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1. Aims

This research proposal was an international extension of the research project Nr. T047035.
The main aim of our research was the exploration of the stable solutions for two-component
Bose-Einstein condensates by considering direct and inverse scattering methods. First,
we wanted to investigate the Cox-Thompson fixed energy inverse scattering method and
then, to apply it to an inversion of phase shifts obtained from an analysis of collision of
Bose-Einstein condensates. From these investigations several papers have been published
in journals of high international reputation.
Another aim was to directly simulate the Bose-Einstein condensate by solving the non-
linear Schrödinger equation with an external potential trapping the condensate. This
task has been accomplished by a careful and intensive work which first starts with an
one-component Bose-Einstein condensate. We have written and tested a numerical FOR-
TRAN code which reproduces various analytic solutions of the problem, mainly in terms
of different types of solitons. Then the code has been developed to the coupled two-
component case, and also numerically tested for the example of coupled solitons which
have an analytically known solution. Now we are planning to apply this code in different
situations corresponding to various experimental possibilities. We want to study a stability
analysis and to explore the parameter domain which is mostly suited to the experimental
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situation of the creation of two-component Bose-Einstein condensates.

2. Summary
Bose-Einstein consdensates have been investigated by means of direct and inverse scat-
tering methods. A fixed-energy inverse scattering method has been developed, based on
an eralier suggestion by Cox and Thompson, for treating long and short ranged potentials.
Simplified semi-analytic solutions have been given for the inverse scattering problem for
cases when only even or odd partial waves contribute to the scattering amplitude. The
result has been applied to invert experimental phase shifts obtained from the analysis of
collisions of two Bose-Einstein condensates, each consisting of Rb-atoms. A condition
has been given for the derivation of non-singular inverse potential. We have developed
computer codes which simulate the time development of one- and two-component Bose-
Einstein condensates. The codes have been tested numerically for the analytic example
of coupled solitons. The coupled channel code may help in realising two-component
Bose-Einstein condensates.

3. Report on the main results

3.1 Condition for obtaining non-singular potentials

by using the Cox-Thompson inversion method

In this chapter we establish a condition for obtaining non-singular potentials
using the Cox-Thompson inverse scattering method with one phase shift.
The anomalous singularities of the potentials are avoided by maintaining

unique solutions of the underlying Regge-Newton integral equation for the
transformation kernel.

The Regge-Newton integral equation of the Cox-Thompson method (J. Cox
and K. Thompson, J. Math. Phys. 11, 805, (1970)) for the transformation

kernel reads as

K(x, y) = g(x, y) −
x
∫

0

dt t−2K(x, t)g(t, y), x ≥ y, (1)

with the input symmetrical kernel defined as

g(x, y) =
∑

l∈S

γlul(x<)vl(x>),

{

x<

x>

}

=

{

min
max

}

(x, y). (2)

Here ul and vl means, respectively, the regular and irregular Riccati-Bessel
functions defined as ul(x) =

√

πx
2
Jl+ 1

2

(x), vl(x) =
√

πx
2
Yl+ 1

2

(x), ( Jl+ 1

2
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and Yl+ 1

2
are the Bessel functions ) and the explicit expression holds for

the γl numbers:

γl =

∏

L∈T [l(l+ 1) − L(L+ 1)]
∏

l′∈S,l′ 6=l[l(l + 1) − l′(l′ + 1)]
, l ∈ S, (3)

with |S| = |T | <∞, T ⊂ (−1/2,∞), S ⊂ (−1/2,∞) and S ∩ T = ∅ .

Let Ω denote the set of zeros of the determinant

D(x) = det(C), [C]lL =
uL(x)v′l(x) − u′L(x)vl(x)

l(l + 1) − L(L+ 1)
∀x. (4)

In Ref. (J. Cox and K. Thompson, J. Math. Phys. 11, 815, (1970)) it

is proved that this equation is uniquely solvable for x ∈ R
+ \ Ω and the

elements of Ω are isolated points. Therefore, the continuous solution of
equation (1) (if it exists) is unique.

In Ref. (K. Chadan and P. C. Sabatier, Inverse Problems in Quantum

Scattering Theory (Springer, New York, 1977), pp. 187-188.) it has been

shown that the first moment of the potential tq(t) is not integrable near

x̃ ∈ Ω. Therefore the potential q(x) := − 2
x

d
dx

K(x,x)
x corresponding to

the Schrödinger equation has poles of order (at least) 2 at these isolated

points x̃. Such potentials are not in L1,1(0,∞) and we call them singular
potentials.

To get non-singular potentials by the Cox-Thompson method is thus in an
intimate connection with the uniqueness of solution of equation (1). In

the one-term limit, the numerator of equation (4) becomes the Wronskian

WLl(x) =
πx

2

(

JL+ 1

2
(x)Y ′

l+ 1

2

(x) − J ′
L+ 1

2

(x)Yl+ 1

2
(x)
)

.

