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One of the main objectives of our project was to study hard combinatorial
problems for large classes of graphs and hypergraphs arising in geometric, al-
gebraic, and practical applications. In particular, for structures escaping the
“curse of dimensionality”: if they can be embedded in a bounded-dimensional
space, or they have small Vapnik-Chervonenkis dimension (VC-dimension) or a
short algebraic description. We made substantial progress in this direction.

Support by the KKP grant was acknowledged in 20 papers on a number
of different topics. Below we summarize the most significant results, grouped
according to the relevant combinatorial and geometric subfields.

1 Classical areas

In this section, we collect results in graph drawing, geometric hypergraphs,
Ramsey theory, and computational geometry. These results appeared in the
following publications: [7, 8, 10, 11, 16, 17, 18, 19]

1.1 Chromatic number vs. clique number

Due to recent seminal work by Chudnovsky, Scott, Seymour, and others, there
has been a lot of progress concerning the χ-boundedness of various important
graph classes. The notion was first introduced by Gyárfás and Lehel, and several
conjectures made by them have been proved. We contributed to this theme by
studying various classes of geometrically defined graphs.

The disjointness graph G = G(S) of a set of segments S in Rd, d ≥ 2 is
a graph whose vertex set is S and two vertices are connected by an edge if
and only if the corresponding segments are disjoint. We proved [7] that the
chromatic number of such a graph G satisfies χ(G) ≤ (ω(G)4 + ω(G))3, where
ω(G) denotes the clique number of G. It follows that S has Ω(n1/5) pairwise
intersecting or pairwise disjoint elements. Stronger bounds were established
for lines in space, instead of segments. We showed [7] that computing ω(G)
and χ(G) for disjointness graphs of lines in space are NP-hard tasks. However,
we managed to design efficient algorithms to compute proper colorings of G
in which the number of colors satisfies the above upper bounds. One cannot
expect similar results for sets of continuous arcs instead of segments or lines,
even in the plane. We constructed families of arcs, whose disjointness graphs
are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.

1



1.2 Crossing number

The crossing number of a graph G is the minimum number of edge crossings over
all drawings of G in the plane. A graph G is k-crossing-critical if its crossing
number is at least k, but if we remove any edge of G, its crossing number drops
below k. There are examples of k-crossing-critical graphs that do not have
drawings with exactly k crossings. Richter and Thomassen proved in 1993 that
if G is k-crossing-critical, then its crossing number is at most 2.5k + 16. In
spite of many efforts to improve this bound, it remained the best known result
until we [16] managed to break the ice and proved that the crossing number of
k-crossing-critical graphs is at most 2k + 6

√
k + 44.

Let G be a multigraph with n vertices and e > 4n edges drawn in the plane
such that any two parallel edges form a simple closed curve with at least one
vertex in its interior and at least one vertex in its exterior. Pach and Tóth (2018)
extended the Crossing Lemma of Ajtai et al. (1982) and Leighton (1983) by
showing that if no two adjacent edges cross and every pair of nonadjacent edges
cross at most once, then the number of edge crossings in G is at least ce3/n2,
for a suitable constant c > 0. The situation turns out to be quite different if
nonparallel edges are allowed to cross any number of times. We proved [18] that
in this case the number of crossings in G is at least ce2.5/n1.5. The order of
magnitude of this bound cannot be improved.

We call a multigraph non-homotopic if it can be drawn in the plane such
that no two edges connecting the same pair of vertices can be continuously
transformed into each other without passing through a vertex, and no loop can
be shrunk to its end-vertex in the same way. It is easy to see that a non-
homotopic multigraph on n > 1 vertices can have arbitrarily many edges. We
proved in [19] that the number of crossings between the edges of a non-homotopic
multigraph with n vertices and m > 4n edges is larger than cm2/n for a suitable
constant c > 0, and that this bound is tight up to a polylogarithmic factor. We
also showed the lower bound is asymptotically not sharp when n is fixed and m
tends to infinity.

