
OTKA REPORT

April 19, 2013

1. Markov-Bernstein type inequalities

Let Lp(K), 1 ≤ p ≤ ∞ be the space of real functions on the set K ⊂ Rd endowed with the usual
Lp norm

||f ||p :=
(∫

K

|f |pdµ(x)
)1/p

.

Given a subspace U ⊂ Lp(K) of differentiable functions the Markov problem consists in determining
the norm of the differentiation operator on U , that is finding the quantity

Mp(U,K) := sup
u∈U

||Du||p
||u||p

, (1)

where Du := |∂u| and ∂u stands for the gradient vector of u. The study of the Markov problem
in different function spaces has a long and fascinating history, Markov type inequalities are widely
applied in various areas of analysis. In some instances the exact value of M(U,K) can been found
together with the corresponding extremal polynomials, in other cases only the asymptotic depen-
dence on the dimension of U can be given. In particular it is well known that when p = ∞, K ⊂ Rd

is a convex body and M = Pn is the space of polynomials of degree at most n then M(Pn, K) is of
order n2.

A. Markov type inequalities for multivariate polynomials in Lp norm, 1 < p < ∞. [1] We
obtained new Markov type results in case when 1 < p < ∞. Namely, when K ⊂ Rd is a convex
body we proved that

Mp(Pn, K) ≤ cd
n2

rK

where rK is the radius of the largest ball imbedded intoK and cd is some positive constant depending
only on the dimension. If K ⊂ Rd is a star like domain with Cα, 0 < α ≤ 1 boundary then we
showed that Mp(Pn, K) = O(n1+2/α).

B. Exact Markov type inequalities for multivariate polynomials in L2 norm. [3] In the case of
L2 norm our goal was to obtain exact value of the quantity M2(Pn, K) for certain domains. This
goal was achieved for the Hermite weights when K = Rd and Hermite-Laguerre mixed weights for
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hyper quadrants in Rd. In particular, we proved that when

K = Kr = {x ∈ Rd : xk ≥ 0, 1 ≤ k ≤ r}, 1 ≤ r ≤ d, dµ = exp

(
−
∑

1≤k≤r

xk −
∑

r+1≤k≤d

x2
k

)
dx

then M2(Pn, Kr) = 1
2 sin π

4n+2
with the extremal polynomial being a certain linear combination of

Turan polynomials.
C. Exact Markov-Bernstein type inequalities for univariate k monotone polynomials. [2] We also

found exact value of Mp(U,K) for the case d = 1, p = 1 or ∞ and U := P k
n being the space of k

monotone polynomials of degree n (polynomials with k nonnegative derivatives on K = [−1, 1]).
For instance, it is shown that M∞(P k

n , K) = k−1
1−x1

, where x1 is the smallest root of a certain Jacobi
polynomial.

2. Stability of the metric projection operator

Let X be a normed linear space and consider a subspace M of X. For a given f ∈ X denote by
PMf the set of best approximations to f from M , i.e.,

PMf := {m∗ : m∗ ∈ M, ∥f −m∗∥ = inf
m∈M

∥f −m∥}.

PM is said to be the metric projection operator onto M . We shall assume that PMf is non-
empty, and also that PMf is single-valued, i.e., we have the uniqueness of the best approximation.
A natural question that arises with respect to PM is its stability. The stability of PMf with respect
to small perturbations of f , that is continuity properties of the metric projection, have been widely
investigated in the literature. In a joint paper with Allan Pinkus ([4]) we studied a new problem:
How stable is the metric projection PM relative to small perturbations of the closed linear subspace
M? In order to address this question we need a measure of distance between subspaces:

d(M,N) := max

{
sup

m∈M,∥m∥=1

inf
n∈N

∥m− n∥, sup
n∈N,∥n∥=1

inf
m∈M

∥n−m∥

}
.

