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Abstract There is currently great interest shown in

understanding the process of embryogenesis and, due to

the relative inaccessibility of these structures in planta,

extended studies are carried out in various in vitro systems.

The culture of isolated zygotes in particular provides an

excellent platform to study the process of in planta

embryogenesis. However, very few comparisons have been

made between zygotic embryos grown entirely in cultures

and those grown in vivo. The present study analyses the

differences and similarities between the in vitro and in vivo

development of wheat zygotic embryos at the level of

morphology and histology. The study was possible thanks

to an efficient culture system and an appropriate method of

preparing isolated wheat zygotes for microscopy. The in

vitro embryos were fixed, embedded and sectioned in the

two-celled, globular, club-shaped and fully differentiated

stages. Embryos developing in vitro closely followed the

morphology of their in planta counterparts and their cell

types and tissues were also similar, demonstrating the

applicability of the present culture system for studying the

process of zygotic embryogenesis. However, some impor-

tant differences were also detected in the case of in vitro

development: the disturbance of or lack of initial polarity

led to changes in the division symmetry of the zygotes and

subsequently to the formation of uniform cells in the

globular structures. Presumably, differences between the in

vitro and in planta environments resulted in a lower level of

differentiation and maturation in in vitro embryos and in

abundant starch and protein accumulation in the scutellum.
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Abbreviations

CBB Coomassie Brilliant Blue R250

CFW Calcofluor white

DAP Days after pollination

DAPI 40,6-Diamidino-2-phenylindole

ELS Embryo-like structure

HAP Hours after pollination

PAS Periodic acid-Schiff

RAM Root apical meristem

SAM Shoot apical meristem

Introduction

Culture of isolated zygotes provides an excellent system

for studying the process of embryogenesis. Such cultures

resulting in plant development have already been estab-

lished in maize (Kranz and Lörz 1993; Leduc et al. 1996),

barley (Holm et al. 1994), wheat (Holm et al. 1994;

Kumlehn et al. 1998, 1999; Bakos et al. 2003a, b), rice

(Zhang et al. 1999; Uchiumi et al. 2006, 2007b) and
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tobacco (He et al. 2004), and even in the parthenogenetic

Salmon wheat line (Kumlehn et al. 2001), wheat 9 maize

(Bakos et al. 2005) and wheat 9 rice (Bakos 2007).

Although plant regeneration has been achieved in a large

number of species from microspore and somatic cell cul-

tures (see Herman 2008), compared to zygote cultures,

these methods only offer more indirect ways to study

embryo development.

Numerous studies concerning the histology and cytol-

ogy of in planta zygotic embryos have been published to

date (for example, barley: Norstog 1972; maize: Randolph

1936; van Lammeren 1981; wheat: Batygina 1969, 1997;

Bennett et al. 1973; Smart and O’Brien 1983; You and

Jensen 1985; rice: Jones and Rost 1989a; pearl millet:

Taylor and Vasil 1995). However, the developmental pat-

tern of in vitro embryos was only compared with that

of their in planta counterparts in the case of somatic

embryogenesis (e.g., Jones and Rost 1989b; Taylor and

Vasil 1996; Thijssen et al. 1996; Alemanno et al. 1997;

Kärkonen 2000; Tereso et al. 2007; Kurczynska et al.

2007) and androgenesis (e.g., Hause et al. 1994; Indrianto

et al. 2001; Testillano et al. 2002; Maraschin et al. 2005;

Pulido et al. 2005; Pretová et al. 2006; Seguı́-Simarro and

Nuez 2008; Supena et al. 2008). The development of

somatic or microspore-derived embryos closely follows

that of in planta zygotic embryos, and efficient regenera-

tion has been reported in numerous cases, but histological

aberrations and genetic instability frequently occur in

embryogenic cultures. Such abnormalities have a negative

influence on the number of regenerants and on their vigour

(for reviews, see: Rani and Raina 2000; Gaj 2004; Tahir

and Stasolla 2006).

As no detailed comparisons of zygotic embryos devel-

oping in vitro have been made, only limited, mainly

morphological, information is available about the differ-

ences between in vitro and in planta zygotic embryogenesis

(Kranz and Lörz 1993; Kovács et al. 1995; Leduc et al.

1996; Kumlehn et al. 1999; Bakos et al. 2003a, b; He et al.

