Új kiértékelési módszerek kifejlesztése és a kvantumszíndimamika vizsgálata az LHC-n

OTKA K 81614, zárójelentés

(2010. február - 2014. augusztus)

1. Bevezető

A zárójelentést két részre bontottuk. Az újonnan kifejlesztett kiértékelési módszerek ismertetése után azok alkalmazásait és az erősen kölcsönható anyaggal kapcsolatos új eredményeinket ismertetjük. Csak azokat a munkákat szerepeltetjük, melyek teljes egészében saját kutatáson alapulnak, vagy a személyes hozzájárulásunk jelentős és pontosan körülhatárolható¹.

Az ábrákat – a forrás megjelölése mellett – az eredeti publikációkból vettük át, emiatt felirataik angol nyelvűek. Az elektronikus verzió szövegében a kék színű linkek a jelentés végén található hivatkozásokhoz, onnan pedig a megfelelő cikkekhez, analysis note-okhoz (internal reference) visznek.

2. Új kiértékelési módszerek

Azt hihetnénk, hogy a nagyenergiás fizika kiértékelési módszerei már régóta, a legapróbb részletekig kidolgozottak. Való igaz, hogy új, minőségileg más eljárások kidolgozása érdekében mélyebb, helyenként sok matematikát igénylő elgondolásokra lehet szükség. A gáztöltésű és a szilícium-alapú detektorok kiértékelésével, a töltött részecskék nyomkövetésével és azonosításával kapcsolatos új módszereket dolgoztunk ki, majd alkalmaztunk. A tárgyalt kiértékelési módszerek segítségével a CMS kísérlet [1] képessé vált széles impulzustartományban, illetve azonosított részecskékkel végzett mérések elvégzésére is, így jelentősen hozzá tud járulni az LHC-n folyó hadronfizikai kutatásokhoz.

2.1. Töltött részecskék nyomkövetése

A szilícium-alapú nyomkövető detektorok manapság minden nagyenergiás kísérletben megtalálhatók, érzékenyek, helyfelbontásuk nagyon jó, kiolvasásuk gyors.

¹ A CMS együttműködés – szerzőséget igazoló – analysis note-jai belső használatra készültek, de a bírálók számára mindegyiket letölthetővé tettük a http://www.rmki.kfki.hu/ sikler/K81614/pdf/ címen.

A kölcsönhatási pontok javított keresése • Sok fizikai analízis számára alapvető a kölcsönhatási pont (vertex) pontos ismerete. Nagyobb intenzitás esetén a jelenlegi – az egyes pályák nyalábközelségi pontjait felhasználó – vertex-keresők teljesítménye nem megfelelő. Fejlett matematikai módszerek alkalmazásával megmutattuk [2], hogy mind a hatásfok, mind a talált vertexek tisztasága jelentősen javítható. Az egyes rekonstruált részecskék gyors összevonó (agglomeratív) klaszterezéssel csoportosíthatók. Ez a kezdeti besorolás gaussos keverék modellel, valamint az ún. k-means eljárással finomítható. A javasolt eljárások főként nagyszámú átlapoló ütközés esetén jelentenek előrelépést az eddig alkalmazottakkal szemben, de már kis luminozitás mellett is hatékonyabbak. A fel nem ismert kölcsönhatási pontok száma a harmadára, a hamis vertexek száma az ötödére esett vissza, és ezrelék alatti a megosztott vertexek aránya. Az új vertex-kereső algoritmus futási ideje és az egyes pontatlanságokra való érzékenysége (háttér-részecskék, a koordináták hibájának felül-, illetve alulbecslése) is kedvező.

Az CMS kísérlet első, proton-proton ütközésekről szóló analízisében már ezt a vertexkereső algoritmust használtuk. A módszert jónéhány CMS analízis alkalmazta és hivatkozta (köztük [3, 4, 5]). Az eljárások az AIDA projekt keretében egy kísérlet-független programcsomagban széles körben elérhetők és felhasználhatók [6].

2.2. Töltött részecskék energiavesztesége és alkalmazások

Az energiaveszteség-ráta becslése lineáris kombinációval • Egy töltött részecske detektorban hagyott beütéseinek – az egyes energialeadásainak – mérésével a sebesség-függő dE/dx érték becsülhető. Az eddig széles körben alkalmazott levágott átlagolást (*truncated mean*) a súlyozott átlagok körében általánosítottuk [7]. Az optimalizált súlyok meglehetősen függetlenek a részecske impulzusától és az anyagvastagságtól, így a becs-lésben jól használhatók. A dE/dx felbontása akár 15%-kal is javulhat, ezért a súlyozott számtani és mértani közepek jobb részecske-szétválasztást tesznek lehetővé, mint a korábban alkalmazott módszerek, mind a szilícium-alapú, mind a gáztöltésű detektorokban.

További vizsgálatok azt mutatták, hogy a kapott súlyok szorosan kapcsolódnak az energiaveszteség-eloszlások alakjához, így lehetővé teszik a súlyok egyszerű meghatározását a mérési pontok számának függvényében. Több érdekes kapcsolatra is fény derült: bizonyos esetekben miért annyira sikeres a levágott átlagolás; mely esetekben javítható a súlyozott átlagolás maximum likelihood módszerekkel.

Részecskeazonosítás a pályaillesztés jóságának mérőszámával • A részecskefizikában széles körben elterjedt a részecskepályák Kálmán-filterre alapuló illesztése. A többszörös Coulomb-szórás és az energiaveszteség ismert fizikája segítségével megmutattuk, hogy a szűrő χ^2 értéke felhasználható a töltött részecskék sebességének becslésére [8], így a nyomkövető detektorokat is használhatjuk töltött részecskék azonosítására. Mivel a szűrő χ értéke ekvivalens a globális illesztés χ értékével, az ismertetett módszer alkalmazható bármely más χ^2 minimalizáló pálya-illesztésre is, feltéve, hogy az megfelelően modellezi az energiaveszteséggel és szóródással kapcsolatos effektusokat. Az ismertetett megközelítés a detektor anyaga és a helyfelbontás pontos ismeretét feltételezi. A javasolt eljárás független a részecskék hagyományos, energiaveszteségre alapozott azonosításától. A fizikai effektusok, majd a felbontás detektorjellemzőktől való függésének tárgyalása után az új módszert három LHC kísérletre (ATLAS, ALICE, CMS) alkalmazva megmutattuk, hogy jó π -K és a π -p szétválasztást kapunk a p < 0.9 GeV/c illetve a p < 1.4 GeV/c tartományokban. Általánosságban elmondható, hogy egy kísérlet érzékenysége a rendelkezésre álló jó minőségű mérési pontok számának, valamint a részecske impulzusának függvénye. A CMS kísérlet azonosított töltött hadronok eloszlásairól szóló analíziseiben az itt ismertetett eredmények fontos szerepet kaptak: felhasználásuk jelentősen javította az energiaveszteségen alapuló részecskeazonosítás tisztaságát [5, 9, 10].

Egy analitikus energiaveszteség-modell kidolgozása, alkalmazásai • A töltött részecskék energiaveszteségét szilíciumban egy egyszerű analitikus parametrizációval közelítettük, melynek használatát több példán keresztül mutattuk be [11]. A javasolt modell kevés paraméterrel rendelkezik, a leadott energia eloszlása és a legvalószínűbb energiaveszteség közötti kapcsolatra épít. A szilícium-alapú detektorok érzékeny elemeiben (pixelek vagy csíkok) mért energialeadások segítségével a pályaszakaszok helyét és a leadott energiát – a korábbi módszerekhez képest – pontosabban és kisebb torzítással tudtuk megbecsülni. A küszöb alatti, valamint telítést okozó jeleket is megfelelően kezeltük. A parametrizációt sikeresen alkalmaztuk a részecskepályák energiaveszteség-rátájának meghatározására, valamint a detektorok erősítéseinek kalibrációjára, ismét a korábbi eljárásoknál jobb eredményekkel.