This measure (introduced by Krein, Krasnolselski in the Hilbert space setting) is symmetric in M
and N , equals 0 if and only if M = N , and is a number between 0 and 1. When X = H is Hilbert
space then a proof of the fact that ∥PM − PN∥ = d(M,N) was given by Akhiezer and Glazman.
Our goal was to estimate ∥PMf − PNf∥ in terms of d(M,N). Typically such an estimate is of
order d(M,N)β with some β ≤ 1 which, in general, depends on the geometry of the space X. One
approach to this problem is based on the theory of strong uniqueness. Strong uniqueness of best
approximations has been extensively investigated over the past 40 years, see the recent survey Kroó,
Pinkus [5]: Strong Uniqueness, Surveys in Approximation Theory , 2010. The metric projection
PM is said to be strongly unique of order α > 0 at M if for each f ∈ X and every m ∈ M we have

γM(f)∥PMf −m∥α ≤ ∥f −m∥α − ∥f − PMf∥α (∗)

with some constant γM(f) > 0 depending only on f and M .
It turns out that we can estimate the stability of the metric projection under the assumption of

strong uniqueness. Let M be a closed linear subspace of the normed linear space X such that the
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metric projection PM satisfies the strong uniqueness condition (*). Then for any f ∈ X and any
closed linear subspace N ⊂ X

∥PMf − PNf∥ ≤ 10

γM(f)1/α
d(M,N)1/α.

Thus strong uniqueness of order α implies stability of order 1
α
.

This yields sharp order one stability of metric projection in uniform norm.
Let M and N be closed linear subspaces of Lp, 1 < p < ∞. Then from strong uniqueness results

we obtain stability of orders 1/p and 1/2, when 2 < p < ∞ and 1 < p < 2, respectively. On the
other hand its is known that in a Hilbert Space we have ∥PM − PN∥ = d(M,N), that is stability is
of order 1 holds.

With a different approach under some additional conditions a sharper stability results for the
metric projection in Lp, p > 2, can be exhibited. Let µ be a positive measure on a set K and
Lp(K,µ) is the standard Lp-space. For a subspace M of Lp(K,µ) we say that M satisfies the Zµ

property if µ{x : m(x) = 0} = 0 for every m ∈ M , m ̸= 0.
Theorem. ([4]) Consider the space Lp(K,µ), p > 2, where µ is a non-atomic measure. Let M be

an r-dimensional subspace of Lp(K,µ) satisfying the Zµ property. Then for every f ∈ Lp(K,µ), p >
2, there exists a constant cM,f depending on M and f such that for any r-dimensional subspace N of
Lp(K,µ), p > 2, we have ∥PMf −PNf∥p ≤ cM,fd(M,N), i.e., order 1 stability holds. Furthermore,
the Zµ property of M is necessary, in general for the above to hold.

3. Approximation by homogeneous and convex multivariate polynomials

A. Weierstrass type theorems on convex bodies. Let us consider the problem of density of
homogeneous polynomials on 0-symmetric star like domains K ⊂ Rd. Thus consider

Hd
n := {

∑
|k|=n

akx
k : ak ∈ R}, Hd := ∪Hd

n.

Since uniform limits of bounded homogeneous polynomials must vanish in the interior of K the
approximation problem becomes reduced to the boundary of K, i.e., the density problem for homo-
geneous polynomials should be considered only on ∂K. Since in general f is neither even nor odd,
clearly at least two homogeneous polynomials are need for approximating f . The following
conjecture was proposed by A. Kroó about 10 years ago:

For any 0-symmetric convex body K ⊂ Rd the set Hd + Hd is dense in C(∂K), that is any
function continuous on the boundary of K can be uniformly approximated there by a sum of 2
homogeneous polynomials.