2007). In wheat, the main differences known are the first

zygotic division in vitro appears morphologically sym-

metrical, and the embryos do not have a dormancy phase.

In addition, the development of zygotic embryos is some-

what slower in vitro than in planta. In cultures, the first

division of wheat zygotes takes place 1 day after pollina-

tion (DAP). Approximately 4 days are needed for the

development of globular embryos and 8–10 days for club-

shaped ones. These embryos become ready for transfer

onto regeneration medium and for germination in approx-

imately 20 days (Kumlehn et al. 1998; Bakos et al. 2003b).

In planta, the first zygotic division occurs at approximately

the same age as in vitro (approximately 21–24 h after

pollination; HAP), but globular embryos develop within

2–3 days and club-shaped ones with an embryonal axis are

established in 6 days. Morphologically complete embryos

ready to enter the dormancy phase develop within 14 days

(Batygina 1969, 1997).

Single cells are difficult to manipulate and few efficient

zygotic culture systems exist, but some tools are already

available for structural and molecular studies on individual

isolated cells and on the structures originating from them.

Methods have only been published for the fixation,

embedding and sectioning of isolated zygotes in the case of

maize (Faure et al. 1992) and tobacco (Ning et al. 2006). At

the molecular level, gene expression studies are already

possible on individual cells (Le et al. 2005; Steffen et al.

2007). Transcriptome and proteome analyses on isolated

egg cells, zygotes and proembryos developing in vitro

reveal several genes and proteins that play important roles

during the initial phases of embryogenesis in wheat (Spr-

unck et al. 2005; Sz}ucs et al. 2006), maize (Okamoto et al.

2004, 2005; Okamoto and Kranz 2005; Yang et al. 2006),

tobacco (Ning et al. 2006) and rice (Uchiumi et al. 2007a).

The aim of this research is to model the development of in

planta zygotic embryos, which can only be accessed with

difficulty (for review, see Kranz and Scholten 2008; Nawy

et al. 2008; Wang et al. 2006). In order to set up a complete

and reliable model, in addition to optimal culture systems

and molecular research, histological and cytological studies

to compare in vitro and in planta embryogenesis will be

required.

In the present work, therefore, the development of wheat

zygotes in an efficient culture system was analysed using

semithin sections and compared with that of their in planta

counterparts.

Materials and methods

Plant material

Spring wheat (Triticum aestivum L.) cultivars Siete Cerros

and Chinese Spring, and the winter wheat cultivar Mv9kr1

were grown in phytotron chambers as described previously

(Bakos et al. 2003a).

In vitro culture of isolated wheat zygotes

In order to establish a nurse culture for zygotes, wheat

pistils were dissected 3–4 days before anthesis and pre-

cultured in 6-well plates (15 pistils, 1.5 ml medium/well,

[ = 3 cm) for 3–4 days at 26�C in dim light

(50 lmol m-2 s-1) using N6Z medium (Kumlehn et al.

1998). The zygotes were isolated in 0.18 M glu-

cose ? 0.36 M mannitol ? 2 mM CaCl2 solution 1–2 h

after pollination as described by Kovács et al. (1994).

Zygotes were placed into Millicell transwell inserts
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([ = 9 mm, 10–40 zygotes/insert) previously inserted into

6-well plates. The cultures were incubated at 26�C in the

dark. After 2 weeks the pistils and 600 ll N6Z medium

were replaced by freshly precultured ones. The preculture

was done as described above. At 20–28 days, embryos

measuring at least 1 mm were transferred to solid N6D

regeneration medium and processed as described by

Kumlehn et al. (1998). The viability of the zygotes and the

structures derived from them was determined based on

membrane integrity and cytoplasmic density viewed on an

M35 inverted microscope (Zeiss, Germany).

Processing samples for microscopy

Since embryo maturation occurs at different rates in vitro

and in planta, embryos were compared using size and

developmental phase as criteria for maturational stage.

Accordingly, examinations were made on isolated egg

cells, zygotes after the first division (26 HAP for both in

vitro and in planta), globular embryos (4 and 2.5 DAP, for

in vitro and in planta, respectively), club-shaped embryos

(10 DAP, in vitro), and fully differentiated embryos (20

and 14 DAP, for in vitro and in planta, respectively). All

the structures from three whole cultures (i.e. a minimum

of 40 structures/in vitro sample) and a minimum of 50

structures/in vivo sample were fixed in each case. The

fixation and subsequent washing steps were carried out

using MSB solution (Hoshino et al. 2004) modified to

contain 450 mM glucose instead of 600 mM mannitol. In

addition, the fixative contained 4% paraformaldehyde and

0.1% glutaraldehyde.

