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Far from equilibrium: Patterns, fluctuations, and extreme statistics
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We studied two topics within the general framework of statistical physics: i) the control of pre-
cipitation patterns and ii) the extreme statistics of correlated systems. The first part aimed at
understanding the emergence of spatial patterns built by reaction-diffusion fronts and giving answer
to the question: How do external fields and fluctuations influence the formation of precipitation
patterns? We have shown, both experimentally and theoretically, that electric fields and currents
are effective tools in the control and design of patterns. Furthermore, we have also demonstrated
that the presence of noise is essential in the formation of such structures as helicoids and helices.
In connection with extreme statistics, we focused on answering the question: How do correlations
modify the extreme event statistics?. Building upon our previous work on correlated signals with
1/fα power spectrum, we developed a picture gallery of the distribution of the extreme values of
the signal for the experimentally relevant case of measuring the maximum with respect to the initial
value. It was also shown that the density of near extreme events is related to the extreme value
distribution, and this connection allowed us to develop a scaling theory of the order statistics of
1/fα signals.

CONTROL OF PRECIPITATION PATTERNS

Introduction

The emergence of spatial order has been a major line of
research in non-equilibrium statistical physics during the
last decades [1, 2], and the field has matured to the point
where one may try to address more practical problems.
We have been working along these lines for more than two
decades and, building on our previous results, we studied
now the following questions: How do external fields and
fluctuations influence the formation of precipitation pat-
terns?. The relevance of the question arises from recent
recognition that precipitation patterns built by reaction-
diffusion fronts may be used in the so called bottom-up
methods of building structures. Furthermore, this rather
inexpensive precipitation processes could be, in princi-
ple, used for engineering micro- and nano-scale patterns.
Accordingly, the goal of our project was to understand
how the reaction-diffusion fronts can be controlled and
how to turn this control into methods of designing and
realizing precipitation patterns.

Control by electric field and electric current

Reaction-diffusion systems yielding precipitation pat-
terns are well known [3]. It has been also been known that
the precipitation patterns can be influenced by appropri-
ately chosen geometry [4], boundary conditions [5], or
by a combined tuning of the initial and boundary condi-
tions [6–8]. Although these control methods are straight-
forward, they are unwieldy, and more flexible approaches
are clearly needed. We introduced a novel method based

on the use of pre-designed electric fields and currents for
regulating the dynamics of the reaction zones in the sys-
tem.

Our idea of regulation stems from the observation that
precipitation patterns are often formed in the wake of
moving reaction fronts [1, 3]. Consequently, control over
the precipitation pattern can be realized through control-
ling the properties of the reaction front and, in particular,
by controlling the amount of reaction product emerging
at a given position and at a given time by employing
time-dependent electric fields and currents. The reason
for the effectiveness of the method is that the reactions
usually take place between ions whose flux can be con-
trolled by electric fields.

The actual realization of control was based on our ear-
lier studies [9] of the importance of the ionic nature of the
reagents and on the concurrent calculation of the spatial-
and temporal properties of the fronts in the presence of
external fields and currents [10, 11]. Combining these
results with our earlier theory [12, 13] of precipitation
patterns for the case of Liesegang phenomena [3], we ar-
rived at a theoretical framework which allowed us to de-
sign patterns by pre-calculating the time-dependence of
the field needed for the given pattern [14]. In particu-
lar, we showed how to make periodic the quasi-periodic
Liesegang patterns, or how to make precipitation bands
with a given sequence of distances between them.

The theory was put to test by following the theoretical
prescription and manipulating experimental Liesegang
patterns [14] as shown in Fig.1. In this case the
band pattern emerged from the reaction diffusion pro-
cess 2AgNO3 + K2Cr2O7 → Ag2Cr2O7 + 2KNO3, and
the precipitate bands (formed by Ag2Cr2O7) are the
dark bands in the picture. The pattern-forming process
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FIG. 1: Experimental precipitation patterns (the precipitates
are the dark bands). A quasi-periodic current was used with
decreasing characteristic period, respectively, as going down
the panels. The lowest panel illustrates the usual Liesegang
bands formed without the presence of the current.

took place in the gel columns with the inner electrolyte
(K2Cr2O7) initially homogeneously distributed in the
gel, while the outer electrolyte. AgNO3 was brought into
contact with the left end of the gel column at the start
of the experiment. As can be seen, the quasi-periodic
pattern of Liesegang bands have been replaced by a peri-
odic placement of the bands and the period of the band
sequence can be controlled by an appropriate design of
the properties of the current.