A CMS kísérlet azonosított töltött hadronokkal foglalkozó publikációiban az itt ismertetett módszereket alkalmaztuk [5, 9, 10]. Bemutattuk, hogy a javasolt energiaveszteségparametrizáció nagyon jól működik valós adatokon is. A mért mennyiségek közti sokféle kapcsolat, kényszer, megmaradás kiaknázásával a CMS nyomkövető rendszere alkalmassá vált a különféle töltött hadronok hozamának kis bizonytalansággal való mérésére.

3. Kvantumszíndinamika vizsgálata az LHC-n

A négy alapvető kölcsönhatás közül a kvarkok között működő erők (kvantumszíndimamika, QCD) – különösen alacsony impulzusátadásnál – nehezen számolhatók. Ennek oka az, hogy a kölcsönhatás közvetítője, a gluon maga is töltött. Így a tudományterület fejlődését – a rácsszámolások mellett – a kísérletek legújabb eredményei irányítják.

A világ legnagyobb részecskegyorsítója – a Genf melletti Európai Részecskefizikai Laboratóriumban (CERN) felépült Nagy Hadronütköztető (LHC) – 2009 őszén kezdte meg működését: protonokat és nehezebb atommagokat gyorsít és ütköztet eddig soha nem látott energiákon. A CMS kísérlet keretében végzett kutatásaink célja a nukleonok valamint atommagok nagyenergiás ütközéseinek kísérleti vizsgálata, alapvető és magasabb szintű mérések elvégzése, elméleti elgondolások és ötletek tesztelése volt.

3.1. Adatok felvétele

Csoportunk mindegyik LHC mérési időszakban aktív szerepet játszott. Részt vettünk

 2010 novemberében és decemberében az első ólom-ólom ütközések adatainak felvételében, monitorozásában és kiértékelésében, a gyakori események tulajdonságai-

1. ábra. Balra: A p-p ütközések teljes és rugalmatlan hatáskeresztmetszeteinek összehasonlítása [15]. Jobbra: Töltött részecskék különféle tömegközépponti energiájú p-p ütközésekben mért pszeudorapiditáseloszlása, összevetve korábbi mérések illetve más együttműködések adataival [4].

nak vizsgálatában. Nemcsak a szcintillátor-trigger (BSC), hanem a teljes első szintű trigger-rendszer beállításáért, a hatásfokok nyomon követéséért is a csoportunk volt a felelős;

- 2011 novemberében és decemberében az ólom-ólom ütközések felvételében és az eseményválogatás előkészítésében;
- 2012 szeptemberében elkészítettük az első proton-ólom ütközések [12] során alkalmazott trigger menüket, továbbá az eseményválogatás és más eseményjellemzők ellenőrzésével foglalkoztunk;
- 2013-as év elején a proton-ólom és a proton-proton ütközések adatainak felvételében. Ellenőriztük a felvett adatok minőségét, és meghatároztuk a rugalmatlan hadronikus ütközést tartalmazó események válogatási kritériumait különféle analízisek számára (pl. jet párok vizsgálata [13]). Mi feleltünk az ún. Magas Szintű Trigger (HLT) ütközések során történő futtatásáért és felügyeletéért. A munka sikerét a CMS együttműködés a "CMS Achievement Award" odaítélésével ismerte el [14].

3.2. Hatáskeresztmetszet

Meghatároztuk a $\sqrt{s} = 7$ TeV energiájú proton-proton (p-p) szórás rugalmatlan hatáskeresztmetszetét egy egyszerű, eseményszámoláson alapuló módszerrel [15]. A munka során korai, alacsony átlapolású (*pile-up*) LHC adatokkal dolgoztunk. A mérés szűretlen (*zero bias*) triggerrel felvett, a Hadron Forward kaloriméterben beütést hagyó események számlálásán alapszik. Ez a válogatás érzékeny a teljes rugalmatlan hatáskeresztmetszet kb. 95%-ára. A hatáskeresztmetszeteket egy nagyon megengedő eseménykategóriára számítottuk ki, csak a kis tömegű diffraktív eseményeket kizárva. Ezen kívül becslést adunk

2. ábra. Balra: a 2,36 TeV-es p-p ütközésekben mért transzverzális impulzus (p_T) eloszlások [3]. Jobbra: az átlagos p_T tömegközépponti energiától való függése [4].

a teljes rugalmatlan hatáskeresztmetszetre is (1-bal ábra). Hozzájárultunk az átlapoló ütközések mérését is felhasználó közös cikk elkészültéhez [16]. Az eredményeket a DIS2012 konferencián elsőként ismertettük [17].

A többi LHC kísérlettel (TOTEM, ATLAS, ALICE) összhangban azt találtuk, hogy a rugalmatlan hatáskeresztmetszet – a proton egyre kiterjedtebb gluonfelhőjének eredményeképpen – az ütközési energiával monoton nő. A különbözően definiált látható protonproton hatáskeresztmetszeteket Monte Carlo eseménygenerátorok jóslataival hasonlítottuk össze. Annak ellenére, hogy a jóslatok abszolút normalizációja széles tartományon belül változik, az egyes pontok egymáshoz képesti általános tendenciáját a legtöbb modell jól leírja. A hatáskeresztmetszetek mérését a továbbiakban kiterjesztettük 8 TeV-es p-p valamint 5,02 TeV-es p-Pb ütközésekre is, hasonló módszerrel.

3.3. Hadronok eloszlásai, azonosított részecskék

Töltött részecskék keltése p-p ütközésekben • Az LHC-nál a CMS detektorral először 2009 decemberében figyelhettünk meg proton-proton ütközéseket. A kísérlet első proton-proton ütközésekkel foglalkozó cikke $\sqrt{s} = 0.9$ és 2,36 TeV-en [3] egyben az LHC első impulzuseloszlással foglalkozó, valamint az első rekordenergiás publikációja is, melyet néhány hónappal később a 7 TeV-es publikáció [4] követett. A három alkalmazott kiérté-kelési módszer közül kettőt (beütés-számolás és nyomkövetés) csoportunk dolgozta ki. A keletkezett töltött részecskék (η pszeudorapiditás, $p_{\rm T}$ transzverzális impulzus) binekben mért hozamát a nem egyszeresen diffraktív (non single diffractive, NSD) eseményekre korrigáltuk (1-jobb ábra). A töltött hadronok spektrumait a 0,1-4 GeV/c tartományban határoztuk meg. A kapott eredmények jók leírhatók a Tsallis-Pareto eloszlásokkal (2-bal ábra), pontosabban a Tsallis-entrópia maximalizálásából kapott q-exponenciálisokkal [18]. Az egyes bizonytalanságokat (esemény kiválasztás, akceptancia, beütés és nyomkövetés

hatásfoka, másodlagos hadronok részaránya, többszörös rekonstrukció, tévesztés, $p_{\rm T}$ integrálás) számba véve megbecsültük a mért eredmények várható szisztematikus hibáját.

A rapiditássűrűség $(dN_{\rm ch}/d\eta)$ mérésében alkalmazott három kiértékelési módszer konzisztens eredményeket adott, ezzel is bizonyítva a nyomkövető rendszer kiváló teljesítményét és működésének részletes ismeretét. A kapott eredmények 0,9 TeV-en összhangban vannak korábbi proton-proton és proton-antiproton mérésekkel, továbbá megerősítik, hogy az ilyen energiájú p- \overline{p} és p-p ütközésekben közel azonos mennyiségű hadron keletkezik. A 2,36 TeV-en és 7 TeV-en kapott hadronsűrűség a modellek által jósoltnál meredekebb energiafüggést mutat (2-jobb ábra).