Smaller samples (structures up to 10 days) were first

transferred into N6Z droplets, after which the liquid in the

droplets was gradually replaced entirely with fixative using

a micropipette over the course of 30 min. The cells were

then left in the fixative droplets for 2 h in a humid envi-

ronment. Subsequently the fixative was replaced by

modified MSB as described above, but over a 10 min

period. Then, 7 ll of 4% low-melting point agarose solu-

tion (in modified MSB) at 37�C was added to the

approximately 20-ll droplets, and the solutions were

carefully mixed immediately. After solidification, the

agarose droplets were cut into 1-mm cubes, which were

then transferred into small glass vials containing 1 ml

modified MSB. The entire procedure was monitored under

an inverted microscope. From this point, the vials were

shaken at 20 rpm and two subsequent washes were done

with modified MSB (for 30 min each). The dehydration

(ethanol series) and embedding (Unicryl, BioCell) steps

were done according to the manufacturer’s instructions.

During the processing of larger samples (14-day-old half

kernels containing the embryo and 20-day-old in vitro

embryos, for example) differed in that 0.05 M cacodylate

buffer was used instead of modified MSB; all the fixation

and washing steps were done in glass vials, and the incu-

bation times were 3 days for fixation (fresh fixative added

each day) and 2 days for the other solutions.

Finally, all the samples were polymerised under UV

light at -20�C. An inverted microscope was used for the

localisation of small structures embedded in the resin

(Fig. 1). Semithin (1 lm) sectioning was done using an

Ultracut E (Reichert-Jung) ultramicrotome.

Histochemical staining

For labelling with CFW (Calcofluor white, for cell walls)

and DAPI (40,6-diamidino-2-phenylindole, for nucleic

acids) the sections were incubated in 20 lg/ml DAPI and

1 mg/ml CFW (in 0.1 M phosphate–citrate buffer, pH 4.4)

for 3 min, then rinsed with distilled water. The sections

were mounted in Vectashield (Vector) with coverslips and

immediately observed using an Olympus BX 51 epifluo-

rescence microscope. Besides the clear, intensive labelling

of the cell walls, CFW also labelled other organelles at

various intensities at this concentration, so it also provided

information about general cell structure.

For the visualisation of general anatomy, sections were

stained with 0.5% Toluidine blue O solution. The slides

were incubated on a hot plate for 20 s, then the staining

solution was removed with distilled water. After drying,

the slides were covered with DEPEX.

To visualise accumulated reserve materials, carbohy-

drates were first stained with PAS (periodic acid-Schiff

Fig. 1 Identification of small structures (bicellular proembryos in

vitro embedded in resin) using an inverted microscope. Bar 50 lm
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staining; McManus 1948), protein bodies were stained with

CBB (Coomassie Brilliant Blue R250) according to Pulido

et al. (2006), based on the method of Cawood et al. (1978),

and finally Light Green was applied as contrast staining

(McManus 1948). The slides were rinsed with distilled

water between stains. Finally, the sections were dried and

covered with DEPEX.

Results

Wheat zygote cultures

A nurse culture system involving N6Z medium (Kumlehn

et al. 1998) and wheat pistils (Bakos et al. 2003b) led to

plant regeneration from approximately 60% of the isolated

wheat zygotes. The culture system had similar efficiency

for all three genotypes examined (Siete Cerros: 59%,

Chinese Spring: 54%, Mv9kr1: 61%, with a total of 148, 35

and 33 zygotes, respectively, each of which was monitored

throughout the culture period). Of the 148 cultured zygotes

of Siete Cerros (Fig. 2a) 126 divided (85%, Fig. 2b),

93 developed into globular embryo-like structures (63%,

Fig. 2c), 92 reached the club-shaped phase (62%, Fig. 2d),

and 87 became mature embryos or embryo-like structures

(ELSs, Fig. 2e). Of these, 52 were single ELSs and 35 were

twin (multiple) ELSs. Altogether 87 plants (representing

59% of the cultured zygotes, Fig. 2f) have been regener-

ated from the single and twin ELSs. Although 12 ELSs

regenerated only after a delay via organogenesis, all the

plantlets grew into fertile vigorous plants. The pattern and

speed of in vitro development (Fig. 2) closely followed that

described in earlier studies (Kumlehn et al. 1998; Bakos

et al. 2003a, b).

