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In the present project entitled �An investigation of evolutionary potential games using
the tensor renormalization group method� (Grant No. OTKA PD-138571), I set out to
apply the tensor renormalization group method introduced by Michael Levin and Cody
P. Nave to spin models that bear special relevance to evolutionary game theory.

Recent research has revealed that symmetric matrix games [1] � that is, games in which
the payo�s of the two participating players can simply be tabulated according to their
choices from a �nite set of available strategies and an exchange of the chosen strategies
between the two players also leads to an exchange of payo�s � can be linearly decom-
posed on the analogy of vectors and forces into just four fundamentally di�erent types
of elementary game components that describe archetypal interaction situations, namely
self-dependent, cross-dependent, coordination-type, and cyclic dominance-type games [2].
Matrix games that lack a cyclic dominance component have the potential game property
and thus establish a direct connection between evolutionary game theory and statistical
physics: Any repeated potential game governed by the logit strategy update rule is in
detailed balance with the Boltzmann distribution de�ned by its potential, which means
that it is equivalent to a classical spin model via correspondence between the available
strategies and the spin states, the payo� matrices and the coupling constants, the poten-
tial and the negative of the energy.

The tensor renormalization group (TRG) technique introduced by Michael Levin and
Cody P. Nave [3] � similarly to a number of related methods [4] � exploits the tensor
network structure of the partition function of lattice spin models to evaluate it e�ectively.
On a square lattice with nearest-neighbour interactions, the tensor network structure
of the partition function can be made apparent by grouping neighbouring sites into a
square lattice of four-site plaquettes. The contraction of the resulting network of four-
index tensors can then be carried out systematically through the successive iteration
of the following two-step coarse graining transformation: i) Extend the tensor network
by splitting the tensors in two via singular value decomposition (SVD) with respect
to two di�erent index pairings in a checkerboard pattern. ii) Carry out the original
contractions, leaving behind a new square lattice of half as many tensors as the original
network composed of summations over the newly introduced SVD indices. Thus, after
a suitable number of iterations, any arbitrarily large system can be reduced to a tensor
network of manageable size. This, however, does not actually mean that the resulting
tensor network is directly calculable, since each coarse graining step doubles the index
range of the tensors. Levin and Nave's original, simplest version of the TRG method
remedies this situation by applying an interstitial approximation during the SVD step in
the form of a truncation that retains only the largest singular values.

As part of the project funded by this grant, I developed my own implementation of the
TRG method, which I then used to study two of the model systems that hold the key to
understanding the mechanics of the interplay between the elementary games.

The simplest truly interactive matrix game is the elementary coordination game. Its gen-
eral, n-strategy version consists of two coordinated and n− 2 neutral strategies: The two
players each receive 1 unit of payo� if they both choose the same coordinated strategy, re-
gardless of which one it is; they both lose 1 unit of payo� if they choose opposing coordin-
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ated strategies; and neither of them receives any payo� if either one of them chooses one of
the neutral strategies. Previous research [5�7] has revealed that the neutral strategies can
be bunched together into a single strategy on a regular lattice in a way that is consistent
with the logit strategy update rule at the cost of introducing an additional, temperature-
dependent self-dependent component that retains the symmetry of the two coordinated
strategies. Not only is this an example of the non-trivial ways in which game compon-
ents can interact in combination, it also establishes another direct connection between
evolutionary game theory and statistical physics, as the resulting bunched elementary
coordination game can be mapped onto the ferromagnetic Blume�Capel model [8�10],
and this remains true even in the presence of a further, constant symmetry-retaining
self-dependent component of strength h. The parametrization de�ned by the mapping
traces linear cross sections of the phase diagram of the Blume�Capel model whose slope
and intercept are determined by the number of bunched strategies and the strength of
the constant symmetry-retaining self-dependent component, respectively.

I applied my implementation of the TRGmethod to study the square-lattice Blume�Capel
model along these unusual � as opposed to the constant crystal �eld or even the less often
considered constant temperature cases � cross sections. My results provide numerical
proof of the equivalence of the two models. Measured quantities including the speci�c
heat, the magnetization, its susceptibility and Binder parameter, and the frequency of
the neutral strategy/empty sites and its susceptibility indicate the presence of phase
transitions at the locations and with the properties found in the literature. (For an
illustration, see Figure 1.) When the number of neutral strategies is low and/or the
strength of the self-dependent component is high enough, the system exhibits a continuous
phase transition that belongs to the Ising universality class. At higher n and/or lower h it
has a �rst-order transition instead. When h < −0.5, no phase transition occurs, regardless
of n. The continuous and the �rst-order phase boundaries are separated by a tricritical
point, which proved hard to identify on the basis of my TRG results. Nonetheless, the
changes in critical behaviour that can be observed in the results still provide a good
approximation of the location of the tricritical point.