To ensure a unique solution of the Regge-Newton integral equation (1),
we shall establish a condition for WLl(x) 6= 0, x ∈ (0,∞). This is also

the condition for constructing a non-singular potential q(x), x ∈ (0,∞) at
the one-term level |S| = |T | = 1.

Let S = {l} and T = {L}, L 6= l. In order to get a potential that belongs
to the class L1,1(0,∞) we proved the next statement.

Theorem 0.1. WLl(x) 6= 0, x ∈ (0,∞) ⇐⇒ 0 < |L− l| ≤ 1.

Proof. First we prove that there exists x > 0 such that WLl(x) = 0 if
|L− l| > 1. Let 1+4k < l−L < 3+4k with k ∈ Z. Then the different
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signs of the Wronskian at the origin

WLl(x → 0) = xL−l

[

2l−L−1(L+l+1)Γ(l+ 1

2)
Γ(L+ 3

2)
+O(x2l+1)

]

> 0 and at the

infinity WLl(x → ∞) = cos
[

(l − L) π
2

]

< 0 clearly signal the existence

of at least one zero position x̃ for which WLl(x̃) = 0 because of the
continuity of WLl(x).
For the uncovered region of 3+4k < l−L < 5+4k with k ∈ Z\{−1} we

shall use the standard notation for the nth zeros jL+ 1

2
,n, j

′
L+ 1

2
,n
, yl+ 1

2
,n, y

′
l+ 1

2
,n

of the Bessel functions JL+ 1

2

(x), J ′
L+ 1

2

(x), Yl+ 1

2

(x), Y ′
l+ 1

2

(x). Let now l <

L. We term regular sequence of zeros if the following interlacing holds

for the nth and (n+ 1)th zeros: yl+ 1

2
,n < jL+ 1

2
,n < yl+ 1

2
,n+1 < jL+ 1

2
,n+1.

It is a simple matter to see that the local extrema of WLl(x) within the
interval yl+ 1

2
,n < x < jL+ 1

2
,n+1 possess the same sign in case of a regular

sequence interlacing. This is because at the extremum positions yl+ 1

2
,n

and jL+ 1

2
,n of WLl(x) the Wronskian simplifies to

WLl(xn) =

{

πx
2 JL+ 1

2
(xn)Y

′
l+ 1

2

(xn) if Yl+ 1

2
(xn) = 0, xn = yl+ 1

2
,n

−πx
2 J

′
L+ 1

2

(xn)Yl+ 1

2

(xn) if JL+ 1

2

(xn) = 0, xn = jL+ 1

2
,n.

Now, in case of any deviation from this regular sequence, e.g., when an
irregular sequence yl+ 1

2
,n < yl+ 1

2
,n+1 < jL+ 1

2
,n is first encountered at a

particular n = 1, 2, ..., one gets different signs for the two consecutive
extrema of the Wronskian at yl+ 1

2
,n and yl+ 1

2
,n+1, respectively. This

assumes the appearance of a zero position of WLl(x) within the region

yl+ 1

2
,n < x < yl+ 1

2
,n+1. In summary, observing regular sequences of

interlacing for all n > 0 is equivalent to the absence of roots of WLl(x).

To see that in the considered region such deviation from the regular
sequence interlacing happens, we present the following argument. Let

L′ < L such that 1 + 4k < l−L′ < 3 + 4k. For WL′l the first deviation
from the regular sequence takes place at some n′. It is easy to see that

by increasing L′ to L one cannot get a regular sequence and the first
deviation will occur at some n ≤ n′. Note that the case L < l can be
similarly treated.

Turning now to the most interesting domain of 0 < |L − l| ≤ 1, we
consider again the case l < L and the regular sequence of zero in-

terlacing, yl+ 1

2
,n < jL+ 1

2
,n < yl+ 1

2
,n+1 < jL+ 1

2
,n+1. As indicated above,

its fulfillment ensures the lack of a root of the Wronskian: WLl(x) 6=
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0, x ∈ (0 < x < ∞). By noting that any nth zero of a Bessel function
is a strictly growing function of the order it is sufficient to prove that

yk,n < jk+1,n < yk,n+1 < jk+1,n+1, holds for k ∈ (0,∞) and n ∈ N \ {0}.
The only unknown inequality here is that of jk+1,n < yk,n+1. To prove its
validity we use the known intermediate relation j ′k,n+1 < yk,n+1. There-

fore, proving jk+1,n < j ′k,n+1 will be sufficient. Consider the known

relation Jk+1(j
′
k,n+1) = k

j′k,n+1

Jk(j
′
k,n+1) which means that Jk+1 and Jk

have the same sign at x = j ′k,n+1. Now because of the interlacing prop-
erty jk,1 < jk+1,1 < jk,2 < ... and the limit Jk(x → 0) = 0+ ∀k > 0,

this implies that the nth zero of Jk+1(x) precedes the (n+ 1)th zero of
J ′

k(x), i.e. jk+1,n < j ′k,n+1 < yk,n+1 which had to be proven. Note that

the case L < l can be similarly treated.