In the next phase of the work, in vitro development of

the zygotes was studied histochemically and compared

with in planta embryogenesis.

First zygotic division in planta and in vitro

After the first zygotic division, proembryos showed great

similarity in cellular architecture, except that the shape of

the daughter cells was consistently different in vitro and in

planta (Fig. 3). In all examined cases, the first division

resulted in two cells with identical shape in vitro (Fig. 3a,

b; 48 sectioned proembryos), in contrast to the basal and

apical cells separated by a perpendicular cell wall found in

vivo (Fig. 3c, d; 14 sectioned proembryos). In both cases,

the cytoplasm around the nuclei was rich in organelles, and

small vacuoles were visible at the periphery of the daughter

cells (Fig. 3a, c). These features are very similar to the

cytoplasmic architecture of isolated egg cells (Fig. 3e). The

egg cells had no cell wall an hour after isolation, while this

was clearly visible in the proembryos. The two-celled

proembryos were hardly bigger than the egg cells (Fig. 3a,

c, e). Starch grains occurred mostly perinuclearly in the

proembryos both in vitro and in vivo (Fig. 3b, d), and they

were larger and more numerous than in the egg cells

(Fig. 3f).

Globular stage of embryogenesis

Globular embryos were compared when they reached a size

of 60–80 lm and contained approximately 10–20 cells

(Fig. 4). Embryos in vitro were basically composed of

meristematic, cytoplasm-rich cells (Fig. 4a). Starch accu-

mulation showed a slight gradient, which could be

interpreted as a sign of embryo polarity (Fig. 4b). In vivo,

Fig. 2 a Freshly isolated

zygote, 1 HAP. b The first cell

division of the zygotes is

symmetrical in vitro, 26 HAP.

c Globular embryo-like

structures, 4 DAP. d Club-

shaped embryos closely

resembling those formed in

planta, 8 DAP. e Embryos and

embryo-like structures ready for

transfer onto regeneration

medium, 20 DAP.

f Regenerating plantlets,

30 DAP. Percentages (%)

demonstrate the efficiency of

differentiation at the given

stages. Bar a–c: 50 lm;

d: 500 lm; e: 5 mm
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however, the polarity was expressed not only by the higher

starch accumulation at the basal pole (Fig. 4d), but also by

the intense staining of the basal cells and lighter staining of

the apical cells (Fig. 4c). The plurinucleolar nuclei were an

indication that the cells were intensely dividing in both the

in vitro and in planta embryos.

Embryo axis differentiation

The differentiation of the embryonal axis starts in

approximately 10-day-old embryos in vitro (Fig. 5a),

which are almost identical to 6-day-old embryos in planta

(Batygina 1969, 1997). The shoot primordia can be seen as

polar protrusions consisting of cells rich in cytoplasm, and

the root primordia as another group of meristematic cells in

a central position. The slightly vacuolated cells around the

embryonal axis show the differentiation of the scutellum,

while the relatively more vacuolated ones at the basal part

resemble the suspensor region in planta.

Morphology of mature embryos

The 20-day-old embryos usually grew to 1.5–2 mm in vitro

and their size corresponded to that of 14-day-old embryos

in planta (Fig. 5b, c). These in vitro embryos were mature

enough for transfer onto regeneration medium, where they

developed into small plantlets in 6–10 days (Fig. 2f);

however, they exhibited a lower degree of differentiation

compared to the in planta embryos. All of the organs of the

embryonal axis developed, but they were smaller and the

arrangement of the cells was less organised than in vivo.

The leaf primordia were conical in shape in contrast to the

well-developed, sheath-like leaf primordia in vivo. The

coleoptile was less distinct and did not envelop the shoot

apex in vitro, in contrast to the well-formed, closed cole-

optile of the in vivo embryos. The provascular strand was

well-differentiated in both environments, but the scutellar

Fig. 3 Two-celled proembryos

at 26 HAP developed in vitro

(a–b) and in vivo (c–d). e–f
Freshly isolated mature egg cell.

a, c, e DAPI ? CFW staining.

b, d, f PAS ? CBB staining

with Light Green contrast

staining. AC Apical cell, BC
basal cell, Mp micropyle, Sy
persistent synergid, CW cell

wall; N nucleus, Nu nucleolus,

Org organelle-rich cytoplasmic

area, St starch grain, V vacuole.