Az eredményeket elsőként ismertethettük [19, 20, 21, 22]. A mérésekkel a p-p ütközésekben keltett részecskék tulajdonságainak tanulmányozását egy új energiatartományba terjesztettük ki. Az analízisek a hadronok kölcsönhatásait leírni próbáló modellek és eseménygenerátorok folyamatban levő tökéletesítéséhez fontos adatokkal szolgáltak, hozzájárulva a kis impulzusnál zajló folyamatok dinamikájának megértéséhez.

3. ábra. A 0,9 és 7 TeV-es p-p ütközésekben keltett Λ részecskék transzverzális impulzusának eloszlása, egy Tsallis-Pareto illesztéssel összevetve [23].

Azonosított ritka részecskék keltése pp ütközésekben • Részt vettünk a ritka kvarkokat tartalmazó részecskék (K_{S}^{0}, Λ , Ξ^{-}) rapiditás- és transzverzális impulzuseloszlásainak mérésében 0,9 és 7 TeV-es pp ütközésekben [23]. Az alkalmazott két mérési módszer közül a nagy hatásfokkal működő kiértékelést végeztük el, melynek során a fenti hosszú életidejű rezonanciákat a bomlási topológia alapján azonosítottuk (3. ábra). Eredményeink azt mutatták, hogy a ritka részecskék hozama a várakozásokhoz képest nagyobb, a mért részecskeszámok energiafüggése szintén meredekebb, mint azt vártuk. A folyamatokba mélyebb betekintést is kaptunk: a modellvárakozások (Pythia) és a mért eredmények közötti különbség nő, ahogy egyre nagyobb ritkaságú hadronokat vizsgálunk. Az

eltérés a Ξ^{-} esetén a legnagyobb, itt mintegy háromszor több részecskét látunk a modellvárakozáshoz képest. A részecskék spektruma jól illeszthető egy Tsallis-Pareto eloszlással. Az eredményeket a HCBM 2010 konferencián mutattuk be [24].

Azonosított töltött részecskék keltése p-p ütközésekben • Megmértük p-p ütközésekben keletkezett töltött hadronok (π , K, p) eloszlásait $\sqrt{s} = 0.9, 2.76$ és 7 TeV-es energiákon, a $p_{\rm T} \approx 0.1 - 1.7 \,\text{GeV}/c$ transzverzális impulzus tartományban, |y| < 1 rapiditásnál [5]. Az eseményeket egy kétoldali triggerrel válogattuk ki, amely a $-3 < \eta < -5$ és a $3 < \eta < 5$ pszeudorapiditás tartományokban követelt meg egyidejű hadronikus aktivitást. A töltött pionokat, kaonokat és protonokat a szilícium nyomkövetőben leadott energiájuk, valamint pályaillesztésük χ^2 értéke alapján tudtuk azonosítani (4-bal ábra). A

4. ábra. Balra: Az 5,02 TeV-es p-Pb ütközésekben keltett töltött részecskék ε legvalószínűbb differenciális energiaveszteségének és a impulzusának viszonya [9]. A pionok, kaonok, protonok és elektronok elméleti görbéjét is bejelöltük. Jobbra: A különféle tömegközépponti energiájú p-p és p-Pb ütközésekben keletkező azonosított hadronok átlagos $p_{\rm T}$ -jének részecskeszámfüggése, összehasonlítva az ALICE kísérlet Pb-Pb adataival [9].

részecskék $p_{\rm T}$ spektruma Tsallis-Pareto eloszlásokkal jól leírható, hozamukat a PYTHIA6 és PYTHIA8 eseménygenerátorok többféle hangolásával hasonlítottuk össze. A pionok, kaonok és protonok átlagos $p_{\rm T}$ -je gyorsan nő a hadron tömegével és az eseményben mért töltött részecskék számával. Ez a növekedés nem függ az ütközés tömegközépponti energiájától. A protonok átlagos $p_{\rm T}$ -jének \sqrt{s} - és részecskeszám-függését a modellek nem tudják leírni.

A rapiditás-sűrűség és az átlagos transzverzális impulzus multiplicitás-függése arra utal, hogy LHC energiákon a részecskekeltés erősen korrelált az esemény részecskeszámával; sokkal inkább, mint az ütközés tömegközépponti energiájával. Ennek a felismerésnek egy közös, mélyebb oka is lehet: hadronok ütközéseiben a részecskekeltést az egyes partonok ütközésében rendelkezésre álló – ütközésről ütközésre változó mértékű – energia határozza meg. Az eredményeket elsőként, a DIS2012 konferencián ismertettük [25].

Azonosított töltött részecskék keltése p-Pb ütközésekben • Megmértük a p-Pb ütközésekben keletkezett töltött hadronok (π , K, p) eloszlásait $\sqrt{s_{\rm NN}} = 5.02$ TeV-es energián, a $p_{\rm T} \approx 0.1 - 1.7$ GeV/c transzverzális impulzus tartományban, |y| < 1 rapiditásnál [9]. Az analízis a fentiekben ismertetett p-p kiértékeléshez nagyon hasonlóan zajlott. A részecskék $p_{\rm T}$ spektruma Tsallis-Pareto eloszlásokkal jól leírható, a pionok, kaonok és protonok átlagos $p_{\rm T}$ -je gyorsan nő a hadron tömegével és az eseményben mért töltött részecskék számával (4-jobb ábra). Ezeket a jellegzetességeket az EPOS szimuláció jól visszaadja, melyben szerepet játszhat, hogy a modell alkotói keltett részecskék kismértékű – talán már p-Pb ütközésekben fellépő – folyadék-viselkedését is figyelembe vették. A többi eseménygenerátor (AMPT, HIJING) meredekebb $p_{\rm T}$ eloszlást, valamint jelentősen különböző proton/pion arányt jósolt. A rapiditás-sűrűség és az átlagos transzverzális impulzus multiplicitás-függése arra utal, hogy LHC energiákon a részecskekeltés jellemzői

5. ábra. Balra: A 2,76 TeV-es Pb-Pb ütközésebek mért nukleonpáronkénti pszeudorapiditás függése az ütközésben részt vevő nukleonok számától, azok összehasonlítása kisebb tömegközépponti energiás, valamint p-p mérésekkel [30]. Jobbra: A 2,76 TeV-es centrális Pb-Pb ütközésekben megfigyelt töltött részecskék [31], Z- és W-bozonok $R_{\rm AA}$ nukleáris módosulási faktora a részecske (transzverzális) tömegének függvényében.

korrelált az esemény részecskeszámával; sokkal inkább, mint az ütközés tömegközépponti energiájával. Megegyező, kis részecskeszám mellett a p-p és p-Pb ütközések nagyon hasonlóak. Nagy részecskeszám esetén a p-p és p-Pb ütközések is nagyobb átlagos $p_{\rm T}$ -t adnak, mint a centrális Pb-Pb ütközésekben. Az eredményeket elsőként az IS2013 [26], majd az EPS HEP 2013 konferencián mutattuk be [27].

A gluontelítés [28] ötletét felhasználva könnyen megérthető a mért részecskespektrumok geometriai skálázása [29], mely szerint az invariáns $d^2N/dy dp_{\rm T}^2$ mennyiség csak $\tau = p_{\rm T}/Q_{\rm sat}$ függvénye, ahol a telítési impulzus $Q_{sat} = Q_0(p_{\rm T}/\sqrt{s})^{-\lambda/2}$. A feltevést mind a töltött, mind az azonosított hadronokra vonatkozó adataink igazolják.