Once the technicalities of the design and realization
of the current was learned [14, 15], we could generate
an arbitrary sequence of band position as can be seen
in Fig.2 where close agreement between the theoretically
expected and the experimentally observed patterns can
be seen.

Problems with downscaling

At present, the control of patterns is realized at the
100µ scale and, clearly, these are only the first steps
towards controlling precipitation patterns at the micro-
scales. Bringing the scale well below the microns would
really open the doors to a wide range of industrial appli-
cations.

Since the width of the reaction zones is one of the lim-
iting factors in downsizing, it is clear that one should
understand how to control it. The studies of the width
for neutral reagents [16–18] suggest that the parameter
strongly affecting the width is the reaction rate constant.

FIG. 2: An example of designer pattern. The dark bands in
the upper panel (experiment) are the precipitate which corre-
spond to the high concentration (ch) in the spatial distribu-
tion of the reaction product c(x) in the theoretical calculation
(lower panel). The proposed protocol for generating the ”2-
3-2” structure yields patterns in accord with the experiment
and the theory.

It is, however, not a parameter we can adjust, thus other
means of control should be found. Since electric currents
turned out to be useful in manipulating patterns [14, 15],
we asked if the width could also be controlled by them.

We developed a mean-field theory to tackle the prob-
lem and found that an electric current may decrease or
increase the width of the reaction zone with respect to
the neutral case [19]. We found that a decrease takes
place when the current drives the reacting ions toward
the reaction zone while the width increases in the oppo-
site case. Unfortunately, when estimating the effect from
a linear response theory we find that the effect is weak
thus a significant (order of magnitude) decrease cannot
be reached for a system with usual parameters.

Thus new directions should be sought to solve the
problem of the width of reaction zones.

Transverse patterns (patterns within the reaction
zone)

We have explored an idea for downscaling the precipi-
tation patterns by considering possible patterning within
the reaction zones in the direction perpendicular to its
motion [20]. At first, the experiments appeared to be
promising because patterns significantly smaller scale
than the width of the reaction zone could be observed
in various Liesegang type experiments. These patterns,
however, did not stay stationary. A well defined coars-
ening stage set in, and the characteristic scale grew with
time t as

√
t. The coarsening can be seen in Fig.3 where

precipitation in a two-dimensional moving front is shown.



3

In this example NaOH was diffusing into a gel containing
AlCl3 and the time evolution of the precipitate Al(OH)3
was observed (remarkably, the observation of a narrow
region is possible since the precipitate redissolves in the
excess outer electrolyte NaOH and thus it exists only in
a narrow optically accessible region of the reaction front).

FIG. 3: Time evolution of the precipitation pattern in the
reaction zone for the samples with [NaOH] = 2.5M (outer
electrolyte) and [AlCl3] = 0.52M (inner electrolyte). The
front moves perpendicularly to the plane of the picture and
the pictures were taken at t1 = 180s (a), t2 = 480s (b), and
t3 = 960s (c) after the initiation of the reaction. The length
of the scale-bars is 1cm.

Theoretical study of the above problem [20] led to the
same conclusion about growing coarsening scale of the
pattern. It is clear that it would be an important step in
the solution of downscaling if one could find an effective
and experimentally realizable way of arresting the phase
separation process. Work in this direction is in progress.

Effect of noise

In principle, the noise (thermal, chemical, composi-
tional, etc.) should be counterproductive to designing
and realizing well defined structures. We found, how-
ever, that for complex structures such as helicoids and
helices, the presence of finite-amplitude noise was a nec-
essary condition for their emergence.

We got interested in helical structures since they are
present from nano- to macro-scale and the precipitation
helices [21–23] are known to have remarkable properties
from material research point of view. Thus they may be
important elements in the bottom-up building strategy.