Bar 50 lm

Fig. 4 a–b Globular embryos developed in vitro at 4 DAP. c–d
Globular embryos developed in planta at 60 HAP. a, c Toluidine blue

staining. b, d PAS ? CBB staining with Light Green contrast

staining. Nu Nucleolus, Org organelle-rich cytoplasmic area, St starch

grain Bar 50 lm
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morphology and cell types differed greatly (Figs. 5b, c,

7a, b).

Meristems

A closer observation of the meristems (Fig. 6) revealed that

the structure of the shoot apical meristem (SAM) was very

similar in both environments (Fig. 6a-d): the small, iso-

diametric cells were rich in cytoplasm and had relatively

large, frequently plurinucleolar nuclei. Cells in M-phase

were present in abundance. All the cells were very close

together, without intercellular spaces (Fig. 6a, b). The only

differences were that the cells were slightly more vacuo-

lated and contained a few small starch grains in vitro

(Fig. 6a, b), whereas very few small vacuoles and practi-

cally no starch grains occurred in vivo (Fig. 6c, d).

The root apical meristems were less well organised in

vitro than in planta (Fig. 6e–h). The cells are more vacu-

olated and their size and shape more heterogeneous than in

vivo. However, these cells were still relatively isodiametric

and rich in cytoplasm, and did not accumulate starch.

Furthermore, they were frequently plurinucleolar or

dividing. Intercellular spaces were not formed between the

cells in the meristematic regions.

Scutellar cell types and the accumulation of reserve

substances

The neighbourhood of the meristematic region in embryos

developed in vitro characteristically containing cells rela-

tively rich in cytoplasm, starch grains and vacuoles. These

cells resembled those of the scutellum in vivo (Figs. 5b, c,

6a–d). The other cells of the scutellum were either highly

vacuolated (Fig. 5b) or accumulated large amounts of

starch and protein in vitro (Fig. 7a, b). The former type

were in a central position and resembled the vacuolated

region of the in planta endosperm (Fig. 7c), whereas the

latter were more characteristic of the periphery and had

properties similar to those of cells in the starchy endosperm

(Fig. 7d). The accumulation pattern of reserve materials

Fig. 5 a Club-shaped embryo

developed in vitro at 10 DAP.

b The axis of an embryo

developed in vitro at 20 DAP.

c Morphologically complete

embryo in vivo at 14 DAP.

a–c Toluidine blue staining. Ax
Embryonal axis, Col coleoptile,

Cr coleorhiza, End endosperm,

LP leaf primordium, PV
provascular strand, RM root

apical meristem, SM shoot

apical meristem, Scu scutellum,

Sus suspensor, V vacuole.

Bar 50 lm

Fig. 6 Details of the meristematic regions of the embryos. a–b, e–f
In vitro embryos at 20 DAP, c–d, g–h in vivo embryos at 14 DAP.

a–d Shoot apex, e–h root apex. a, c, e, g Toluidine blue staining,

b, d, f, h PAS ? CBB staining with Light Green contrast staining.

Nu Nucleolus, Org organelle-rich cytoplasmic area, St starch grain,

V vacuole, Chr chromosomes in dividing cells. Bar 50 lm
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was very similar in the periphery of the scutellum in vitro

and in the endosperm in vivo, but slight differences could

be observed: in vitro the starch grains were generally more

spherical and slightly smaller, and the protein bodies were

less composite and were stained more intensely and

homogeneously. Small intercellular spaces were present in

the scutellum in vitro (Fig. 7b).