I extended the above investigation to study the e�ects of adding a �nite magnetic �eld h′

(a self-dependent component that breaks the symmetry of the coordinated strategies) to
the Blume�Capel model, which seems to have received less attention in the literature. The
results again show good qualitative agreement with the mostly mean-�eld approximated
previous �ndings (as illustrated by Figure 1), but they are expected to perform better in
terms of quantitative detail due to the inherently higher accuracy of the TRG method.
Indeed, the observed power law behaviour of the magnetization as a function of the
magnetic �eld at �xed zero-�eld continuous phase transition critical temperatures and
crystal �elds seems consistent with the transitions belonging to the Ising universality
class. Unlike the continuous zero-�eld transitions, their �rst-order counterparts are not
immediately smoothed out by any �nite magnetic �eld: Below a critical magnetic �eld
strength, they are just shifted towards a lower critical temperature and a higher critical
crystal �eld; at the critical h′, the transition becomes continuous; above it, no phase
transition occurs. The resulting �nite magnetic �eld phase boundary can be described
as two symmetric (because of the symmetry of the two coordinated strategies) slanted
wings attached to the zero-�eld �rst-order transition line and bordered from the high-
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Figure 1: Heat maps of the TRG magnetization along elementary coordination game
cross sections of the Blume�Capel model in the absence (left) and presence (right) of an
external magnetic �eld/self-dependent component h′. ∆ and T denote the strength of the
crystal �eld and the temperature, respectively. The solid and dash-dotted lines indicate
continuous and �rst-order phase transition boundaries between the ferromagnetic (FM)
and paramagnetic (PM) phases. The data used to draw the zero-�eld phase boundary
were taken from Ref. [10], which compiles results from other articles listed therein.
The h′ > 0 solid black curve starting from the tricritical point (black dot) is a rough
estimate of the continuous-transition upper boundary of the �rst-order-transition wing
based on TRG results. The yellow surface shows the linear mapping of the zero-�eld
phase boundary that seems to well approximate the location of the h′ ̸= 0 �rst-order
transitions.

temperature side by continuous transition lines that meet in the zero-�eld tricritical
point. The shift in the critical crystal �eld of low-temperature �rst-order transitions
appears to be approximately proportional to the magnetic �eld. It was again di�cult to
exactly locate where �rst-order transitions become continuous, but the rough estimate
extracted from the TRG data does both match the zero-�eld phase diagram and agree
with predictions found in prior studies [11].

Overall, these TRG results corroborate and add to the literature of the Blume�Capel
model and, in doing so, demonstrate both that the bunched elementary coordination
game and the Blume�Capel model are indeed equivalent to each other and that the
TRG method can indeed be e�ectively used to investigate the behaviour in general and
the phase transitions in particular of similar evolutionary game models. I have presented
these �ndings on a poster at the International Conference on Statistical Physics SigmaPhi
2023. A manuscript reporting the above outlined analysis is currently under review at
Physica A [P1].

As a next step, I tried applying the same TRG method to a game with a more complex
elementary game composition. The (�ve-strategy) game of competing Ising- and (three-
strategy) Potts-type subgames consists of a total of four elementary coordination games,
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one of unit strength involving the �rst two strategies and three of equal α/2 strength
connecting each pair among the last three strategies. Previous investigations [12] revealed
using mean-�eld approximation and Monte Carlo simulations that when this model is
played by nearest neighbours located at the sites of a square lattice according to the logit
strategy update rule, then it does indeed describe a sort of competition between the two
subgames: When α is low (α ≤ 1), the composite game is dominated by the Ising-type
coordination between the �rst two strategies and the system exhibits a single continuous
phase transition that belongs to the Ising universality class; whereas for large α, the only
phase transition occurring in the system spontaneously breaks the symmetry of an entirely
di�erent order parameter and is characterized by Potts-class critical exponents instead.
For values of α in between, both the Ising- and Potts-ordered phases can be observed,
separated by a �rst-order phase transition. In this case the system also has a second,
continuous Ising-type order to disorder phase transition at a higher critical temperature.
Seemingly, the symmetries of the two subgames are never broken simultaneously, only
one at a time.