3.4. Hadronok eloszlásai, nukleáris módosulási faktor

Töltött részecskék keltése Pb-Pb ütközésekben • Meghatároztuk a töltött hadronok hozamának centralitásfüggését $\sqrt{s_{\rm NN}} = 2,76$ TeV-es Pb-Pb ütközésekben [30]. A mérésben alkalmaztuk a korábban proton-proton ütközésekre kidolgozott, sikeres pixelszámlálás módszerét. A mért részecskeszám centralitásfüggése nagyon jó közelítéssel – skálafaktorok erejéig – megegyezik az alacsonyabb (RHIC) energiákon mért viselkedéssel. A periférikus Pb-Pb ütközésekben az egy nukleonpárra jutó részecskeszám kompatibilis a p-p ütközésekben mért értékekkel (5-bal ábra). A hadronsűrűség centralitásfüggése jól leírható egy partontelítési modellel, az ütközési energia függvényében megfigyelt változása pedig egy $a + s_{\rm NN}^n$ hatványfüggvénnyel illeszthető. A kapott adatok információval szolgálnak a proton és az atommag partonikus struktúrájáról és annak tömegközépponti energiától való függéséről. Az előzetes mérési eredményeket a Quark Matter 2011 konferencián mutattuk be [32].

Részt vettünk a töltött részecské
k $R_{\rm AA}$ nukleáris módosulási tényezőjének mérésében

a fent említett Pb-Pb és p-p adatokat felhasználva [31]. Azt találtuk, hogy a közepes transzverzális impulzusú részecskékből (5 – 10 GeV/c) centrális Pb-Pb ütközésekben hétszer kevesebb keletkezik, hozamuk "elnyomódik" a p-p ütközésekhez képest. Nagyobb $p_{\rm T}$ esetén az elnyomás kisebb, a 40 – 100 GeV/c tartományon $R_{\rm AA} \approx 0.5 - 0.6$ -ra nő, de a jelenség mindvégig megmarad (5-jobb ábra). A munka eredményeit a Hard Probes 2012 konferencián mutattuk be [33].

A várakozásoknak megfelelően az elnyomás az ütközés centralitásával nő, ugyanis a végállapoti rendszer egyre sűrűbb és egyre nagyobb lesz, így a keményen szórt partonok egyre nagyobb mennyiségű agyagon haladnak át, mielőtt hadronokba fragmentálódnának. Az R_{AA} nagy p_{T} -ken látott emelkedése a nukleon-nukleon ütközésekből származó (unquenched) eloszlások laposodását tükrözheti, ha állandó relatív energiaveszteséget feltételezünk. Mindenesetre a pontos okok feltárásához még további mérések szükségesek.

6. ábra. Az 5,02 TeV-es p-P
b ütközésekben keltett hadronok $R_{\rm AA}$ nukleáris módosulási faktora a részecs
ke $p_{\rm T}$ transzverzális impulzusának függvényében [34], össze
hasonlítva egy – a maganyag partoneloszlás-függvényét használó – NLO számolással.

Töltött részecskék keltése p-Pb ütközésekben ◆ Láttuk, hogy a nehézionütközésekben keltett forró és sűrű közegben a nagy transzverzális impulzusú részecskék hozama jelentősen kisebb, mint azt a megfelelő számú független nukleon-nukleon ütközés egymásra helyezéséből várnánk. Mi a helyzet az elemi p-p és a bonyolult Pb-Pb ütközési rendszerek között valahol félúton elhelyezkedő p-Pb ütközések esetén, ott is elnyomást látunk vagy valami mást?

Megmértük a töltött részecskék $p_{\rm T}$ spektrumát különböző kirepülési szögekre 5,02 TeV nukleonpáronkénti energiájú proton-ólom ütközésekben [34]. A protonólom nukleáris módosulási faktor ezen energián történő megállapításához (valódi adat hiányában) különböző interpolációs módszerek segítségével megalkottunk egy referencia proton-proton spektrumot. Itt felhasználtuk a korábbi 0,9, 2,76 és 7 TeVes CMS adatokat, továbbá a CDF kísérlet

0,63, 1,8, and 1,96 TeV-es eloszlásait is. A kapott nukleáris módosulási faktor $p_{\rm T} \approx 4 \,{\rm GeV}/c$ -ig emelkedik, ahol eléri az 1-et (6. ábra). Utána 20 GeV/c-ig közel állandó, majd utána ismét növekedésbe kezd, elérve az 1.3 – 1.4-es értéket 70 GeV/c-nél. Különösen érdekes, hogy az 1 feletti értékek olyan $p_{\rm T}$ tartományban találhatók, ahol modellek *antishadowing*-ot jósolnak (x = 0,02-0,2 impulzushányad mellett). Ugyanakkor a módosulási faktor mért maximuma jóval magasabb, mint a maganyag partoneloszlás függvényeinek (nPDF) "anti"-árnyékolásából várnánk. (Ez utóbbi becslés a jelenleg rendelkezésre álló összes kemény szórási adat közös illesztéséből származik.) A friss eredményekről elsőként számoltunk be a Hard Probes 2013 konferencián [35].

7. ábra. Balra: az 5,02 TeV-es p-Pb ütközésekben, egy adott részecskeszám- és impulzusosztályban mért kétrészecske korrelációs függvény pionokra [10]. Jobbra: a töltött pionok Bose-Einstein korrelációja alapján meghatározott nyalábirányú R_l sugarak az ütközések részecskeszámának függvényében, p-p, p-Pb és periférikus Pb-Pb ütközésekre. Az értékek transzverzális párimpulzus (k_T) függését kiskáláztuk [10].

3.5. Kétrészecske-korrelációk

Töltött részecskék szögkorrelációi p-Pb ütközésekben • Az eseményválogatás és más eseményjellemzők ellenőrzésével hozzájárultunk a kétrészecske-szögkorrelációk méréséhez $\sqrt{s_{\rm NN}} = 5.02$ TeV-es p-Pb ütközésekben [36]. Az eredményeink megmutatták, hogy a nagy multiplicitású p-p ütközésekben kimutatott hosszútávú ($2 < |\Delta \eta| < 4, \Delta \phi \approx 0$) korrelációk – még nagyobb mértékben – megjelennek a nagy részecskeszámú p-Pb ütközésekben is. A korreláció erőssége a $p_{\rm T} = 1 - 1.5$ GeV/c tartományban maximális, közel arányos az eseményben keltett töltött részecskék számával.

Ez a felfedezés a nehézion-fizikai közösség érdeklődésének középpontjába került, és pontos eredete még magyarázatra vár. Egyes modellek szerint hosszútávú korrelációkat már elemi p-p és p-Pb ütközésekben is kaphatunk a rendszer kollektív, hidrodinamikával leírható kiterjedése során, eseményről eseményre fluktuáló kezdeti feltételek mellett [37]. A korrelációkból számolható elliptikus v_2 és trianguláris v_3 Fourier-együtthatók kompatibilisek a modell jóslataival. Ugyanakkor a megfigyelt hegygerincszerű struktúrát (*ridge*) az ún. *color-glass condensate* elméletben is megjósolták. Itt az effektust a kezdeti állapotban meglevő gluonok korrelációjával magyarázzák [38], mert a gluonok közel egyirányú (*collinear*) kibocsátása kis x-ekre telítődik. Bár a modell jellegében helyes korrelációs erősségeket ad, számszerű jóslatai egyelőre nem mutatnak jó egyezést az adatokkal.

