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1. Physiological thymic senescence 

 
1.1. Disintegration of epithelial network, adipose involution (Figure 1) 
 

Senescence exhibits characteristic histological changes in both the human and mouse thymus. In young adult 
mice (at 1 month of age), histology reveals strict segregation of epithelial cell compartments by staining for 
medullary (EpCAM1++, Ly51-) and cortical (EpCAM1+, Ly51++) epithelial cellular subsets. Thymic morphology 
shows high level of integrity just preceding puberty/early adulthood. However, the highly organized structure 
disintegrates and becomes chaotic by the age of 1 year. By this age the strict cortico-medullary delineation 
becomes disintegrated, degenerative vacuoles appear surrounded by areas showing strong co-staining with both 
epithelial markers. Also significant cellular areas appear that lack staining with either epithelial markers, a 
pattern completely absent at the young adult age. Staining for extracellular matrix components of fibroblast 
origin (ER-TR7++) identifies mesenchymal elements. The staining pattern with ER-TR7 and EpCAM1 is strikingly 
different at the two ages examined. In young adult thymic tissue sections, a-EpCAM1 and a-ER-TR7- show little 
tendency for co-localization. In contrast, by already by the age of 9 months a-EpCAM1 and ER-TR7-staining 
show significant overlap within the thymic medulla.  The disorganization of thymic epithelial network is 
followed by the emergence of adipocytes. If thymic sections of senescent mice are co-stained with neutral lipid 
deposit-specific stains then histology shows the presence of large, inflated cells in which the cytoplasm is pushed 
to the periphery by red-staining neutral lipid deposits, a pattern characteristic of adipose cells.  

 
1.2. Gene expression changes in the thymic epithelium during ageing (Figure 2) 
 

To investigate the underlying molecular events of thymic epithelial senescence, the gene expression changes 
may be investigated in TECs purified from 1 month and 1 year old mice. The expression of both Wnt4 and 
FoxN1 decreases in thymic epithelial cells. Highly decreased level (or total absence in some cases) of FoxN1 
could be the consequence of strong Wnt4 down-regulation by the age of 1 year, indicating that TECs can down-
regulate FoxN1 expression while maintaining that of epithelial cell surface markers like EpCAM1. At the same 

time, mRNA levels of pre-adipocyte differentiation markers PPAR and ADRP rise with age. This finding is in 
harmony with histological data demonstrating the emergence of adipocytes in the thymic lobes of senescent 
mice. The expression of lamin1, a key component of the nuclear lamina remains unaffected during senescence in 
thymic epithelial cells; whereas, the expression of LAP2α increases significantly. This degree of dissociation 
between lamin1 and LAP2α expression is of note and suggests functional differences despite conventionally 
anticipated association of lamin1 and LAP2 molecular family members. LAP2α up-regulation associated with 
age-related adipose involution is, however, in perfect agreement with other literature data suggesting the pre-
adipocyte differentiation-promoting effect of LAP2α in fibroblasts and the same is suggested by our reports 
performed, however, with epithelial cells.  
According to literature, EMT is associated with differential expression of E- (decrease) and N-cadherin 
(increase). TECs were tested for these markers to investigate whether the first step towards pre-adipocyte 
differentiation is the EMT of epithelial cells. In purified TECs while E-cadherin mRNA levels significantly 
decreased, N-cadherin gene expression showed a slight increase during ageing, indicating that EMT might be 
the initial step in epithelial cell transition and trans-differentiation. 

 

1.3. Studies of LAP2α and Wnt4 effects on TEC 
 

The hypothesis that both LAP2α and Wnt4 play important though opposite roles in thymic senescence may be 
addressed using LAP2α over-expressing or Wnt4-secreting transgenic TEP1 (mouse primary-derived thymic 
epithelial) cell lines. The use of a primary-derived model cell line provides the advantage of absolute purity, the 
complete lack of other cell types that could potentially affect the gene expression profile of epithelial cells. Using 
such cells quantitative RT-PCR analysis revealed that LAP2α over-expression triggers an immense surge of 
PPARγ expression. Such an increase in mRNA level suggests that this is not a plain quantitative, but rather a 
qualitative change. ADRP a direct target gene of PPARγ also becomes up-regulated although to a lesser extent. 
On the other hand in Wnt4-secreting cells the mRNA level of both PPARγ and ADRP decreased.  
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2. Steroid-induced thymic senescence 