Discussion

Technical conditions for the study of wheat zygote

development in vitro

Before histochemical studies on the in vitro development

of wheat zygotes could be initiated, an efficient culture

system had to be constructed. In the newly developed

culture system, although some zygotes perished during the

first day of culture, once they developed into globular

structures, their growth potential and regeneration ability

were very high, vying with that described earlier by

Kumlehn et al. (1998). Furthermore, direct microscopical

observations indicated that the pattern and rate of devel-

opment were practically the same in all studies focusing on

wheat zygote cultures (Kumlehn et al. 1998, 1999; Bakos

et al. 2003a, b), although the rate of in vitro development

was always somewhat slower than in planta (Batygina

1969; Bennett et al. 1973, 1975). Based on the morpho-

logical information from all these studies, it can be

assumed that the observed characteristics of the in vitro

zygotic embryogenesis in the present study are pertinent

not only to the present culture system but also to all wheat

zygote cultures hitherto applied.

Another bottleneck faced in this study was the fixation,

embedding and sectioning of very small isolated cells

and proembryos: the smallest structures only measured

approximately 60 lm. To process these cells, they were

immobilized in small agarose droplets in a similar manner

to that previously described for maize egg cells (Faure

et al. 1992). The macroscopic markers required in the case

of the even smaller (20–30 lm) tobacco zygotes (He et al.

2006) were not used.

Comparison of zygotic embryogenesis in vitro

and in planta: polarity during the initial phase

of embryogenesis

It has already been observed that the division of wheat

zygotes is morphologically symmetric in vitro and asym-

metric in vivo (Kranz and Kumlehn 1999; Kumlehn et al.

1998, 1999; Bakos et al. 2003a, b), but the reason for this

distinction is still not clear. In planta, the first division of

the zygote is usually asymmetrical: the apical cell of the 2-

celled proembryo is rich in cytoplasm, whereas the basal

cell is more vacuolated in most higher plants (maize:

Randolph 1936; Schel and Kieft 1986; barley: Norstog

1972; rice: Jones and Rost 1989a, b; pearl millet: Taylor

and Vasil 1995; Arundo formosana: Jane 1999). In wheat,

however, these two cells differ only in shape, whereas their

morphological architecture and reserve material deposition

are very similar (You and Jensen 1985; Naumova and

Matzk 1998; Fig. 3c, d). Although Bennett et al. (1973)

observed some variation in the morphology of the zygotic

daughter cells in wheat cv. Chinese Spring grown in

greenhouse conditions, such variation was not found in the

present study with the cv. Siete Cerros grown in phytotron.

One explanation for the symmetric cell division in vitro

might be that the wheat zygotes lose their cell walls and

consequently become spherical protoplasts during the dis-

section process (Kovács et al. 1994; Kumlehn et al. 1999),

leading to a disturbance in polarity. The role of the cell

wall in the maintenance of zygotic polarity is also dem-

onstrated by the fact that the retention of the original cell

wall is essential for the appropriate differentiation of the

daughter cells in tobacco (He et al. 2007). Only cultured

zygotes having the original cell wall with its proper

chemical gradients reproduced the in planta division pat-

tern. Zygote protoplasts that synthesised cell wall in vitro

divided symmetrically and only became similar to in planta

embryos much later, if at all. Similarly, the late establish-

ment of polarity was observed in the present wheat zygote

culture.

Fig. 7 Reserve material accumulation in the embryos in vitro (20

DAP) and in the endosperm in vivo (14 DAP). a An entire section

from the scutellum of an embryo developed in vitro. b Details of cells

accumulating high amounts of starch and protein. c Details of the in

vivo endosperm near the basal part of the embryo. Note the presence

of aleurone (AlC), starchy (StC) and vacuolated (VC) cell types.

d Reserve material storage in the starchy endosperm. a, c Toluidine

blue staining, b, d PAS ? CBB staining with Light Green contrast

staining. Is Intercellular space, PB protein body, N nucleus, St starch

grain. Bar 50 lm
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Polarity at the initiation of embryogenesis is decisive not

only in zygotic embryos but in all embryogenic systems

(Fehér et al. 2003; Hause et al. 1994). Polarity resembling

that of the two-celled in planta proembryo was observed in

‘‘proembryos’’ formed from rice scutellar epithelial cells

(Jones and Rost 1989b). These somatic embryos also fol-

lowed in planta embryogenesis very well in later stages.

Vasilenko et al. (2000) demonstrated that somatic embryos

of orchardgrass mimicking their in planta counterparts

developed from mesophyll cells if the first division was

periclinal, whereas a random or anticlinal first division

resulted in an embryogenic cell mass without any polarity.