Corollary 0.2. In case of |S| = 1, the Cox-Thompson inverse scat-

tering scheme yields a potential of the class L1,1(0,∞) iff the condition

0 < |l − L| ≤ 1 holds.

In the course of the proof we obtained the following result of its own right:

Proposition 0.3. Denoting the nth root of the Bessel functions Jν(x),

Yν(x), J
′
ν(x), respectively, by jν,n, yν,n, j

′
ν,n then the following inequality

is valid for ν > 0: jν+1,n < j ′ν,n+1.

This proposition adds two new inequality sequences to the known ones
(see e.g. M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover Publications, New York, 1972), pp. 360-371.): jν,n <
jν+1,n < j ′ν,n+1 < jν,n+1, and jν+1,n < yν,n+1.

One can construct a potential that possesses one specified phase shift δl

(|S| = 1) by using the inversion scheme of Cox and Thompson (see: B.

Apagyi, Z. Harman and W. Scheid, J. Phys. A: Math. Gen. 36, 4815,
(2003))

q(x) = −2

x

d

dx

K(x, x)

x
,

K(x, y) =
l(l + 1) − L(L+ 1)

uL(x)v′l(x) − u′L(x)vl(x)
vl(x)uL(y),

tan(δl − lπ/2) = tan(−Lπ/2).

The last relation gives L = l− 2
πδl +2n, n ∈ Z. For δl ∈ [−π

2 ,
π
2 ] Corollary

0.2 results in the choice of n = 0. Therefore, for any δl, there is only one,
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Figure 1: Non-singular (full line) and singular (dotted line) potentials yielded by
δl = 0 and L→ 0, and L = 2.

easily identifiable non-singular potential and an infinite number of singular

potentials that the Cox-Thompson method can produce.
For an example let us choose l = 0 and δ0 = 0. In this case L = 2n,

n ∈ Z. L = 0 (n = 0) is not permitted by the assumption S ∩ T = ∅,
however in order to get a non-singular potential one may replace this L = 0

by Ln with limn→∞ Ln = 0. One gets at l = 0, L = Ln and

Kn(x, x) =
−Ln(Ln + 1)

1 + ε1
n

(v0(x)u0(x) + ε2
n).

Since uL(x)v′l(x) − u′L(x)vl(x) and vl(x)uL(x) are continuous in L and
ul(x)v

′
l(x)−u′l(x)vl(x) = 1, ∀ l, limn→∞ ε1,2

n = 0 holds. Thus limn→∞ qn(x) ≡
0 for x > 0. This is the physical solution. (See Figure 1)

Now let l = 0 and L = 2. By Corollary 0.2 we cannot get an integrable
potential in this case because |l − L| > 1 (see Figure 1). In Refs. (A.

G. Ramm, Applic. Anal. 81, 833, (2002); A. G. Ramm, Mod. Phys.
Lett. B 22, 2217, (2008)) it has been shown explicitly that equation (1)

is not uniquely solvable at some x for this case. However, while Refs.
(A. G. Ramm, Applic. Anal. 81, 833, (2002); A. G. Ramm, Mod. Phys.

Lett. B 22, 2217, (2008)) suggest that this fact makes the Cox-Thompson
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scheme useless, in this paper we have shown that in order to get an inte-
grable potential, the choice L = 2 is not permitted because the set Ω is not

empty. On the other hand, Corollary 0.2 provides a one-to-one correspon-
dence between the phase shift and the L parameter of the Cox-Thompson
method at the one-term level. This correspondence has the property that

the potential constructed from L belongs to L1,1(0,∞) and possesses the
specified phase shift.

Applications (see Refs. B. Apagyi, Z. Harman and W. Scheid, J. Phys. A:
Math. Gen. 36, 4815, (2003), O. Melchert, W. Scheid and B. Apagyi,

J. Phys. G 32, 849, (2006), B. Apagyi W. Scheid, O. Melchert and
D. Schumayer, Nuclear Physics A 790, 767c, (2007), D. Schumayer, O.

Melchert, W. Scheid and B. Apagyi, J. Phys. B: At. Mol. Opt. Phys.
41, 035302, (2008), T. Pálmai, M. Horváth and B. Apagyi, J. Phys. A:
Math. Theor. 41, 235305, (2008), T. Pálmai, M. Horváth and B. Apagyi,

Mod. Phys. Lett. B 22, 2191, (2008)) of the Cox-Thompson scheme
for |S| 6= 1 suggest the existence of a connection like Corollary 0.2 that

specifies one non-singular potential out of the possible infinite singular
solutions. However such a theorem has, as yet, not been proven.

3.2 Simplified solution of the Cox-Thompson inverse scattering method
at fixed energy

The Cox-Thompson method connects the S−matrix with a ”reactance”
matrix K±

l (T. Palmai, H. Horvath, B. Apagyi, J. Phys. A: Math. Theor.