 
2.1. Steroid-induced accelerated thymic senescence model (Figure 3) 
 

A commonly held view is that the thymus involutes at puberty, and this model is based primarily on studies 
showing that growth hormone (GH) and sex steroids can affect cell production in the thymus and that their 
concentrations decrease with age. As steroids are frequently applied medications, investigations were extended 
to identify similarities in induced and physiological senescence and potential mechanisms that might be able to 
reduce adipose involution of the thymus. 
Similar to physiological senescence, the level of FoxN1 transcription factor and its regulator Wnt4 decreased in 
TECs within 24 hours following a single dose DX injection and remained low for over 1 week.  
However, in clinical treatments GC analogues are widely used for extended periods of time, rather than single 
shots. To mimic this pattern of clinical application, mice were injected with DX repeatedly for a time course of 1 
month. Both Wnt4 and FoxN1 levels were drastically down-regulated measured, while the adipocyte 

differentiation factor ADRP, down-stream target of PPARγ and LAP2 was significantly increased. The results 
indicate that adipocyte-type trans-differentiation is completed at the molecular level over a much shorter time 
period following exogenous steroid-induced senescence compared to physiological rate senescence. 

 
2.2. Wnt4 inhibits steroid-induced adipose trans-differentiation 
 

To test whether Wnt4 can prevent adipocyte type trans-differentiation, Wnt4 over-expressing TEP1 cell line was 
exposed to DX for a week. While in the control cell line DX exposure induced up-regulation of adipose trans-
differentiation markers, within the Wnt4 over-expressing cell line, none of the adipose trans-differentiation 
markers were up-regulated indicating that Wnt4 alone can efficiently protect TECs against exogenous steroid-
induced adipose trans-differentiation.  

 
 

3.  Signal transduction 
 
3.1. Signal transduction mechanisms involved in thymic epithelial senescence (Figure 4) 
 

While individual molecules, such as Wnt4 or LAP2 can serve as therapeutic targets to modify the ageing 
process, identification of complex interactions amongst signalling networks can provide further details. 
Investigation of Wnt signal transduction in the thymic epithelium has revealed that signalling pathways are 
activated or inhibited in an orderly fashion. Initially, both Wnt4 receptors, Fz-4 and Fz-6 are up-regulated at 

young adult age. However, signals from Fz-4 and Fz-6 are different. While signals from Fz-4 initiate -catenin 

dependent gene transcription, Fz-6 signals lead to suppression of -catenin dependent signalling via increased 

activities of TGF-Activated Kinase (TAK) and Nemo-Like-Kinase (NLK). Fz-associated signals also require 

PKC to transmit Wnt signals. PKC associates with Fz-6 aiding suppression of -catenin dependent signalling. 

Additional to Fz-6 signalling, connective tissue growth factor (CTGF, a -catenin target gene) can also feedback 

on -catenin dependent signal transduction. CTGF can interact with Fz-8 as well as LRP6, an important co-

receptor of Wnt signalling and can trigger activation of GSK3. This latter leads to accelerated proteasomal 

degradation of -catenin and hence suppression of Wnt signals. Multiple signalling mechanisms together lead to 
the suppression of Wnt signalling.  

 
 

4.  Conclusion (Figure 5) 
 
4.1. Physiological thymic epithelial senescence 
 

There are characteristic changes in the gene expression profile of purified thymic epithelial cells during thymic 

epithelial senescence. Of note, Wnt4 level decreases, while LAP2 level increases. Also, the expression of the 
transcription factor FoxN1 required for maintaining thymic epithelial identity diminishes with age. On the other 

hand, adipose differentiation is confirmed at the molecular level by the increased expression of PPAR and 
ADRP. This process is accompanied by shift from E-cadherin to N-cadherin, typical for EMT (epithelial to 
mesenchymal transition). These pioneer experiments confirmed in both model cell line and purified primary 

cells rendered transgenic for either Wnt4 or LAP2show their opposing effects on adipose trans-differentiation 
of thymic epithelial cells via EMT. This has lead to the establishment of a novel, confirmed theory for the source 
of adipose cells replacing functional thymic epithelial network during senescence. Apparently these cells do not 
differentiate from invading or resident mesenchymal cells, but rather trans-differentiate (via EMT) from thymic 
epithelial cells. 
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4.2. Accelerated-rate, induced model of thymic epithelial senescence 
 