Azonosított töltött részecskék kvantumkorrelációi p-p, p-Pb és Pb-Pb ütközésekben • Megmértük azonosított, kis impulzuskülönbségű hadronok korrelációit p-p $(\sqrt{s} = 0.9, 2.76 \text{ és } 7 \text{ TeV})$, p-Pb $(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV})$ és periférikus Pb-Pb ütközésekben $(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV})$ [10]. A töltött pionokat és kaonokat alacsony p_{T} -n, $|\eta| < 1$ pszeudorapiditás esetén a szilícium nyomkövetőben leadott energiájuk alapján azonosítottuk. A kétrészecske korrelációs függvények a kvantumstatisztika (Bose-Einstein) mellett a Coulomb-kölcsönhatás hatásait mutatják, de a rezonanciák többtest bomlásainak és a jetek fragmentációjának szerepét is jelzik. Az egy-, két- és háromdimenziós korrelációs függvények jellemzőit a részecskepár $k_{\rm T}$ transzverzális impulzusának, valamint az esemény részecskeszámának függvényében is vizsgáltuk. Az eloszlások a részecskepár relatív impulzusában kiválóan leírhatók egy exponenciális parametrizációval (7-bal ábra). Így adataink minden esetben egy Cauchy (Lorentz) eloszlású forrásra utalnak, szemben a nehézionfizikában gyakran alkalmazott gaussos eloszlásokkal. Az ütközési zóna karakterisztikus méretére, sugaraira 1 – 5 fm közötti értékeket kaptunk, ahol a legnagyobb méreteket a nagyon magas részecskeszámú p-Pb és Pb-Pb ütközésekben mértük. Az összes tanulmányozott ütközési rendszerre és részecskeszámra a sugarak növekvő $k_{\rm T}$ -vel csökkennek. A sugarak részecskeszám- és $k_{\rm T}$ -függése jól szétválasztható, faktorizálható. A három-dimenziós analízis alapján míg a Pb-Pb forrás gömbszerű, a p-p és p-Pb ütközési zóna a nyalábirányban megnyúlt ($R_l > R_t$, valamint $R_l > R_s > R_o$). A különféle vizsgált ütközési rendszerek közötti eltérés leginkább az *out* irányban mutatkozik, ami kapcsolatban lehet a keltett rendszerek különböző időtartamával.

A p-p, p-Pb és periférikus Pb-Pb ütközések közti hasonlóságok egy közös kritikus hadronsűrűségre utalnak, hiszen az alkalmazott korrelációs technika a rendszer jellemző méretét méri abban a pillanatban, amikor az azt alkotó hadronok megszűntek egymással kölcsönhatni.

Jet-részecske korrelációk Pb-Pb ütközésekben ◆ Részt vettünk a jet-részecske korrelációk kiértékelésében Pb-Pb ütközésekben. Meghatároztuk a nyomkövetés hatásfokát, valamint a végső eredmények nyomkövetéssel kapcsolatos szisztematikus bizonytalanságait [39]. Azt kaptuk, hogy centrális nehézion-ütközésekben a jetek több alacsony impulzusú $(p_{\rm T} < 3 \, {\rm GeV}/c)$ részecskét tartalmaznak, mint p-p kölcsönhatásban. Ugyanakkor periférikus ütközésekben a tartalmazott alacsony $p_{\rm T}$ -s részecskék száma mérési hibán belül megegyezik a p-p-ben mértekkel.

3.6. A p-Pb ütközések centralitása

8. ábra. A p-Pb ütközések centralitásának és a páronkénti ütközések számának kapcsolata, különféle kiértékelési módszerek esetén [40].

Szimulációk segítségével megvizsgáltuk a proton-ólom ütközések centralitásának – avagy a rugalmatlan proton-nukleon ütközések számának – mérési lehetőségeit [40, 41]. Ezen számok becslésére akkor van szükség, amikor a p-Pb ütközésekben mért mennyiségeket p-p vagy Pb-Pb eredményekhez akarjuk hasonlítani. Nehézionütközések esetén a részecskeszám vagy energia mérése egyaránt megfelelő, hiszen mindkettő monoton változik a centralitással, ugyanakkor a keltett részecskék nagy száma miatt egymással erősen korrelálnak. Ezzel szemben p-Pb ütközésekben a helyzet sokkal bonyolultabb: a fenti módszerek használatával – a keltett hadronok kis száma miatt

9. ábra. Balra: A 2,76 TeV-es Pb-Pb és p-p ütközésben detektált müonpárok invariáns tömeg eloszlása, az Υ részecske és gerjesztései tömegtartományában [42]. A Pb-Pb (folytonos) és p-p illesztéseket (pontozott) is ábrázoltuk. Jobbra: A müonpárra bomló nehéz mezonok R_{AA} nukleáris módosulási faktora a kötési energia függvényében [42, 43].

– a centralitás-skála torzul (bias). Vizsgálataink azt mutatták, hogy a fragmentált ólommag irányába repülő keltett részecskék energiájának megmérésével a rugalmatlan protonnukleon ütközések száma kis torzítással becsülhető. A megállapítás egy optimalizálás eredménye, ahol a részecske-energiák súlyai η -függőek voltak. A legjobb eredményeket olyan súlyokra kaptuk, melyek csak a CMS elülső hadron-kaloriméterének belső gyűrűjét ($4 < \eta < 5$) veszik figyelembe. A résztvevő nukleonok száma és az impakt paraméter megfelelő átlagait, szórásait egy Glauber-modell segítségével számoltuk ki (8. ábra).

A felvett p-Pb adatokat kiértékeltük és kalibráltuk, majd korrigáltuk a detektor hatásfokára a fenti szimulációja alapján. Különböző Glauber modellek felhasználásával meghatároztuk az egy ütközésben résztvevő nukleonok átlagos számát.

3.7. Müonpárra bomló rezonanciák

A mezonok és bozonok leptonpárra való bomlása (vagy konverziója) a CMS detektorban tisztán észlelhető, hiszen a müonok és elektronok detektálása kiváló.

Nehéz mezonok ◆ A nehézion-ütközésekben keletkező magas hőmérsékletű közegben a kis kötési energiájú, gyengén kötött rezonanciák könnyen felbomlanak, amit az adott állapotok elnyomásaként észlelhetünk.

Részt vettünk a Υ részecske (bb) és gerjesztett állapotai relatív és abszolút elnyomásának analízisében (9-bal ábra). Az $\Upsilon(nS)$ részecske centralitásra átlagolt R_{AA} nukleáris módosulási faktora Pb-Pb ütközésekben $0.56 \pm 0.08(stat) \pm 0.07(syst)$ az $\Upsilon(1S)$, $0.12 \pm \pm 0.04(stat) \pm 0.02(syst)$ az $\Upsilon(2S)$, valamint 95% biztonsággal kisebb, mint 0.10 az $\Upsilon(3S)$ állapotokra vonatkozóan [42]. A kapott eredmények jól mutatják az Υ gerjesztett állapotainak fokozatos elnyomását, azok egymás utáni "megolvadását". Ilyen értelemben a fenti részecskék tanulmányozásával következtethetünk a forró és sűrű maganyag hőmérsékletére (9-jobb ábra).

Elektrogyenge bozonok • Azt várjuk, hogy a gyengén kölcsönható bozonokra (W^{\pm} , Z^{0}) – a hadronokkal ellentétben – a nehézion-ütközésekben keletkező forró és sűrű közeg nincs jelentős hatással. Leptonos (elektronos vagy müonos) bomlásuk során a bomlástermékek erős kölcsönhatás nélkül hagyják el a keletkezett közeget, így az ütközés kezdeti állapotáról szolgáltatva információt.

Megmértük a Z-bozonok hatáskeresztmetszetét 2.76 TeV-es Pb-Pb és p-p ütközésekben, melyeket vezető rend feletti (*next-to-leading-order*, NLO) számolásokkal összehasonlítva jó egyezést találtunk [43]. A Pb-Pb eredményeket az ütközésben történt független nukleon-nukleon ütközések átlagos számával skálázva hasonlítottuk össze a p-p eredményekkel, és meghatároztuk a Z-bozonok R_{AA} nukleáris módosulási faktorát. Azt találtuk, hogy az R_{AA} átlagos értéke a müonos bomlási csatornában $1,06 \pm 0,05(stat) \pm 0,11(syst)$, amely jól egyezik az elektronos eredménnyel: $1,02 \pm 0,08(stat) \pm 0,17(syst)$. Így a Zbozonok keltését a nehézion-ütközésekben keletkező erősen kölcsönható anyag jelentősen nem befolyásolja. A nukleáris módosulási faktor vizsgálata az események centralitásának függvényében azt mutatja, hogy a Z-bozonok keletkezési valószínűsége a független nukleon-nukleon ütközések számával skálázik. A Z-bozonok rapiditásának és transzverzális impulzusának függvényében mért R_{AA} nem mutat jelentős eltérést 1-től, tehát a lehetséges kezdeti állapoti effektusok a mérési hibákon belül vannak. Az eredményeket az IS2013 konferencián ismertettük [44].