The density of Hd +Hd in C(∂K) has been verified in 2 cases:
(i) When d=2 and K is any 0-symmetric convex body in R2(Benko-Kroó, Varju)
(ii) For any 0-symmetric convex polytope in Rd, d > 2 (Varju)
In a recent joint paper [6] A. Kroó and J. Szabados verified that the above conjecture holds

for every regular 0-symmetric convex body K ⊂ Rd, that is in case when K possesses a unique
supporting hyper plane at every point of its boundary.

Theorem ([6]). If the 0-symmetric convex body K ⊂ Rd possesses a unique supporting hyper
plane at every point of its boundary then Hd +Hd is dense in C(∂K).
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B. Approximation of convex bodies by level surfaces of convex polynomials. Given a compact set
K ⊂ Rd we consider the problem of approximating the boundary of K by level surfaces of algebraic
polynomials defined by L(p) := {x ∈ Rd : p(x) = 1}, p ∈ P d

n . The measure of approximation is
Hausdorff distance between sets denoted by ρ(A,B). This problem is meaningful only when some
restrictions are imposed on the approximating polynomials, otherwise Weierstrass theorem can be
immediately applied.

When K is a convex body a natural restriction is convexity of approximating polynomials.
Denote by CP d

n the set of all polynomials of degree at most n which are convex on Rd.
Problem. For a convex body K ⊂ Rd estimate the quantity

∆c
n(K) := inf{ρ(∂K,L(p)) : p ∈ CP d

n}.

This problem goes back to Minkowski who showed that any convex body can be approximated
arbitrarily well by level surfaces of convex analytic functions. (Thus analytic convex functions
are used instead of CP d

n above.) Hammer verified that for any convex body K ⊂ Rd : ∆c
n(K) →

0, n → ∞, that is any convex body can be approximated by convex algebraic level surfaces.
What can be said about the rate of ∆c

n(K)? Consider the Minkowski functional defined by
|x|K := inf{α > 0 : x/α ∈ K} and let us introduce its modulus of smoothness

δK(t) := sup
x∈∂K,|h|l2≤1

{|x+ h|K + |x− h|K − 2}.

This modulus characterizes the smoothness of the boundary of the convex body K. It is easy
to show that δK(t) = O(t) for any convex body. In addition, if K is regular (that is it possesses a
unique supporting hyperplane at every point on its boundary) then |x|K is differentiable and thus
δK(t) = o(t). We obtained the next universal upper bound for the rate of approximation of convex
bodies by convex algebraic level surfaces.

Theorem. (A.Kroó [7]) For any convex body K ⊂ Rd of diameter ≤ 1

∆c
n(K) ≤ cd8δK

(
1

n

)
, n ∈ N,

with an absolute constant c > 0.
This implies several important corollaries.
A. For any convex body K ⊂ Rd

∆c
n(K) ≤ cd6

n
.

B. For any regular convex body K ⊂ Rd

∆c
n(K) = o

(
1

n

)
.

C. For any C2 convex body K ⊂ Rd ( |x|K is twice continuously differentiable)

∆c
n(K) ≤ c

n2
.
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4. Optimal polynomial meshes

Consider the space P d
n of real algebraic polynomials of d variables and degree at most n. Let

K ⊂ Rd be any compact set. Denote by ||p||K := supx∈K |p(x)| the usual supremum norm on K.
Moreover card(Y ) stands for the cardinality of a finite set Y .

A family of sets Y = {Yn ⊂ K,n ∈ N} is called an admissible mesh in K if there exist constants
c1, c2 depending only on K such that

||p||K ≤ c1||p||Yn , p ∈ P d
n , n ∈ N

where the cardinality of Yn grows at most polynomially, i.e. card(Yn) ≤ c2n
m, n ∈ N with some

fixed m ∈ N depending only on K.
This notion of admissible meshes is related to norming sets widely used in the literature for

the study of scattered data interpolation and cubature formulas on spheres. They are also applied
for least squares approximation and construction of discrete extremal sets of Fekete and Leja type.