The TRG method turned out to be much more prone to numerical instability in the
case of this model, especially in the intermediate-alpha region, which has hindered the
collection of data and, consequently, the publication of results. It is possible that this
issue is related to the increased number of available strategies. The resulting higher
initial tensor dimension means that setting the same cut-o� dimension while truncating
the SVD increases the approximation error. Increasing the cut-o� dimension and the
number of iterations, however, increases the hardware and time requirements for carry-
ing out the calculations, which eventually ran up against the limitations of the project,
so a compromise had to be made between numerical stability and precision on the one
hand and the number of data points that could be acquired on the other. The instabil-
ity issues also raise the possibility of the TRG method � at least in its simplest form
used throughout this project � not being well suited to the investigation of models with
multiple competing order parameters. We can see hints of something similar happening
in Monte Carlo simulations of this model, too, where e�ciency is signi�cantly decreased
by transient domain growth processes. This issue can be mitigated by using prepared
initial states, but it also allows the simulation to get stuck in metastable states for long
periods of time, which prevents the identi�cation of the actual stable equilibrium state.
Maybe similar small modi�cations or the use of more advanced tensor network techniques
that correct some of the inherent shortcomings of the TRG method (e.g., TNR [13] or
GILT [14]) can improve or complement the TRG method to give more reliable access
to the intermediate-α region of the game of competing Ising- and Potts-type subgames.
However, pursuing such investigations ultimately falls beyond the scope and limitations
of the present project.

Di�culties notwithstanding, the TRG method still produces new evidence in support of
earlier �ndings about the system's behaviour. This includes examples of single Ising-
type, single Potts-type, and consecutive Potts order to Ising order and Ising order to
disorder phase transitions showing up in results for the speci�c heat, Ising and Potts
magnetization, and their Binder parameters. (For an illustration, see Figure 2.) The
collection of further supporting data is still in progress. A manuscript communicating
the results is already in preparation [P2].
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Figure 2: TRG results for the magnetizations of the Ising (orange squares) and Potts
(blue circles) subgames for α = 0.80, 1.015, and 1.02 (from left to right) in the game of
competing Ising- and Potts-type subgames, as a function of the temperature.

Inspired by the bunching of the neutral strategies of the elementary coordination game,
I tried to apply the same idea to the game of competing Ising and Potts subgames in
the hope of e�ectively reducing the number of its available strategies and thus improving
its numerical stability under the TRG method. Despite the fact that the symmetry of
Potts strategies spontaneously breaks in a way that only one of them has a higher fre-
quency than the others, a consistent bunching of the minority Potts strategies turns out
to be impossible by way of simply adding temperature-dependent terms to the payo�s
of a similar four-strategy game, due to the Potts subgame having di�erent diagonal and
o�-diagonal elements. However, this analysis does not in itself rule out the possibility of
�nding such a fewer-strategy or otherwise simpler equivalent by some other means that
can better exploit assumptions about how subgame symmetries break in the correspond-
ing ordered phase. Not only could such e�ective replacement models improve the e�cacy
of both numerical and analytic investigation techniques in speci�c cases, they could also
provide access to the systematic study of related many-strategy models � research into
their existence would make for a worthwhile future project.

In order to better understand the game of competing Ising and Potts subgames and
further explore the possibility of �nding a simpler equivalent model, I also reexamined its
mean-�eld approximation. More precisely, I looked at the mean-�eld approximation of
a generalized version of the game that combines a p-state and a q-state Potts subgame.
The game of competing Ising and Potts subgames is the p = 2, q = 3 special case of this
general (p+ q)-strategy model. It also contains the p-state (q-state) Potts model itself as
its q = 0 (p = 0) limit. Taking into account the way the subgame symmetries break, I
managed to exactly derive a single, one-variable equation whose solution determines both
the temperature and the magnetization at the order�disorder transition. The closed-form
exact solution of this equation is known in the Potts model limit [15], which raises the
possibility of �nding an analytic solution for at least some other special � or maybe even
the general � cases, too.

While being supported by the present grant, I also helped conduct two further studies
that are tangentially related to its topic. My contribution to these collaborations has
taken away neither research time nor other resources from this project, but it also would
not have been possible without the background provided by the received funding.
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With István Borsos (HUN-REN EK) and György Szabó (HUN-REN EK and HUN-REN
ÖK), we applied the matrix decomposition scheme that forms one of the bases of the
present project to the problem of graph characterization. More speci�cally, we derived
multiple local parameters and global measures from the decomposition of the adjacency
matrices of directed graphs and with their help quanti�ed certain topological features
of recursive trees. Our results were published (with acknowledgement of the funding I
have received) in an article titled �Quanti�cation and statistical analysis of topological
features of recursive trees� in Physica A [P3].

Classical matrix game models of evolutionary processes consider games de�ned by a
constant payo� matrix. With Tamás Varga (University of Szeged), György Szabó (HUN-
REN EK and HUN-REN ÖK), and József Garay (HUN-REN ÖK), we explored � using
the example of a modi�ed version of the hawk�dove game � how the notion of evolutionary
stability extends to games in which not only the players' strategy choices but also the
payo�s describing their interactions are determined by independent traits that evolve
according to natural selection. A manuscript detailing our �ndings (and acknowledging
the funding I have received) is currently under review at the Journal of Mathematical
Biology [P4].
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