10. ábra. Az 5,02 TeV-es p-Pb ütközésekben keltett Z-bozonok hatáskeresztmetszetének rapiditáseloszlása [45], összehasonlítva különféle modellszámolásokkal.

Meghatároztuk a Z-bozonok keltési valószínűségét p-Pb ütközésekben, szintén a bozonok müonpárra való bomlásának segítségével [45]. A mért eredményeket összehasonlítottuk különböző nukleáris partoneloszlás-függvények által jósolt elméleti hatáskeresztmetszetekkel. Azt találtuk, hogy első rendben – a Pb-Pb esethez hasonlóan – a Z-bozonok hozama a protonnukleon ütközések számával arányos. A hatáskeresztmetszet rapiditásfüggése a hideg maganyag módosító hatására utaló jeleket mutat (10. ábra), de számszerű állításokhoz több adatra lenne szükségünk. Az eredményeink az atommagok partoneloszlásfüggvényeinek további elméleti tanulmányozásához adnak támpontokat, a fázistér eddig elérhetetlen tartományában [12]. Az új eredményeket elsőként, a Quark Matter 2014 konferencián ismertettük [46].

4. Megbízatások, tisztségek

Siklér Ferenc a CMS együttműködés erős kölcsönhatással foglalkozó csoportját (QCD 2010-2011) vezette, majd a publikációs bizottságban véleményezte a referált folyóiratokba beküldött cikkeket (2012-). Veres Gábor előbb a nehézion (HIN, 2011-2012), majd a kisszögű szórások mérésére specializálódott (FSQ, 2014-2015) csoportokat vezette [47, 48, 49, 50, 51], először CERN ösztöndíjasként, majd tudományos munkatársként. A fent említett három kiértékelő csoport mindegyikében sok publikáció, számos konferenciaelőadás és -cikk készítését felügyelték.

Krajczár Krisztián a HIN csoport spektrumokkal foglalkozó (2012-2013), valamint a szoftvertesztelési alcsoportját irányította (2013-), először MIT-, majd CERN ösztöndíjasként. Ezen felül a HIN csoport egyik, eseménykiválasztással foglalkozó felelőse (2013-). Zsigmond Anna a HIN csoport centralitás-analízissel és -szoftverrel foglalkozó alcsoportját vezette.

Sok CMS publikáció előkészítésében töltöttünk be belső bíráló bizottsági (tag vagy elnöki) szerepet. A CERN-ben nyári diákok és ösztöndíjasok dolgoztak a vezetésünkkel.

Krajczár K	PhD	"Measurement of spectra of charged hadrons and weakly decaying
	(ELTE)	strange particles at LHC energies with the CMS detector", 2011
Zsigmond A	MSc	"A rugalmatlan proton-proton hatáskeresztmetszet mérése
	(ELTE)	a CMS kísérletben", 2012
Englert D	BSc	"Study of hadron resonances and their properties
	(BME)	in p-Pb collisions at CMS", 2013
Veres G	$\mathrm{DSc/habil}$	"Az erős kölcsönhatás kísérleti vizsgálata elemi részecskék
	(MTA/ELTE) és nehéz atommagok ütközéseinek összehasonlításával", $2013/2014$
Siklér F	DSc	"Új kiértékelési módszerek és alkalmazásuk
	(MTA)	az erős kölcsönhatás vizsgálatában", 2014

Az elmúlt években csoportunk minden aktív tagjai magasabb tudományos fokozatot szerzett:

5. Összefoglalás

A gáztöltésű és a szilícium-alapú detektorok kiértékelésével, a töltött részecskék nyomkövetésével és azonosításával kapcsolatos új módszereket dolgoztunk ki, majd alkalmaztunk.

Az elemi proton-proton ütközésekben elért eredményeink nagyban hozzájárultak az erős kölcsönhatás leírására vállalkozó Monte Carlo modellek javításához, paramétereik igazításához. A leggyakrabban alkalmazott PYTHIA generátor esetében a következő változtatások voltak szükségesek: a részecskeszám energiával való gyorsabb skálázása; barionok, főként ritka barionok megnövekedett keltése; megnövelt barion-transzport a központi régióba; a ritkaság elnyomásának csökkentése; kisebb szín-összekapcsolás (*color reconnection*) az átlagos $p_{\rm T}$ részecskeszám-függésének leírására. Látszik, hogy a többféle, sok-sok paraméterrel dolgozó modell mellett a kapott adatok jó egyezést mutatnak egyszerű, a jelenségek egy megfelelő effektív, "köztes síkján" aktív leírásokkal (Tsallis-eloszlás, gluontelítés). Az események legfontosabb jellemzőit ($dN/d\eta$ pszeudorapiditás-sűrűség, $\langle p_{\rm T} \rangle$ átlagos transzverzális impulzus, a kölcsönhatási tartomány jellemző R_l, R_o, R_s korrelációs méretei) döntően az ütközésben keltett részecskék száma határozza meg. A kezdeti ütközési rendszer milyensége és a tömegközépponti energia hatása nagyon szerény. A látott viselkedés alapján kezdeti gluonsűrűség és a kritikus hadronsűrűség szerepe fontos.

Az ólom-ólom ütközésekben létrejövő kvark-gluon plazma vizsgálatában csoportunk munkája szintén alapvető fontosságú volt. A töltött hadronok keletkezése – korábbi kisebb energiájú mérésekkel összhangban – elnyomódik, és érdekes $p_{\rm T}$ -függést mutat. Nagy transzverzális impulzusnál az elnyomásának mértéke a keltett partonok közegben leadott energiájáról ad információt a különféle elméleti modellek számára. Az Υ részecske különböző gerjesztett állapotainak – kötési energiától függő – fokozatos elnyomása a közeg hőmérsékletét jelzi. A forró és sűrű közegben módosult folyamatok megértéséhez az elektrogyenge bozonok megfigyelése szolgálhat egyfajta referenciaként. Igazoltuk, hogy a Z-bozonok nukleáris módosulási faktora konzisztens 1-gyel, nem függ a rapiditástól, a transzverzális impulzustól vagy az esemény centralitásától.

A proton-ólom ütközések elsősorban szintén referenciaként szolgálnak. Segítségükkel a hideg maganyag (kezdeti állapot) hatásait tudjuk különválasztani a kvark-gluon plazma kialakulásának (végállapot) jeleitől. Ugyanakkor eredményeink azt mutatták, hogy a proton-ólom ütközések önmagukban is érdekesek. Az ütközések centralitásának, vagyis az ütközéseben résztvevő nukleonok átlagos számának meghatározását különböző módszerekkel végeztük el. A töltött hadronok nukleáris módosulási faktora proton-ólom ütközésekben nem mutat elnyomást a nagy $p_{\rm T}$ -jű tartományban, de 20 GeV/c felett kis hozamtöbbletet találtunk, amit a jelenlegi nukleáris partoneloszlás-függvények (nPDF) nem tudnak leírni. Egy új nPDF parametrizáció meghatározásához – a töltött hadronok eloszlásai mellett – a Z-bozonok keltésének részletes mérésére volt szükség.

Az OTKA támogatásával végzett kutatás során született cikkekre eddig 1285 hivatkozás érkezett (inSpire).

Budapest, 2014. szeptember 30.