Recently, a culture system was developed for rape seed,

where even microspore-derived structures exactly repro-

duced the pattern of zygotic embryogenesis following mild

heat shock pretreatment instead of the usual prolonged heat

shock treatment (Supena et al. 2008). In these cases, the

appropriate polarity was established de novo in the

embryogenic cell.

In the majority of embryogenic cultures, however, the

polarity of the embryos is only established during the

globular stage (somatic embryogenesis: Fernandez et al.

1999; Fransz and Schel 1991, 1994; Emons and Kieft 1991;

Kärkonen 2000; Kurczynska et al. 2007; Taylor and Vasil

1996; androgenesis: Bonet and Olmedilla 2000; Indrianto

et al. 2001; Hause et al. 1994). This developmental pattern

bears a close resemblance to that of the isolated wheat

zygote protoplasts. In the present study, up to the proem-

bryo stage, the only features common to wheat zygotic

structures developing in vitro and their in planta counter-

parts were the organelle-rich meristematic cells (Fig. 4),

and polarity was first detected as a gradient in the starch

accumulation (Fig. 4b).

Embryo axis formation in vitro with appropriate

meristem integrity

Following the establishment of polarity, the axis of the in

vitro embryo was first clearly distinguishable at 10 DAP

(Fig. 5a). The fact that these embryos had basically the

same morphology as their in planta counterparts at 6 DAP

proved that, although they developed at a slower rate, the

biochemical gradients leading to differentiation were able

to function properly in the present culture system.

By 20 DAP, the embryos were ready for transfer to

regeneration medium. All the embryonic organs had dif-

ferentiated by this time, but they were less well developed

than in in vivo embryos of the same size at 14 DAP

(Fig. 5b, c). Moreover, twin embryos and distorted ones

with multiple organs also developed in the cultures, as

reported by Kumlehn et al. (1998). The tendency towards

delayed regeneration via organogenesis or precocious

germination, abnormal embryo maturation and/or the

distortion of the in vitro embryos was also reported for

many other in vitro systems developed to support somatic

(Felföldi and Purnhauser 1992; Emons and de Does 1993;

Taylor and Vasil 1996; Shayakhmetov and Shakirova

1996; Tahir and Stasolla 2006) or zygotic embryogenesis

(Leduc et al. 1996; Kumlehn et al. 1998, 1999; Kranz and

Kumlehn 1999; Uchiumi et al. 2007b), some of them very

efficient.

The most important factor in plant regeneration ability is

the maintenance of the integrity of the meristems, espe-

cially the SAM (Taylor and Vasil 1996; Nickle and Yeung

1993; Yeung and Stasolla 2000; Tahir and Stasolla 2006);

however, meristem cells tend to differentiate into paren-

chymous vacuolated cells in many culture systems and this

deterioration of SAM severely reduces the conversion of

the embryos into plants (Tahir and Stasolla 2006). Recently

the integrity of the SAM and thus the plant regeneration

frequency were successfully improved by the appropriate

optimisation of cultures using ABA (Emons et al. 1993) or

via the ectopic influence of the redox potential (Belmonte

et al. 2006; Belmonte and Stasolla 2007). Because of its

relevance, the organisation of the meristems was also

compared in wheat embryos in vitro and in vivo (Fig. 6). In

the in vitro embryos, the presence of small isodiametric,

cytoplasm-rich cells with large nuclei and mitotic forms,

and the lack of intercellular spaces were evidence of the

well-preserved integrity of both the shoot and root apical

meristem. The intense metabolism of the meristems

(Raghavan and Olmedilla 1989) was confirmed in the

present study by the lack of significant reserve material

deposition either in vitro or in vivo. However, the relative

disorganisation of the cells and the moderate extent of

vacuolisation were signs of slight meristematic disfunction

in vitro.

Since all the embryos were converted into vigorous

plants in the present culture system, none of the morpho-

logical and cytological aberrations observed proved to have

any grave consequences. Presumably, these abnormalities

during the embryo maturation phase could be explained by

differences between the in vitro and in planta environment.