41 (2008) 235305)

Sl =
1 + iK+

l

1 − iK−
l

, l ∈ S, (5)

where

K±
l =

∑

L∈T,l′∈S

(Msin)lL(M−1
cos)Ll′e

±i(l−l′)π/2, l ∈ S,

and
{

Msin

Mcos

}

lL

=
1

L(L+ 1) − l(l + 1)

{

sin
(

(l − L)π
2

)

cos
(

(l − L)π
2

)

}

,

l∈ S, L ∈ T, S ∩ T = { }.
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An essential simplification has been found which can be used in the cases
when only even or odd partial waves contribute to the scattering. This
simplifications of the equations can be used to construct different simple

approximations to the Cox-Thompson-method. For example, in the scat-
tering of 12C on 12C the elastic cross sections are generated by even partial

phase shifts only.
By solving the Gel’fand-Levitan-Marchenko–type integral equation one writes

the transformation kernel in the form as a sum over an artificial angular
momentum space L ∈ T :

K(x, y) =
∑

L∈T

AL(x)uL(y).

One finds for the asymptotic expansion functions Aa
L(x) ≡ AL(x → ∞)

the relation

∑

L∈T

Aa
L(x)

cos((l − L)π
2
)

l(l+ 1) − L(L+ 1)
= − cos(x− l

π

2
), l ∈ S.

If this equation is differentiated twice with respect to x, we obtained the
following equation

d2Aa
L(x)

dx2
= −Aa

L(x),

which has the periodic solution

Aa
L(x) = aL cos(x) + bL sin(x).

Then we introduced two systems of equations for even l = le and odd
l = lo angular momenta as follows

∑

L∈Te

{

aL

bL

}

cos
(

(l − L)π
2

)

L(L+ 1) − l(l + 1)
=

{

cos
(

lπ2
)

sin
(

lπ2
)

}

, l ∈ Se

and

∑

L∈To

{

aL

bL

}

cos
(

(l − L)π
2

)

L(L+ 1) − l(l + 1)
=

{

cos
(

lπ2
)

sin
(

lπ2
)

}

, l ∈ So,
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where |Te| = |Se|, |To| = |So| and Te∩Se = ∅, To∩So = ∅. These systems
can be analytically solved. For even l value we obtained

aL =

∏

l∈Se
(L(L+ 1) − l(l + 1))

∏

L′∈Te\{L}(L(L+ 1) − L′(L′ + 1))

1

cos
(

Lπ
2

) , bL = 0, L ∈ Te,

and similarly for odd orbital angular momenta lo ∈ So. Now by using these
analytical expressions one obtains the final solution to the CT method for

even l as:

tan(δl) = −
∑

L∈Te

∏

l′∈Se\{l}(L(L+ 1) − l′(l′ + 1))
∏

L′∈Te\{L}(L(L+ 1) − L′(L′ + 1))
tan
(

L
π

2

)

, l ∈ Se.

(6)
A similar relation is obtained for odd orbital angular momenta lo ∈ So.
The above equations determine the unknown set Te of shifted angular

momenta L. These equations are much simpler to solve as the above
equations which contain the inversion of the matrix of Mcos involving the

unknowns of shifted angular momenta L. We showed that the solutions
with even l = le of equations (6) are equivalent to the solution of equation

(5) with input phase shifts to even l values.
There are several approximations possible with this simplified method. One
can solve the inverse potential for the sets Te and To and obtains the poten-

tials qe and qo. We simply added them together to get an approximation
of the interaction potential qA(x) = qe(x) + qo(x). This is called the

potential approximation A. One may try to approximate the set of the
shifted angular momenta themselves by solving the equations for even and

odd phase shifts separately, obtaining the sets Te and To. One gets the
T−set approximation Ta = Te ∪ To and then the approximate potential

qT (x). If the collision is dominated by a single partial wave as in the case
of resonance scattering then the equations can be solved for N = 1, and
this results in the simple expression L = l − 2δl/π for the shifted angular

momentum (approximation L). This approximation used for all shifted
angular momenta yields an inverted potential denoted by qL(x).

We applied the new method to calculate an effective 87Rb+87Rb-potential
observed in ultracold Bose-gas collision at an energy of E = 303µK. The

inverse calculation uses only even measured phase shifts with angular mo-
menta l = 0, 2, 4, respectively. The resulting potential shown in Fig. 2 is
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Figure 2: Effective 87Rb+87Rb inverse potential VCT (in mK) as a function of the radial
distance r (in nm) at an energy Ecm = 303µK.

identical with the potential obtained by solving the complete set of equa-

tions (see chapter 3.3).
We calculated also the inverse potential for the n+12C scattering at Elab =

10 MeV with complex-value phase shifts derived by Chen and Thornow
from experimental cross sections. The inverse potentials are obtained with

different approximations. It is assumed that the potential calculated by
the original CT-method would be the best one. In Fig. 3 we show inverse
potentials obtained with the approximations A,T, and L.

