included
17 incisors and 8 molars.
Figure 5 exhibits the intermediary results provided by the 2D segmentation. Three

cases of various difficulties are presented in the three rows of the image. The first row
presents a simple case involving a slice with two dark spots representing two different,
easily detectable root canals (there was a bifurcation several slices away from this one).
The slice in the middle row manifests an odd shaped dark region, which was successfully
detected. The slice presented in the third row shows a difficult case: three different dark
spots are present in the segmented images, but they belong to only two different canal
branches. This is the case that requires correlation test with neighbors or decision over-
ruling performed by the ANN. Figure 6 shows intermediary results at various points of
the process.
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Figure 5 Detailed view of image segmentation in 2D. Each row represents a different slice. First column
shows the original recorded images; second column presents the clustered images (4 clusters); last column
indicates the segmented binary images with detected center points.

Figure 7 shows four different 3D views of a root canal, together with its detected medial
axis. The central line was produced from 944 equidistant slices, segmented in 2D with
binary separation using the global optimal threshold.
The CBCT volume processing procedure was tested on 36 image volumes that con-

tained incisors and molars in equal number. The proposed algorithm requires a single
interaction: the user is asked tomark the tooth (incisor ormolar) desired to be segmented.
The volume of interest is then processed automatically.
The surface of segmented teeth and root canals are produced as mesh. After the auto-

matic processing, the user may also visualize sectioned views of the tooth. Figure 8
exhibits some views produced in case of an incisor, while Figure 9 shows the result pro-
vided in case of a molar with three branches in the root canal. In both these figures, part

Figure 6 Intermediary results of micro-CT image processing.
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Figure 7 Various 3D views of a root canal, with the extracted medial line. Numbers indicate voxels,
which are easily convertible to millimeters.

(a) shows the shape of the tooth, (b) the shape of the root canal, represented at the same
scale, in vertical position correlated with (a). Images shown in (c) and (d) are various
sectioned views of the tooth and root canal, visualized together.
Figure 10 presents the extracted central line in case of an incisor, together with the

shape of the root canal and the shape of the tooth. All three images represent the same
tooth, visualized from different angles. Sections of the tooth are shown using elevated
contour plots, green contours indicating the shape of the tooth, and red ones the shape
of the detected root canal. Indicated coordinates represent distances in voxels, which are
easily convertible to millimeters.
Figure 11 shows two different versions of a segmented molar, using the same represen-

tation conventions: the image on the left side, having shortened roots and root canals, is
obtained automatically, while the image on the right is the correct segmentation obtained
after manual intervention. The simple intervention was needed to inform the algorithm
that four distinct volumetric regions that were automatically detected, in fact belong
together to form a whole molar.

Figure 8 Various reconstructed views of an incisor and its root canal: (a) shape of the incisor; (b)
shape of the root canal; (c)-(d) sectional views.
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Figure 9 Various reconstructed views of a molar and its bifurcated root canal: (a) shape of the molar;
(b) shape of the root canal; (c)-(d) sectional views.

The accuracy of the segmentation is usually better in case of incisors than in case of
molars, because the latter have more details to identify. The main difficulty comes from
the low resolution of the CBCT imaging technology, which makes some structures have
tiny sizes, sometimes under the unit size of a voxel. The identification of the medial line
is efficient and accurate: as the width of the root canal hardly ever exceeds 10 voxels, the
mesh contraction algorithm finishes the extraction of the curve skeleton in 7-8 iterations.
The identified skeleton is smooth, centrally located, and its bifurcations are suitable to
model the actual shape of root canal branches.
Both proposed procedures can automatically and accurately process more than 90%

of the recorded image sets, while the rest of the cases need serious amount of manual
interaction. The MCT procedure was tested on 25 image volumes. In case of two molars,
several uncorrelated neighbor slices were found, where the necessity of manual interac-
tion could not be accurately detected. In the other 23 volumes, a total number of 227
(out of 23391) slices were advised for expert inspection, but only 119 of them required
actual intervention. This amount of false positives is acceptable. The correlation between
the automatic decisions made by the developed algorithm and the expert validating the
algorithm is shown in Table 3.
Out of 36 image volumes used for testing the CBCT procedure, 29 led to correct seg-

mentation and identification of the root canal without needing any automatic interaction.
In case of 7molars, manual interaction was needed, being able to solve 4 of them, similarly