Hivatkozások

- CMS Collaboration, "The CMS experiment at the CERN LHC," JINST 3 (2008) S08004.
- F. Siklér, "Study of clustering methods to improve primary vertex finding for collider detectors," Nucl. Instrum. Meth. A 621 (2010) 526-533, arXiv:0911.2767 [physics.ins-det].
- [3] CMS Collaboration, "Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 0.9 and 2.36 TeV," JHEP 02 (2010) 041, arXiv:1002.0621 [hep-ex].
 Internal reference: I. Cali, T. J. Kim, Y. Kim, K. Krajczár, Y.-J. Lee, W. Li, C. Loizides, F. Ma, C. Roland, G. Roland, R. Rougny, F. Siklér, H. Snoek, G. Veres, E. Wenger, Y. Yilmaz, A. Yoon, "Transverse momentum and

pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 900$ GeV and 2.36 TeV," CMS AN 2009/182 (2010).

- [4] CMS Collaboration, "Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 7 TeV," Phys. Rev. Lett. 105 (2010) 022002, arXiv:1005.3299 [hep-ex]. Internal reference: I. Cali, Y. Kim, K. Krajczár, Y.-J. Lee, W. Li, F. Ma, C. Roland, G. Roland, F. Siklér, G. Veres, E. Wenger, Y. Yilmaz, A. Yoon, "Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 7 TeV," CMS AN 2010/069 (2010).
- [5] CMS Collaboration, "Study of the inclusive production of charged pions, kaons, and protons in pp collisions at $\sqrt{s} = 0.9$, 2.76, and 7 TeV," Eur. Phys. J. C 72 (2012) 2164, arXiv:1207.4724 [hep-ex]. Internal reference: F. Siklér, "Spectra of charged hadrons in pp collisions at $\sqrt{s} =$ 0.9, 2.76 and 7 TeV identified via tracker energy loss," CMS AN 2010/143 (2011).
- [6] http://code.google.com/p/bud-aida/.
- [7] F. Siklér and S. Szeles, "Optimized estimation of energy loss rate for charged particles from energy deposit measurements in tracking detectors," Nucl. Instrum. Meth. A 687 (2012) 30-39, arXiv:1111.2491 [physics.data-an].
- [8] F. Siklér, "Particle identification with a track fit χ^2 ," Nucl. Instrum. Meth. A 620 (2010) 477-483, arXiv:0911.2624 [physics.ins-det].
- [9] CMS Collaboration, "Study of the production of charged pions, kaons, and protons in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV," Eur. Phys. J. C 74 (2014) 2847, arXiv:1307.3442 [hep-ex]. Internal reference: F. Siklér, "Study of the inclusive production of charged pions, kaons, and protons in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV," CMS AN 2012/404 (2013).
- [10] CMS Collaboration, "Femtoscopy with identified charged hadrons in pp, pPb, and peripheral PbPb collisions at LHC energies," CMS PAS HIN-14-013 (2014).
 Internal reference: F. Siklér, "Femtoscopy with identified charged hadrons in pp, pPb, and peripheral PbPb collisions at LHC energies," CMS AN 2014/042 (2014).
- [11] F. Siklér, "A parametrisation of the energy loss distributions of charged particles and its applications for silicon detectors," Nucl. Instrum. Meth. A 691 (2012) 16-29, arXiv:1111.3213 [physics.data-an].
- [12] C. Salgado, J. Alvarez-Muniz, F. Arleo, N. Armesto, M. Botje, ..., F. Siklér, et al., "Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements," J. Phys. G 39 (2012) 015010, arXiv:1105.3919 [hep-ph].
- [13] CMS Collaboration, "Studies of dijet transverse momentum balance and pseudorapidity distributions in pPb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV," Eur. Phys. J. C 74 (2014) 2951, arXiv:1401.4433 [nucl-ex].

Internal reference: M. Akbiyik, A. Barbieri, R. Chudasama, D. C. Gulhan, K. Jung, M. M. Varma, D. Velicanu, Y. Yilmaz, A. J. Zsigmond, K. Krajczár, P. Kurt, Y. S. Lai, Y.-J. Lee, Y. Mao, J. Robles, V. Zhukova, D. Dutta, P. K. Netrakanti, M. Nguyen, C. Roland, G. M. Roland, S. Salur, G. Stephans, G. Veres, B. Wyslouch, "Study of dijet momentum-balance and pseudorapidity distributions in pPb collisions at nucleon-nucleon center-of-mass energy = 5.02 TeV," CMS AN 2012/473 (2013).

- [14] CMS Achievement award [Run Coordination], for K. Krajczár, "For his contribution to the CMS High Level Trigger during the p-Pb run in 2013," http://cms.web.cern.ch/content/achievement-awards-2013.
- [15] CMS Collaboration, "Measurement of the inelastic pp cross section at $\sqrt{s} = 7$ TeV," CMS PAS QCD-11-002 (2011). Internal reference: J. Gartner, A. J. Zsigmond, G. Veres, A. de Roeck, A. J. Bell, "Measurement of the inelastic pp cross section at $\sqrt{s} = 7$ TeV," CMS AN 2011/061.
- [16] CMS Collaboration, "Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 7$ TeV," Phys. Lett. B 722 (2013) 5–27, arXiv:1210.6718 [hep-ex]. Internal reference: J. Gartner, A. J. Zsigmond, G. Veres, A. de Roeck, A. J. Bell, "Measurement of the inelastic pp cross section at $\sqrt{s} = 7$ TeV," CMS AN 2011/061. CMS AN 2011/104.
- [17] A. J. Zsigmond [CMS Collaboration], "Inelastic proton-proton cross section measurements in CMS at √s = 7 TeV," arXiv:1205.3142 [hep-ex]. http://dx.doi.org/10.3204/DESY-PROC-2012-02/181. Proceedings of the DIS 2012 Conference, Bonn.
- [18] T. S. Biró, G. Purcsel, and K. Ürmössy, "Non-Extensive Approach to Quark Matter," Eur. Phys. J. A 40 (2009) 325-340, arXiv:0812.2104 [hep-ph].
- [19] G. I. Veres [CMS Collaboration], "Inclusive distributions of charged hadrons in pp collisions at $\sqrt{s} = 0.9$ and 2.36 TeV," arXiv:1006.0948 [hep-ex]. Presented at the Lake Louise Winter Institute, 2010.
- [20] F. Siklér [CMS Collaboration], "Highlights from CMS," PoS DIS2010 (2010) 006. Proceedings of the DIS 2010 Conference, Florence.
- [21] K. Krajczár [CMS Collaboration], "QCD physics from CMS," PoS DIS2010 (2010)
 117. Proceedings of the DIS 2010 Conference, Florence.
- [22] CMS Collaboration Collaboration, "Measurements of hadron production at CMS," EPJ Web Conf. 13 (2011) 03002. Proceedings of the HCBM 2010 Conference, Budapest.
- [23] CMS Collaboration, "Strange particle production in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV," JHEP 05 (2011) 064, arXiv:1102.4282 [hep-ex]. Internal reference: K. Krajczár, "Spectra of identified neutral hadrons at 0.9 and 7 TeV using decay topology," CMS AN 2010/144 (2011).