The range of applicability of the new formulas is wider than the origi-
nal Cox-Thompson method. We have demonstrated the applicability of

the new equations which make the solution of the CT inverse scattering
method at fixed energy much easier.

3.3 The effective Rb-Rb interatomic potential from ultracold

Bose-Einstein gas collisions

At very low energies, one can cool down atoms to the ultracold regime
(< 1µK), to form a Bose-Einstein condensate and explore the low-energy
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Figure 3: Inverse potentials obtained from input phase shifts up to l = 4 for n scattering
on 12C at an energy E lab

n
= 10 MeV (Ec.m

n
= 9.23 MeV, k = 0.638 fm−1). Curves

obtained by the CT and by the approximate methods are labeled according to the proce-
dure discussed in the text. The four curves around V ≈ 0 are the imaginary parts of the
potentials.
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properties of the atomic interaction. At these temperatures collisions play a
major role in affecting the static and dynamic properties of the condensate,

e.g. stability, lifetime, and thermalization rate. In this regime inelastic
processes are usually negligible. Here, we characterized or reconstructed
an effective inter-atomic potential from scattering phase shifts by using the

inverse scattering method and by assuming that there exists an effective
spherically symmetric potential which causes the observed scattering events

(D. Schumayer, O. Melchert, W. Scheid, B. Apagyi, J. Phys. B: At. Mol.
Opt. Phys. 41 (2008) 035302).

We employed the fixed energy inverse scattering method of Cox and Thomp-
son (CT) in order to derive model-independent potentials from given phase

shifts resulting from experiments with a Rb-Bose-Einstein gas in traps. The
CT method leads to a system of nonlinear equations

exp (2iδl) =
1 + iK+

l

1 − iK−
l

,

where the reactance matrix is defined as

K±
l =

∑

L∈T,l′∈S

NlL

(

M−1
)

Ll′
e±i(l−l′)π/2, l ∈ S

with the square matrices

{N
M

}

lL

=
1

L(L+ 1) − l(l + 1)

{

sin
(

(l − L)π/2
)

cos
(

(l − L)π/2
)

}

,

l ∈ S, L ∈ T, S ∩ T = { },
containing the unknown L−values. Once the set T is determined by solv-
ing the highly nonlinear equations given above for L, we calculated the

coefficient functions AL(r) using the system of linear equations
∑

L∈T

AL(r)(jL(r) × n′l(r) − j ′L(r) × nl(r))/[l(l+ 1) − L(L+ 1)] = nl(r),

where jL and nl denote spherical Bessel and Neumann functions. Next,
we calculated the potential with the expansion coefficients AL(r)

V (r) = −2

r

d

dr

∑

L∈T

AL(r)jl(r)/r.
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Figure 4: Inverse potentials from the l = 0, 2, 4 experimental phase shifts at energies
E=102-203 µK below the d−resonance. The inset shows the inverse potential V (r = 0)
at r = 0 as a function of collision energy.

In Fig. 4 we present the inversion potentials for the energy range between
100 and 200 µK which lie below the characteristic l = 2 resonance of 87Rb-
87Rb scattering at ∼ 275 µK. The inversion potentials reproduce the input
phase shifts well within the considered energy region as demonstrated in
Fig. 5 where both input and output phase shifts are shown. Fig. 6 gives the

inversion potentials from 200 to 400 µK. There occurs an abrupt change
of the potential strength V (0) at r = 0 from repulsion to attraction when

the collision energy crosses the l = 2 resonance at ∼ 275µK.
Since the input data stem entirely from experimentally confirmed data we

expect that the sudden change of the inner strength of the potential should
be observed in future Bose-Einstein gas experiments. This inversion tech-
nique is useful if high-resolution data are available. The corresponding

potential has not already been studied with models, especially if one needs
an intuitive picture about the interaction in a given energy range.
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Figure 5: Phase shifts of the first three allowed partial waves with l = 0, 2, 4. Solid
and dashed lines represent the original input data. The symbols stand for phase shifts
calculated from the inverse potentials shown in Figs 6 and 8.

Figure 6: Inverse potentials obtained from the experimental l = 0, 2, 4 scattering phase
shifts around the d−resonance at ∼ 275µK.
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3.4 Stability of static solitonic excitations of two-component

Bose-Einstein condensates in the finite range of interspecies scattering lengths

Over the past few years an increasing interest could be observed in the
case of atomic Bose-Einstein condensates (BECs). Mostly one-component
BECs have been studied so far for the elements 1H, 7Li, 23Na, 41K, 85,87Rb,

and 133Cs. The two-component systems Na-Rb and K-Rb have been con-
sidered theoretically and the mixture Cs-Li has been investigated exper-

imentally, without reaching the BEC phase. In this project we found a
simple treatment of the stability of a condensate mixture consisting of

two atomic species (D. Schumayer, B. Apagyi, Phys. Rev. A 69 (2004)
043620).