Generally, the emergence of such structures raises the
question whether the symmetry breaking occurring in
the formation process is spontaneous (intrinsic property)
or induced by initial or boundary conditions. We stud-
ied this question both experimentally and theoretically
[24] by investigating precipitation patterns formed in the
wake of planar reaction-diffusion fronts (examples of heli-
coidal structures can be seen in Fig.4). Our experiments
showed that helices/helicoids emerged with well defined
probabilities controlled by experimental conditions (e.g.,
by the initial concentration of the reagents) which do
not break the chiral symmetry. The probabilities were
rather large, reaching 50-60% probabilities for some pa-

FIG. 4: Regular Liesegang (a) and helocoidal patterns (b) in
agarose gel emerging in the reaction Cu2+(aq)+CrO2

4(aq) →
CuCrO4(s). Experimental conditions (T = 22.0 ± 0.3 0C,
initial concentrations: [Cu2+] = 0.5 M, and [CrO2

4] = 0.01
M) were the same except for the test tube radii (R) in all the
cases.

rameter range. As simulations and theoretical consid-
eration also confirmed, the probabilities are an intrinsic
property determined by a delicate interplay among the
time- and length-scales related to the front motion and
to the growth of the unstable modes of the precipitation
process and, furthermore, the noise amplitude also plays
an important role. In the theoretical model we studied
(reaction-diffusion process combined with Cahn-Hilliard
type precipitation plus noise), it was found that there is
a threshold in the noise amplitude below which no he-
lices form and the system always evolves into the usual
Liesegang patterns. The presence of noise threshold ap-
pears to be a rather interesting phenomena, its experi-
mental study is presently under way.

EXTREME STATISTICS OF CORRELATED
SYSTEMS

Introduction

Extreme value statistics (EVS) is important in sci-
ence and engineering [25], as well as at the societal level
since the frequency of catastrophic events (floods, earth-
quakes, financial breakdowns) is a much wanted informa-
tion [26, 27]. At present, EVS is mainly limited to ensem-
bles of independent, identically distributed (i.i.d) random
variables though natural phenomena (e.g. climatic data
on temperature series, wind strength, precipitation) of-
ten display strong correlations. Our main goal was to ex-
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pand our knowledge about EVS to correlated data. For
this purpose we considered systems where, in accord with
natural time-series, the power spectrum of the measured
signal was 1/fα type. Such signals are remarkable in that
the strength of correlations can be tuned by the param-
eter α and, furthermore, they are mathematically more
easily handled and occasionally allow not only numerical
but exact calculations as well. Our choice also followed
from the fact that we have accumulated much experience
with 1/fα noise through earlier studies of fluctuation dis-
tributions of such signals [28, 29], and we have already
made the first steps in the direction of understanding
their extreme properties [30] as well.

Distribution of the maximum relative to the initial
value

Our earlier investigations of systems displaying cor-
relations with 1/fα type power spectrum showed that
these systems should be considered as critical since
boundary-condition effects emerge in their limit distri-
butions [29, 30]. This leads to problems in the case of
studying time-series (such as the ones in climatic phe-
nomena) where the boundary conditions are unknown.
In order to come closer to the experimentally investigated
extreme-value statistics, we introduced a quantity – the
maximum of a signal relative to the initial value – and
found that the distribution of this quantity is markedly
different [31] from that of the usual maximum relative to
the average studied in [30]. To illustrate the dramatic
differences, we display the scaled maximum distribution
Φ(x) = 〈hm〉P (x〈hm〉) (where the maximum value of the
signal hm is scaled by its average x = hm/〈hm〉) for the
cases of α = 2 and α = 4 in Figs. 5 and 6, respectively.
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FIG. 5: The exact EV limit distributions for α = 2. The
case of the maximum measured from the average, Φa(x) [32],
is compared to the distribution Φs(x) obtained by us for the
distribution of the maximum measured from the initial value.
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FIG. 6: The same as in Fig.5 but for α = 4. Note that the
exact form has been calculated only for Φs(x), the function
Φa(x) is obtained by numerical methods.