Abundant starch and protein accumulation

by the scutellum in vitro

Intense starch and protein accumulation was found in the

scutellum (Fig. 7b), which was probably the consequence

of the highly metabolisable sugar (glucose) concentration

in the medium. As the starch accumulation could be low-

ered by reducing the amount of metabolisable sugars in the

culture medium in different Brassica species, leading to an

improvement in embryo quality (Ferrie and Keller 2007;

Supena et al. 2008), similar culture parameters should be

tested in wheat before drawing conclusions on whether the
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appearance of tissues resembling the starchy wheat endo-

sperm can be attributed to the scutellum taking over the

role of the endosperm, or simply the consequence of the

high glucose concentration. Nevertheless, it should be

noted that significant starch deposition was detected in a

polar pattern both in wheat somatic embryos (Fernandez

et al. 1999) and in the scutellum of bamboo somatic

embryos (Godbole et al. 2004). Moreover, the high amy-

lase accumulation and activity detected in the bamboo

scutellum is characteristic of the aleurone layer of the

endosperm in planta (Godbole et al. 2004). The authors

speculated that because the endosperm is lacking in

somatic embryos, its role was taken over by the scutellum.

Besides the tissue resembling starchy endosperm, vacuo-

lated cells were also observed both in the present and in

other embryogenic cultures (Emons and Kieft 1991; Taylor

and Vasil 1996).

Summary

The present study provides the first histological charac-

terisation of zygotic embryos developing entirely in vitro.

The distinctions observed between the in vitro and in planta

development of wheat zygotic embryos were probably due

to differences in their initial polarity as well as in the in

vitro and in planta environments. In order to further elu-

cidate the differences and similarities between in vitro and

in planta zygotic embryogenesis and to exactly mimic

zygotic embryogenesis in culture systems, the synthesis of

results from detailed analytical, physiological and molec-

ular biological studies will be required.
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Bäumlein H (2001) Parthenogenetic egg cells of wheat: cellular

and molecular studies. Sex Plant Reprod 14:239–243

Kurczynska EU, Gaj MD, Ujczak A, Mazur E (2007) Histological

analysis of direct somatic embryogenesis in Arabidopsis thaliana
(L.) Heynh. Planta 226:619–628

Le Q, Gutierrez-Marcos JF, Costa LM, Meyer S, Dickinson HG, Lörz

H, Kranz E, Scholten S (2005) Construction and screening of

subtracted cDNA libraries from limited populations of plant

cells: a comparative analysis of gene expression between maize

egg cells and central cells. Plant J 44:167–178

Leduc N, Matthys-Rochon E, Rougier M, Mogensen L, Holm PB,

Magnard JL, Dumas C (1996) Isolated maize zygotes mimic in

vivo embryonic development and express microinjected genes

when cultured in vitro. Dev Biol 177:190–203

Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic

switch: an example of plant embryogenesis from the male

gametophyte perspective. J Exp Bot 56:1711–1726

McManus JCF (1948) Histological and histochemical uses of periodic

acid. Stain Technol 23:99–108

Naumova TN, Matzk F (1998) Differences in the initiation of the

zygotic and parthenogenetic pathway in the Salmon lines of

wheat: ultrastructural studies. Sex Plant Reprod 11:121–130

Nawy T, Lukowitz W, Bayer M (2008) Talk global, act local—

patterning the Arabidopsis embryo. Curr Opin Plant Biol 11:28–

33

Nickle TC, Yeung EC (1993) Failure to establish a functional shoot

meristem may be a cause of conversion failure in somatic

embryos of Daucus carota (Apiaceae). Am J Bot 80:1284–1291

Ning J, Peng XB, Qu LH, Xin HP, Yan TT, Sun M (2006) Differential

gene expression in egg cells and zygotes suggests that the

transcriptome is restructed before the first zygotic division in

tobacco. FEBS Lett 580:1747–1752

Norstog K (1972) Early development of barley embryo fine structure.

Am J Bot 59:123–132

Okamoto T, Higuchi K, Shinkawa T, Isobe T, Lörz H, Koshiba T,

Kranz E (2004) Identification of major proteins in maize egg

cells. Plant Cell Physiol 45:1406–1412

Okamoto T, Kranz E (2005) In vitro fertilization—a tool to dissect

cell specification from a higher plant zygote. Curr Sci 89:1861–

1869

Okamoto T, Scholten S, Lörz H, Kranz E (2005) Identification of

genes that are up- or down-regulated in the apical or basal cell of

maize two-celled embryos and monitoring their expression

during zygote development by a cell manipulation- and PCR-

based approach. Plant Cell Physiol 46:332–338
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