For treating two interacting dilute Bose-Einstein condensates we started
with the zero temperature mean field theory neglecting collisions between
the condensed atoms and the thermal cloud. The macroscopic dynam-

ics in such a physical condensate is described by two coupled nonlinear
Schrödinger equations (NLSs). These equations are also known as Gross-

Pitaevskii (GP) equations. Restricting ourselves to (1 + 1) dimensions the
coupled GP equations can be written as follows (i, j = 1, 2)

i~
∂ψi

∂t
=

[

− ~
2

2mi

∂2

∂x2
+

2
∑

j=1

Ωij|ψj|2 + Vi

]

ψi, (12)

where mi denotes the individual mass of the ith atomic species, Ωij =

2π~
2aij/Aµij with aij being the 3-dimensional scattering length between

atoms of species i, j, respectively, A the general transverse crossing area

of the cigar-shape BEC, µij = mimj/(mi + mj) the reduced mass, and
Vi, (i = 1, 2) in Eq (12) are the external trapping potentials. The normal-

ization of the wave functions is given by Ni =
∫∞
−∞|ψi|2dx, for i = 1 and 2

with Ni denoting the number of the individual atoms in the ith component
of the BEC.

The stationary solutions of the coupled GP equations (12) are taken in the
form ψi(x, t) = Φi(x) exp(−iEit/~) where Ei is the single-particle energy

of the ith component. With this wave function and neglecting the kinetic
terms in (12) we derived approximate density profiles and a semi-infinite
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range for the scattering length aij between two different atoms. From the
GP equations (12) we obtained the so called Thomas-Fermi approximation

|Φ1(x)|2 =
Ω22(E1 − V1(x)) − Ω12(E2 − V2(x))

∆
,

|Φ2(x)|2 =
Ω22(E2 − V2(x))− Ω21(E1 − V1(x))

∆
with ∆ = Ω11Ω22 − Ω12Ω21. With a harmonic external potential Vi(x) =
1
2miω

2
i x

2 (i = 1, 2) one can write (i = 1, 2)

|Φi(x)|2 = Ai(x
2
i − x2)/∆ if |x| ≤ xi, i = 1, 2,

|Φi(x)|2 = 0 if |x| > xi, i = 1, 2.

The constants areAi = (Ωjjmiω
2
i−Ωijmjω

2
j )/2 and xi = ±(3∆Ni/4Ai)

1/3

obtained from the normalization condition
∫ xi

−xi
|Φi(x)|2dx = Ni (i = 1, 2).

The excited static solutions have the form (i = 1, 2)

ψ̃i(x, t) = Φi(x)φi(x) exp(−iẼit/~)

with φi(x) being an excess or defect of the ith component of the back-
ground density. Inserting this ansatz into the GP equations (12) and

assuming that the excitation mechanism is restricted to a small interval
x ∈ (−Li, Li) around x = 0, one obtains two coupled equations for the

perturbing functions

Ẽ1φ1 = − ~
2

2m1

∂2φ1

∂x2
+ Ω̃11|φ1|2φ1 + Ω̃12|φ2|2φ1 (13a)

Ẽ2φ2 = − ~
2

2m2

∂2φ2

∂x2
+ Ω̃21|φ1|2φ2 + Ω̃22|φ2|2φ2 (13b)

with Ω̃ij = ΩijAjx
2
j/∆ (i, j = 1, 2). Very small potential terms have

been neglected. These equations determine the perturbing functions φi(x)

within the range |x| ≤ Li < xi . Since static one-soliton solution of the B
or the D type can be produced in BECs we tried to use static uncoupled

soliton solutions
φB1(x) = q1sech(k1x)

φD2(x) = q2 tanh (k2x)

with complex amplitudes qi and range parameters ki ∼ L−1
i for the de-

scription of the excitation of the two-component BECs. In accordance
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with the soliton characters we imposed the appropriate boundary condi-
tions φB1(x→ ±∞) = 0, and φD2(x→ ±∞) = ±q2.
The insertion of the above solitonic ansatz into the equations (13) gives
k1 = k2 ≡ k for the range parameters and the relations

|q1|2 =
~

2k2

∆

(

Ω̃12

m2
− Ω̃22

m1

)

,

|q2|2 =
~

2k2

∆

(

Ω̃11

m2
− Ω̃21

m1

)

for the modulus of the amplitudes.
The requirement that the modulus of the two amplitudes q1 and q2 is

positive and real yields the following stability conditions (Aij = aij(1 +
mi/mj))

fB1(a12) =
A12 − A22

det(A)
≥ 0, (14a)

fD2(a12) =
A11 − A21

det(A)
≥ 0 (14b)

for the existence of B and D solitonic excitations within the two component
BEC. Although the above conditions are independent of the particle num-

bers Ni, one has a constraint by the particle number conservation because
the normalization of the B and D solitonic excitation reads as

N1 = 2|q1|2
A1

∆
n(kx1),

N2 = 2|q2|2
A2

∆

(

2

3
(kx2)