Apart from the obvious difference from the limit distri-
butions related to the unphysical periodic boundary con-
ditions, the distributions of the extreme values measured
from the initial value have two distinguishing features
which may help in recognizing the underlying system.
First, the distributions have large weights at small values
of the relative maximum, and second, the distributions
diverge for zero arguments for α ≥ 3. The divergence is
of power-law type with a characteristic exponent deter-
mined by the value of α.

Order statistics for 1/fα signals

The extreme value in a batch of data is important, but
its study makes use of only a small fraction of the avail-
able information. Accordingly, there have been various
attempts to extend studies towards near-extreme char-
acteristics, such as the density of states near extremes,
first-passage and return-time statistics, persistence, and
record statistics. A natural extension which we studied
[33] is the order statistics which means that we considered
not only the extreme, but the sequence x1, x2, ..., xk, ...
of the 1st, 2nd, . . . , kth, . . . largest. It should
be clear that the information content of this sequence is
larger than that of the EV distribution.

Order statistics has been much studied in mathematics
[34, 35] and all relevant quantities are known for indepen-
dent, identically distributed (i.i.d.) variables. The novel
aspect of our work is the extension of order statistics to
1/fα signals. Our main result concerns the average gap
dk = 〈xk − xk+1〉 between the kth and (k + 1)st largest.
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We found that it scales with k as

dk ∼











k−1 for 0 ≤ α < 1 ,

k(α−3)/2 for 1 < α < 5 ,

k for 5 < α ≤ ∞ .

(1)

As can be seen, there are three regimes and the scaling
exponents match at the borderline values α = 1 and 5.
The above results were first obtained from simulations of
the 1/fα signals and then phenomenological arguments
were also used to derive the exponents. The phenomenol-
ogy is based on a beautiful connection that can be made
between the density of near extreme states (which, in
turn, can be related to the extreme value distributions
for translationally invariant signals [31]) and the order
statistics.

Applications and finite-size scaling for i.i.d. variables

When trying to apply ideas from EVS [36, 37], one
usually runs into the problem of the finite size of the
database. The convergence to limit distribution in EVS
is usually slow (logarithmic) and it often becomes prema-
ture to think about investigating the correlation effects
when they cannot be distinguished from finite size cor-
rections in an i.i.d. sample. This is why we returned
to i.i.d. systems and rederived (by an easily applicable
method which can be understood by physicists) all the
the finite-size corrections for both the amplitude and the
shape of the correction to the limit distributions [38, 39]
which have been scattered all over the mathematics lit-
erature.

Our method is based on the similarity between the
critical point distributions and the EVS limit distribu-
tions, which allows the use of the renormalization group
formalism for the calculation of the corrections due to
the finite size of data sets. As a result, one could show
with some clarity how the EVS universality classes can
be subdivided according to the exponent of the finite-size
convergence. Furthermore, it also became transparent
that the exponent also determines the shape corrections
to the limit distribution.

We made the first steps towards the calculation of the
finite-size corrections for 1/fα signals as well. In par-
ticular, we found that for strongly correlated systems
(α > 1), the shape correction can be expressed in terms
of the limit distribution itself [38].

MISCELLANEOUS

As usual with scientific projects, we followed some side-
lines in our research which may not have been directly
connected to the main goals of the project but neverthe-
less they were originated in it. For us, such a side-branch

was the general study of non-equilibrium steady states
and, in particular, the calculating of non-equilibrium
Casimir effect on the example of a one-dimensional spin
chain [40]. The importance of our approach was in the
possibility of the exact calculation of the Casimir force
in the presence of energy flux. Our result show that the
presence of the energy flux weakens the Casimir force.
This result can be understood if we take into account
that the Casimir force emerges from fluctuations, and
the fluctuations are known to decrease (at least in the
XX model) in the presence of an energy flux. It is be-
lieved, however, that the decrease of fluctuation in the
presence of a flux is a general phenomenon and thus the
Casimir force is expected to decrease in non-equilibrium
situations quite generally.
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Order statistics of 1/f(alpha) signals
Extremes and Records
Itzykson Meeting, Saclay, June 2011

Z. Rácz
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