Figure 10 Various 3D views of a root canal having no bifurcation, with the extracted medial line.
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Figure 11 3D views of a molar with its bifurcated root canal and the extracted medial line: (a) before
and (b) after manual intervention.

to the case exhibited in Figure 11. The quantitative validation results of the two developed
algorithms are shown in Table 4.
The proposed procedures provide useful information for mathematical description of

the root canal’s shape. The medial line can be successfully approximated by spline curves,
as described in [34,35].

Efficiency

Using a i5-processor PC, the processing of a micro-CT slice in 2D lasts 0.2-0.3 seconds,
while a central canal reconstruction is performed in less than a second. The extraction of
3D curve skeleton representing the canal’s medial axis requires 10-15 seconds, depending
on the number of voxels in the canal’s volume. On the other hand, having roughly 0.5 −
1.5 × 106 voxels in the volume of interest, the identification of a manually selected tooth
in a CBCT volume automatically performs in less than a second.

Discussion
The key advantage of both algorithms is the high degree of automatic execution, and
the ability of automatically detecting the necessity of manual interventions. In case of
micro-CT records, the latter feature stems from checking the correlation between neigh-
bor slices. Wherever the correlation is weak, it can be because of: (1) bifurcations of the
root canal; (2) mistaken segmentation in 2D. The number, size and position of detected
sections of the root canal, situated within the investigated neighbor slices, are the main

Table 3 Accuracy details of automatic detection of the need for manual intervention in the
case of CBCT records

Expert evaluation

No need for Intervention

intervention needed

No need for

Automatic intervention 23150 14

detection Intervention

needed 108 119
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Table 4 Quantitative results of validation

Description Micro-CT CBCT

Total test image volumes 25 36

Successfully processed image volumes 23 33

Overall success rate 92.0% 91.7%

Overall success in incisors 100.0% 100.0%

Overall success in molars 75.0% 83.3%

Minimum processing time 288 sec 0.69 sec

Average processing time 341 sec 0.93 sec

Maximum processing time 490 sec 1.61 sec

data for the decision. In case of CBCT records, steps CBCT2 identifies piecewise con-
tinuous volumetric regions that belong to the dentin, which are reconstructed to form
the tooth in Step CBCT3. There are cases, when unifying these volumetric regions is not
obvious. In such cases, without manual interventions, we may lose the inferior, narrow
part of the root canal branches. However, manual intervention can help us out in these
cases as well (see Figure 11).
An essential tool in the MCT procedure is the decision tree implemented in Step

MCT3, responsible for the correct outcome of the 2D segmentation. The training data set
consisting of 250 images, was selected from seven image volumes, through an automated
process. Those images were selected as suitable candidates, for which the two EnFCM-
based segmentations (c = 2 and c = 4) did not correlate in any combination of the classes.
Using the test image set of 25 volumes of approx. 1000 slices each, the decision learnt
from 250 training images proved acceptable, in the sense that less than 0.1% of the slices
needed manual intervention due to the wrong decision of the tree.
The developed procedures certainly have some limitations, too. The reduced amount of

image data originating from a single CT imaging system, which was used for the creation
of the procedures, certainly could not cover all typical root canal deformations. A larger
amount of images would definitely make the system more stable and its decisions more
robust.

Conclusions
We have proposed and implemented two complex image processing procedures for
detecting the center line from dental micro-CT and CBCT records. Both procedures
work predominantly automatically, providing the opportunity for the user to improve the
outcome using some optional manual interventions only where needed.
The proposed image processing procedures are validated on real micro-CT and CBCT

images. Over 90% of the test data set was segmented and identified automatically and
correctly. The identified center lines are accurate and suitable for further mathemati-
cal modeling (e.g. spline curve fitting). Thus, this research has created and validated the
image processing systems and corresponding image processing methods to efficiently
assist common dental interventions.
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