2 − n(kx2)

)

,

with n(w) = −w2 + 2w ln[1 + exp(2w)] + dilog[1 + exp(2w)] + π2

12 .
Assuming now that the system parameters m1, m2, a11 and a22 are given,
and disregarding the particle numbers Ni, we determined the broadest

range of the interspecies scattering length a12 for which the existence of
solitons in the two-component BEC can be expected. If the actual value

of a12 eas determined then we found the particle number ratio N2/N1 or
the size parameter k in order to get information about the two-component

system which can show static solitonic features.
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Figure 7: The density profile |Φi|2 of the Thomas-Fermi approximation for a two-
component BEC, namely for the mixture 7Li - 87Rb, with parameters a11 = −1.4 nm
(7Li), a22 = 5.5 nm (87Rb) and a12 = 4.5 nm.

In Fig.7 we show the density profile |Φi|2 of the Thomas-Fermi approxi-
mation for a two-component BEC, namely for the mixture 7Li - 87Rb, with
parameters a11 = −1.4 nm (7Li), a22 = 5.5 nm (87Rb) and the chosen

interspecies scattering length a12 = 4.5 nm.

3.5 Evolution solution (simulation) of the nonlinear Schrödinger equation

Our aim is to solve the evolution problem of the Gross-Pitaevskii (GP)
equation (which is a nonlinear Schrödinger (nls) equation with external

potential V )

iut = −HV uxx + C |u|2u+ V u, u = u(x, t), V = V (x) (15)

with a given initial condition u0(x) = u(x, 0). In the case of special values
of the constants HV and C, and for zero potential V = 0 there are some

exact solutions to the equation known also as a nonlinear Schrödinger (nls)
equation.

iut = −HV uxx + C |u|2u, u = u(x, t). (15a)

Colliding two-soliton solution
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Let us consider the following nls equation

iut = uxx + 2|u|2u (16)

which means that we use HV = −1, C = +2 and V = 0 in (15).
Equation (16) admits the following (colliding) two-soliton solution:

u(x, t) =
e−i(2x−20−3t)

cosh(x− 10 − 4t)
+

e+i(2x+20−3t)

cosh(x+ 10 + 4t)
(17)

Bright soliton solution

The most widely known soliton solution of the nls equation of the form

iut = −uxx − |u|2u (HV = 1, C = −1, V = 0) (18)

is the bright soliton. Its general form is the following:

u(x, t; a, c) = a ei( c
2
(x−ct)+nt)/ cosh(a(x− ct)/

√
2) (19)

with the constraint a2 = 2(n−
(

c
2

)2
) > 0.

If c = 1, n > 1
4. Let n = 5

4. Then a2 = 2, a =
√

2. The bright soliton
solution is then

u(x, t;
√

2, 1) =
√

2ei( 1

2
(x−t)+ 5

4
t)/ cosh(x− t). (20)

The initial condition in this case is

u(x, 0;
√

2, 1) =
√

2eix/2/ cosh(x) (21a)

and the norm is (independent of t):
∫

|u(x, t;
√

2, 1)|2dx = 4. (21b)

In case of c = 2 we have the bright soliton

u(x, t;±2, 2) = ±2ei((x−2t)+3t)/ cosh(±
√

2(x− 2t)), (22)

and the initial condition

u(x, 0;±2, 2) = ±2eix/ cosh(±
√

2x). (22a)

Dark soliton solution
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The nls equation

iut = −uxx + |u|2u (HV = 1, C = +1, V = 0) (23)

supports dark soliton solution of the form

u(x, t;m, c) = rei(Θ−mt), (23a)

with real amplitude r = r(x − ct), real phase Θ = Θ(x − ct), and real
parameters c = const, m = const > c2/2 > 0 satisfying the relations

r2 = m− 2κ2/ cosh2(κ(x− ct))

and
1/ tan(Θ) = −2κ tanh(κ(x− ct)).

In the course of testing the simulation program we shall use the dark soliton

solution with parameters m = 1, c = 1.
Ma solitary wave solution

Equation

iut = −uxx − |u|2u (HV = 1, C = −1, V = 0) (24)

also has the Ma solitary wave solution of the form

u(x, t; a,m) = aeia2t[1 + 2m(m cosΘ + in sin Θ)/f(x, t)] (25)

with real parameters a and m and the following relations and definitions:

n2 = 1 +m2, Θ = 2mna2t, f(x, t) = n cosh(ma
√

2x) + cos Θ.

In the course of testing the simulation program we shall use the Ma solitary
wave solution with parameters a = 1,m = 1/2.

Rational-cum-oscillatory solution
Equation

iut = −uxx − |u|2u (HV = 1, C = −1, V = 0) (26)

also has the rational-cum-oscillatory solution of the form

u(x, t) = eit

[

1 − 4(1 + 2it)

1 + 2x2 + 4t2

]

(27).