Since dimP d
n ∼ nd we clearly must have m ≥ d in the above definition, provided that no

polynomial vanishes on K. Of course, in optimal case we aim for a mesh with asymptotically
minimal number of points in it, that is we would like to have m = d. This leads to the following
definition.

Definition. We shall say that an admissible mesh Y = {Yn ⊂ K,n ∈ N} in K ⊂ Rd is optimal
if card(Yn) ≤ cnd, n ∈ N with some c > 0 depending only on K.

The basic question in this respect consists in describing those sets K ⊂ Rd which possess optimal
or near optimal admissible meshes, in the sense that the cardinality of sets Yn in the mesh Y does
not grow too fast.

In the paper [8] we gave a systematic study of this question by considering two different categories
of domains:

A) sets with certain analytic properties, i.e., graph domains bounded by graphs of polynomial,
differentiable or analytic functions;

B) sets satisfying certain geometric properties, that is convex bodies, polytopes or star like do-
mains.

In particular, it was shown that graph domains bounded by polynomial graphs, convex polytopes
and star like sets with C2 boundary possess optimal admissible meshes. In addition, it was
verified that graph domains in Rd with piecewise analytic boundary and convex sets in R2 possess
almost optimal admissible meshes in the sense that the cardinality of admissible meshes differs from
the optimal only by a log n factor.

5. Christoffel Functions and universality limits for multivariate orthogonal polynomials

Let pn denote the orthonormal polynomials of degree n with respect to a positive measure µ.
Then the n-th reproducing kernel and Christofel function are defined by

Kn(x, t) :=
n−1∑
j=0

pj(x)pj(t), λn(µ, x) :=
1

Kn(x, x)
,

respectively. Asymptotics for Christoffel Functions plays a crucial role in the analysis of orthogonal
polynomials and weighted approximation. One application of the asymptotics for Christoffel Func-
tions is the universality limits arising in the analysis of random matrices. Asymptotics for Christoffel
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Functions and universality limits have been widely investigated for univariate orthogonal polynomi-
als. In the multivariate setting asymptotics for Christoffel Functions has been found only for very
specific weights. In the recent papers [9] and [10] A. Kroó and D. Lubinsky gave a comprehensive
study of the asymptotics for Christoffel Functions for multivariate orthogonal polynomials for the
rather general class of regular weights. These results were applied to the universality type limits
on the ball and simplex.

6. Construction of approximating linear operators

To approximate functions on the real line by entire functions interpolating at equidistant nodes,
using Freud-type weights, we constructed two types of operators [11]. The advantages of the first
operator are that it is an exponential-type operator, interpolating at finitely many nodes; it uses
only finitely many function values, while it is an infinite sum, and it allows to approximate functions
growing exponentially at infinity. The latter is a new phenomenon compared to approximation of
bounded and uniformly continuous functions by sinc-type functions. (The need for approximation
by such sinc-type functions has been explored in numerous works of F. Stenger.) The second
operator is an entire function which is not of exponential type, interpolating at infinitely many
equidistant points. It allows the weighted approximation of a wider class of functions than the first
operator (namely it allows weights for which there is no density of polynomials) and the rate of
convergence is faster than in the first case.

Bernstein polynomials are a useful tool of approximating functions. We extended the applica-
bility of this operator to a certain class of locally continuous functions [12]. To do so, we considered
the Pollaczek weight

w(x) := exp

(
− 1√

x(1− x)

)
, 0 < x < 1,

which is rapidly decaying at the endpoints of the interval considered. In order to establish conver-
gence theorems and error estimates, we needed to introduce corresponding moduli of smoothness
and K-functionals. Because of the unusual nature of this weight, we had to overcome a number of
technical difficulties, but the equivalence of the moduli and K-functionals is a benefit interesting in
itself.