- [24] K. Krajczár [CMS Collaboration], "Spectra of weakly decaying identified particles at 0.9 TeV and 7 TeV with the CMS detector," EPJ Web Conf. 13 (2011) 03003. Proceedings of the HCBM 2010 Conference, Budapest.
- [25] F. Siklér [CMS Collaboration], "Spectra of charged pions, kaons, and protons identified via tracker energy loss from CMS,".
 http://dx.doi.org/10.3204/DESY-PROC-2012-02/182. Proceedings of the DIS 2012 Conference, Bonn.
- [26] F. Siklér [CMS Collaboration], "Identified particles in pPb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV measured with the CMS detector," Nucl. Phys. A 926 (2014) 128–135. Proceedings of the IS2013 Conference, Illa da Toxa.
- [27] K. Krajczár [CMS Collaboration], "Measurements of hadron production in pPb collisions in CMS," PoS EPS-HEP2013 (2013) 181. Proceedings of the EPS HEP 2013 Conference, Stockholm.
- [28] L. D. McLerran and R. Venugopalan, "Computing quark and gluon distribution functions for very large nuclei," Phys. Rev. D 49 (1994) 2233-2241, arXiv:hep-ph/9309289 [hep-ph].
- [29] M. Praszalowicz, "Improved Geometrical Scaling at the LHC," Phys. Rev. Lett. 106 (2011) 142002, arXiv:1101.0585 [hep-ph].
- [30] CMS Collaboration, "Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV," JHEP 08 (2011) 141, arXiv:1107.4800 [nucl-ex]. Internal reference: Y.-J. Lee, K. Krajczár, G. Roland, G. Veres, E. Wenger, Y. Yilmaz, "Pseudorapidity distributions of charged hadrons produced in Pb+Pb collisions at √s = 2.76 TeV," CMS AN 2010/365.
- [31] CMS Collaboration, "Study of high- $p_{\rm T}$ charged particle suppression in PbPb compared to pp collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV," Eur. Phys. J. C 72 (2012) 1945, arXiv:1202.2554 [nucl-ex]. Internal reference: E. Wenger, A. Yoon, F. Ma, K. Krajczár, "Centrality dependence of charged particle transverse momentum spectra in PbPb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV," CMS AN 2012/015 (2012).
- [32] K. Krajczár [CMS Collaboration], "Charged hadron multiplicity and transverse energy densities in Pb Pb collisions from CMS," J. Phys. G 38 (2011) 124041. Proceedings of Quark Matter 2011 Conference, Annecy.
- [33] K. Krajczár [CMS Collaboration], "Measurement of charged particle R_{AA} at high p_T in PbPb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with CMS," Nucl. Phys. A 910-911 (2013) 339-342, arXiv:1208.6218 [nucl-ex]. Proceedings of the Hard Probes 2012 Conference, Cagliari.
- [34] CMS Collaboration, "Charged particle nuclear modification factor and pseudorapidity asymmetry in pPb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with CMS," CMS

PAS HIN-12-017 (2013).

Internal reference: E. Appelt, M. Sharma, S. Greene, Y.-J. Lee, K. Krajczár, "Transverse momentum and pseudorapidity dependence of charged particle production and nuclear modification factor in pPb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with CMS," CMS AN 2012/377 (2014).

- [35] CMS Collaboration, "Transverse momentum and pseudorapidity dependence of charged particle production and nuclear modification factor in proton-lead collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with CMS," Nucl. Phys. A (2014) in press. Proceedings of the Hard Probes 2013 Conference, Cape Town.
- [36] CMS Collaboration, "Observation of long-range near-side angular correlations in proton-lead collisions at the LHC," Phys. Lett. B 718 (2013) 795-814, arXiv:1210.5482 [nucl-ex].
 Internal reference: Y.-J. Lee, A. Barbieri, I. Cali, D. C. Gulhan, Y. Kim, K. Krajczár, Y.-S. Lai, F. Ma, M. Madhav, C. Roland, G. Roland, G. Stephans, A. Strelnikov, D. Velicanu, Y. Yilmaz, V. Zhukova, K. Jung, F. Wang, L. Xu, W. Li, "Studies of two-particle correlations in pPb collisions at 5.02 TeV," CMS AN 2012/352 (2012).
- [37] P. Bozek, "Collective flow in p-Pb and d-Pd collisions at TeV energies," Phys. Rev. C 85 (2012) 014911, arXiv:1112.0915 [hep-ph].
- [38] K. Dusling and R. Venugopalan, "Evidence for BFKL and saturation dynamics from dihadron spectra at the LHC," Phys. Rev. D 87 (2013) 051502, arXiv:1210.3890 [hep-ph].
- [39] CMS Collaboration, "Detailed Characterization of Jets in Heavy Ion Collisions Using Jet Shapes and Jet Fragmentation Functions," CMS PAS HIN-12-013 (2012)

Internal reference: D. Dutta, D. Gulhan, Y. Kim, Y. Lai, Y.-J. Lee, K. Krajczár, P. Kurt, F. Ma, Y. Mao, J. Robles, C. Roland, S. Salur, D. Velicanu, J. Velkovska, G. Roland, G. Stephans, "Detailed characterization of jets in heavy ion collisions using jet shapes and jet-track correlations," CMS AN 2012/030.

- [40] CMS Collaboration, "Centrality determination for pPb data 2013," CMS DP 2013/034 (2013).
 Internal reference: E. Appelt, S. M. Dogra, F. Siklér, S. Tuo, Q. Xu, A. J. Zsigmond, "Centrality determination for pPb data 2013," CMS AN 2013/060 (2013).
- [41] CMS Collaboration, "Centrality measurement in pPb collisions," CMS DP 2014/009 (2014).
 Internal reference: E. Appelt, S. M. Dogra, F. Siklér, S. Tuo, Q. Xu, A. J. Zsigmond, "Centrality determination for pPb data 2013," CMS AN 2013/060 (2013).
- [42] CMS Collaboration, "Observation of sequential Upsilon suppression in PbPb collisions," Phys. Rev. Lett. 109 (2012) 222301, arXiv:1208.2826 [nucl-ex].

Internal reference: Z. Hu, G. Rangel, V. Kumar, A. J. Zsigmond, A. Abdulsalam,
M. Gardner, Y. Zheng, M. Jo, A. Belyaev, H. Kim, A. Florent; N. Leonardo,
J. Anderson, M. De Mattia, T. Dahms, C. Mironov, D. Moon, L. Benhabib,
R. G. de Cassagnac, M. de la B. Sanchez, I. Shipsey, P. Shukla, "Upsilon
production in PbPb collisions," CMS AN 2011/455 (2012).

- [43] CMS Collaboration, "Z boson production with the 2011 data in PbPb collisions," CMS PAS HIN-13-004 (2013).
 Internal reference: L. Benhabib, A. J. Zsigmond, M. Gardner, R. G. de Cassagnac, "Z boson production in PbPb heavy ion collisions with 2011 data," CMS AN 2012/085 (2014).
- [44] A. J. Zsigmond [CMS Collaboration], "Electroweak bosons in heavy ion collisions in CMS," Nucl. Phys. A 926 (2014) 34–40. Proceedings of the IS2013 Conference, Illa da Toxa.
- [45] CMS Collaboration, "Study of Z boson production in the muon decay channel in pPb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV," CMS PAS HIN-14-003 (2014). Internal reference: A. J. Zsigmond, "Study of Z boson production in the muon decay channel in pPb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV," CMS AN 2013/310 (2014).
- [46] A. J. Zsigmond [CMS Collaboration], "Z and W boson production in pPb collisions with CMS," Nucl. Phys. A (2014) in press. Proceedings of the Quark Matter 2014 Conference, Darmstadt.
- [47] G. I. Veres [CMS Collaboration], "Heavy-ion physics results from CMS," Nuovo Cim. C035 (2012) 115–122. Proceedings of the 26th Les Rencontres de Physique de La Vallee d'Aoste, La Thuile, 2012.
- [48] G. I. Veres [CMS Collaboration], "Overview of results on jets from the CMS Collaboration," Nucl. Phys. A 904-905 (2013) 146c-153c. Proceedings of the Quark Matter 2012 Conference, Washington D. C.
- [49] G. Veres [ATLAS and CMS Collaborations], "Heavy ions: jets and correlations," PoS EPS-HEP2013 (2013) 143. Proceedings of the EPS HEP 2013 Conference, Stockholm.
- [50] G. I. Veres [ATLAS, CMS Collaboration], "Heavy ion results from ATLAS and CMS," Nucl. Phys. Proc. Suppl. 245 (2013) 45–48. Proceedings of the Hadron Structure'13 Conference, Tatranské Matliare, 2013.
- [51] G. Veres [CMS Collaboration], "Heavy ion physics with the CMS experiment," CMS CR 2013/123 (2013). Proceedings of the 2nd FEPS International Conference on Primordial QCD Matter in LHC era, Cairo, 2013.