Glucocorticoids are immunosuppressive drugs often used for treatment of autoimmune diseases and 
haematological malignancies. Although glucocorticoids can induce apoptotic cell death directly in developing 
thymocytes, how exogenous glucocorticoids affect the thymic epithelial network that provides the 
microenvironment for T cell development has been poorly characterised. The effect of DX (dexamethasone) on 
thymic epithelial cells has been tested both in vitro (model cell line) and in vivo (mouse model). In vivo, following 
single treatment with pharmacologically relevant dose of DX reversible changes in gene expression profile 
identical to physiological thymic epithelial senescence have been recorded, but occurring at a highly accelerated 

pace. Specifically, the expression of Wnt4 and FoxN1 decreased, while LAP2 and PPAR levels increased. 
Moreover, sustained DX treatment has induced the elevation of ADRP expression as well. The same changes of 
gene expression profile have been observed using the model TEP1 (thymic epithelial) cell line, however, in vitro 
studies have shown the molecular level rescue of thymic epithelial cells from adipose trans-differentiation due to 
the over-expression of Wnt4. These studies reveal the currently neglected effect of steroid therapy on thymic 
epithelial cells in patients receiving sustained or even single dose treatment and highlights novel potential side-
effects appearing in the form of accelerated thymic senescence. 

 
 

5.  Future plans 
 

5.1. Identification of small molecule inhibitors of LAP2 
 
We plan to utilize a cellular micro-environment array system (provided by collaborative partner Karl Willert 
PhD) to test a small-molecule library. The library (offered by service-based Vichem Ltd, 
http://www.vichem.hu/) contains 17,000 compounds divided into 300 groups. These 300 compound mixtures 

will be tested for the changes in PPAR target gene expression in the cellular micro-environment array system. 
The 17,000 compounds have been grouped with overlaps in a manner so that a single run of 300 groups allows 
for the identification of individual candidate molecules. The runs will be performed in triplicates to allow for 
statistical analysis. Once individual molecules have been identified (with the help of Vichem Ltd that holds the 
key for compound allocation pattern among the 300 groups) Vichem will synthesize sufficient amounts of the 
select candidate molecules for their individual tests. This will be performed by re-running the cellular micro-
environment arrays using the selected individual molecules. We expect to have a handful of novel, patentable 
small compounds capable to halt thymic epithelial trans-differentiation by preserving epithelial identity. Our 
research group has submitted an OTKA K proposal (No. 104500) to finance the small molecule inhibitor tests. 
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7.  Figures 
 

 
Figure 1A section of 1 month, figure 1B section of 1 year old BALB/c mouse thymus. Staining pattern: anti-
EpCAM1-FITC (green), anti-Ly51-PE (red), DAPI (blue). ‘M’: medullary, ‘C’: cortical epithelial compartments. *: 
degenerative vacuoles, **: loss of epithelial staining. Figure 1C section of 2 month, 1D section of 9 month old 
thymus. Staining pattern: anti-EpCAM1-FITC, ER-TR7-PE, DAPI (blue). EpCAM1++ thymic medulla is outlined. 
 
 
 
 

 
Figures 2A–D demonstrate gene expression changes of MACS purified thymic epithelial cells measured by Q-
PCR. Please note that the Y-axis scale is logarithmic. Error bars show ±1 SD. 
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Figure 3. (A) Q-PCR from purified control and DX-treated 
thymic epithelial cells, control (white), 24 h (black), 168 h 
(gray). (B, left) Thymic sections of phosphate-buffered 
saline (PBS)- and DX-treated mice (24 h) were stained 
with a-EpCAM1-FITC (green) and a-Ly51-PE (red). Wnt-4 
expression of control and DXtreated thymi (B, right). 
Staining pattern: Wnt-4-Northern Lights 557 (red) and 
EpCAM1-FITC (green). (C) Gene expression in TECs 168 h 
after single DX injection. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. At young age, Wnt4 levels are high. During the ageing process, Wnt4 levels decrease, while receptor 
expression increases with proportionally higher Fz-6. The -catenin dependent Fz-4 signals lead to increased 

expression of CTGF. The CTGF receptor Fz8 is also up-regulated leading to enhanced activation of GSK3.  
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Figure 5. Dedifferentiation of thymic epithelial cells triggers EMT (epithelial to mesenchymal transition) then the 
resulting fibroblast cells undergo the conventional route of differentiation program towards adipocyte-lineage. 
The process occurs during both physiological and steroid—induced thymic adipose involution.  
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