7. Elliptic functions

Let C, R, Z denote the set of complex numbers, real numbers and integers, respectively. Let
0 ̸= ω1, ω2 ∈ C, ω1/ω2 ∈ C \R, and define Ω := {mω1 + nω2 : m,n ∈ Z}, an infinite set of lattice
points in C. We say that z1 ≡ z2 (modΩ) if and only if z1 − z2 ∈ Ω. Further let Q := {uω1 + vω2 :
0 ≤ u, v < 1}, a half-open parallelogram with vertices 0, ω1, ω2, ω1 + ω2. Let E(Ω) be the set of
elliptic, or doubly periodic functions with respect to Ω: i.e. f ∈ E(Ω) iff f is meromorphic in C
and

f(z + ωj) ≡ f(z) for all z ∈ C and j = 1, 2.

These functions are periodic in two directions, thus they can be considered as analogues of real
trigonometric polynomials. The existence of a non-constant f ∈ E(Ω) is not trivial. The name

6



elliptic comes from the fact that such functions were discovered as inverse functions of elliptic
integrals. The above definition is due to Weierstrass, and it is more convenient and simpler than
the definition given via the so-called theta-functions of Jacobi. We listed some basic facts on elliptic
functions, reconstructed them from given poles and zeros, and considered Lagrange, Hermite and
Hermite–Fejér type interpolation problems [13].

8. Weighted Kantorovich operator

Since the Bernstein polynomials are not defined for f ∈ Lp([0, 1]), 1 ≤ p < ∞, the Kantorovich
polynomials Kn, given by

Kn(f ;x) =
n∑

k=0

pn,k(x)(n+ 1)

∫
Ik

f(u) du, (1)

Ik :=

[
k

n+ 1
,
k + 1

n+ 1

]
, pn,k(x) =

(
n

k

)
xk(1− x)n−k, x ∈ [0, 1],

were introduced and studied. The case of weighted approximation by Kn operator with the Jacobi
weight

w(x) = wα,β(x) = xα(1− x)β, α, β > −1,

was also investigated by Z. Ditzian and V. Totik. Some equivalence results were given under the
restrictions

−1

p
< α, β < 1− 1

p
(2)

on the weight parameters. Here the left side inequalities for the weight parameters are necessary.
In order to eliminate the right hand side inequalities, we constructed a weighted generalization of
the classic Kantorovich operator as

B∗
n(f ;x) =

n∑
k=0

∫
Ik
(wf)(t) dt∫
Ik
w(t) dt

pn,k(x), x ∈ [0, 1], (3)

where

−1

p
< α, β, 1 ≤ p ≤ ∞

and

f ∈ Lp
w :=

{
{f |wf ∈ Lp(0, 1)} if 1 ≤ p < ∞,

{f | f ∈ C(0, 1), limx(1−x)→0(wf)(x) = 0} if p = ∞.

We gave convergence, direct and converse approximation results involving the weighted modulus of
smoothness of second order, as well as a Voronovskaya-type asymptotic relation [15]. The saturation
problem was solved as well [16].
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9. Revisiting a classic theorem of Erdős and Grünwald

In 1938, Erdős and Grünwald investigated the behavior of the function

Mn(x) := max
1≤k≤n

ℓk,n(x), |x| ≤ 1

where ℓk,n(x) are the fundamental functions of Lagrange interpolation based on the Chebyshev
nodes. Their result implies that

lim
n→∞

max
|x|≤1

Mn(x) =
4

π
.

Once this value is found, it is natural to ask for the behavior of the minimum of this function.
In this connection we proved [17] that

lim
n→∞

min
|x|≤1

Mn(x) =
2

π
cos 2−

√
3

2
π = 0.580 . . . .

10. Laguerre–Pollaczek weights on the semiaxis

We considered the weight u(x) = xγex
−α−xβ

with x ∈ (0,+∞), α > 0, β > 1 and γ ≥ 0, and
prove Remez-, Bernstein–Markoff-, Schur- and Nikolskii-type inequalities for algebraic polynomials
[18]. The interest in these problems is that they merge the difficultiess arising in connection with
Laguerre type and Pollaczek type weights.
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