Simulation procedure
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To solve the time evolution problem of the Schrödinger equation

iut(x, t) = Hu(x, t), u(x, t) = e−iHtu(x, t) (28)

one discretises eq. (28) in time ( tn = nτ (n = 0, 1, .., NT )), and space,

(xj = jh (j = 1, 2, ..., N)), and denotes the wave function by un
j ≡

u(xj, tn).

One makes use of the basic relation that the backward and forward time
evolutions at tn+1/2 result in the same value of the wave function at every

point xj, that is

u
n+1/2
j = (1 +

1

2
iHτ)un+1

j = (1 − 1

2
iHτ)un

j = u
n+1/2
j (29)

or, using instead of 1/2 the symbol σ,

un+σ
j = (1 + σiHτ)un+1

j = (1 − σiHτ)un
j = un+σ

j , (29a)

The Cranck-Nicholson scheme corresponds to σ = 1/2.
By re-ordering equation (29a) one gets the basic formula:

iun+1
j − τHσun+1

j = iun
j + τ(1 − σ)Hun

j (30)

with the Hamiltonian acting at point xj on the wave funcion uj as

Huj = −HV
h2

(uj+1 − 2uj + uj−1) + Vjuj

with Vj = V (xj)+C|uj|2. By using this form, eq.(30) can be written into
a form

T (n)un+1 = F n (31)

where T (n) denots an NxN triangular matrix with elements T
(n)
j,j = B

(n)
j =

ih2 − τσ(2HV + h2Vj), T
(n)
j+1,j = T

(n)
j,j+1 = A = τσHV and F n stands for

an 1xN vector whose elements are defined by F n
j = Cn

j u
n
j −D(un

j+1+u
n
j−1)

with C
(n)
j = ih2 + τ(1 − σ)(2HV + h2Vj) and D = τ(1 − σ)HV .

We use Neumann boundary condition ux = 0 at the boundaries. At the
boundary the formula (30) provides the relation

un+1
j =

i+ τ(1 − σ)Vj

i− τ(1 − σ)Vj
un

j , i = 1, N. (32)
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colliding 2 solitons - exact
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Figure 8: Coliding solitons - exact case (see eq.(17)).

Application for the one-component case:

Exact solutions, simulations and outraying
In the following figures 8-17 we studied some exact soliton solutions of the

nls and their numerical simulation during the time development. Differ-
ences between exact and simulated cases cannot be observed. By starting
with y(x, 0), which does not correspond to an exact solution, the ’rest’ is

is outraying and only the stable soliton configuration remains (see figures
18-19). One can also confine a standing wave packet inside a volume bor-

dered by potential gates and recognize the time development of the matter
(figure 20).

Applications for the two-component case:
Exact solutions, simulations and outraying

The numerical technique exhibited before can be applied also to solve
coupled Gross-Pitaevskii equations. In this case the driving matrix T in
eq. (31) is not a N xN triadiagonal matrix but becomes a 2N x 2N

five-band matrix whose inversion cannot be performed analytically. In this
case we also performed carefully numerical tests for known examples of

coulpled bright-dark soliton pairs. In figure 21 the outraying process can
be observed from two perspectives. The two-component mixture outrays

the rest of materials and only the two bright solitons are kept being stable
in time evolution.
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bright - exact
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Figure 9: Brigth soliton - exact case (see eq.(19)).

bright -simulation
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Figure 10: Brigth soliton - simulation (see eq.(31)).
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rational soliton - exact
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Figure 11: Brigth soliton - exact case (see eq.(22)).

rational soliton - simulation
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Figure 12: Brigth soliton - simulation (see eq.(31)).
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dark - exact
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Figure 13: Dark soliton - exact case (see eq.(23a)).

dark - simulation
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Figure 14: Dark soliton - simulation (see eq.(31)).
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Ma soliton - exact
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Figure 15: Ma solitary wave - exact case (see eq.(25)).

Ma soliton, y(1-10)=y(n-10) Neumann b.c.
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Figure 16: Ma solitary wave - simulation. Neumann b.c. used at j=1-10 and N-10 - N.
(see eq.(32)).
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Ma soliton, y(1)=y(n) Neumann b.c.
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Figure 17: Ma solitary wave - simulation. Neumann b.c. used at j=1 and N. (see eq.(32)).

outraying - bright remnant
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Figure 18: By starting with initial condition y(x, 0) which does not correspond to an exact
solution the ’rest’ is is outraying and only the stable soliton configuration remains. Here
is shown one soliton.
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outraying - 2-bright remnants
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Figure 19: By starting with initial condition y(x, 0) which does not correspond to an exact
solution the ’rest’ is outraying and only the stable soliton configuration remains. Here are
shown two solitons.
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Figure 20: Development of a standing wave packet within a closed interval of space
bordered by potential walls at x = −25 and x = 0 (not shown)
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Figure 21: Outraying when a two-component mixture starts from a uniform density. Two
stable solitons remain, the rest is outrayed . The process is exibited from two perspectives.
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