1.3 Ramsey-type results

We considered m-colorings of the edges of a complete graph, where each color
class is defined semi-algebraically with bounded complexity [8]. The case m = 2
was first studied by Alon et al., who applied this framework to obtain surpris-
ingly strong Ramsey-type results for intersection graphs of geometric objects
and for other graphs arising in computational geometry. Considering larger val-
ues of m is relevant to problems concerning the number of distinct distances
determined by a point set. For p ≥ 3 and m ≥ 2, the classical Ramsey number
R(p;m) is the smallest positive integer n such that any m-coloring of the edges
of Kn, the complete graph on n vertices, contains a monochromatic Kp. It is
a longstanding open problem that goes back to Schur (1916) to decide whether
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R(p;m) ≤ 2cm, where c = c(p). We proved that this is true if each color class
is defined semi-algebraically with bounded complexity, and that the order of
magnitude of this bound is tight. Our proof is based on the Cutting Lemma
of Chazelle et al., and on a Szemerédi-type regularity lemma for multicolored
semi-algebraic graphs, which is of independent interest. The same technique
is used to address the semi-algebraic variant of a more general Ramsey-type
problem of Erdős and Shelah.

1.4 Geometric arrangements

Another important objective of the project was to seek new structural infor-
mation concerning various geometric arrangements, including arrangements of
strings (i.e., continuous curves) and half-planes in the plane. Our goal was to
apply a mix of combinatorial and algebraic techniques. It turned out to be fruit-
ful to study extremal problems concerning forbidden homogeneous submatrices
in a matrix.

A matrix is called homogeneous if all of its entries are equal. Let P be a
2 × 2 zero-one matrix that is not homogeneous. We proved that if an n × n
zero-one matrix A does not contain P as a submatrix, then A has a cn × cn
homogeneous submatrix, for a suitable constant c > 0 [10]. We further provided
an almost complete characterization of the matrices P (missing only finitely
many cases) such that forbidding P in a matrix A guarantees the existence of
an n1−o(1)×n1−o(1) homogeneous submatrix. We applied our results to chordal
bipartite graphs, totally balanced matrices, half-plane arrangements, and string
graphs.

1.5 Set systems

A “cornerstone” of the proposed research was to approach notoriously difficult
unsolved problems for bounded-dimensional hypergraphs (set systems). We suc-
cessfully used this idea to prove a slightly weaker version the famous Sunflower
Conjecture of Erdős and Rado.

Given a family F of k-element sets, some of its members, S1, . . . , Sr ∈ F ,
form an r-sunflower if Si ∩ Sj = Si′ ∩ Sj′ for all i ̸= j and i′ ̸= j′. According
to the Erdős-Rado conjecture (1960), there is a constant c = c(r) such that
if |F| ≥ ck, then F contains an r-sunflower. We came close [11] to proving
this conjecture for families of bounded Vapnik-Chervonenkis dimension, i.e.,
when VC-dim(F) ≤ d. In this case, we showed that r-sunflowers exist under

the slightly stronger assumption |F| ≥ 210k(dr)
2 log∗ k

. Here, log∗ denotes the
iterated logarithm function. We also verified the Erdős-Rado conjecture for
families F of bounded Littlestone dimension and for some geometrically defined
set systems.

For n ≤ d, a family F = {C0, C1, . . . , Cn} of compact convex sets in Rd

is called an n-critical family provided any n members of F have a non-empty
intersection, but

⋂n
i=0 Ci = ∅. If n = d, then a lemma on the intersection of
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convex sets due to Klee implies that the d+ 1 members of the d-critical family
enclose a “hollow” in Rd, a bounded connected component of Rd \

⋃n
i=0 Ci. We

proved [17] that the closure of the convex hull of a hollow in Rd is a d-simplex.

2 Euclidean, Spherical, and
Hyperbolic Geometries

We have also contributed to some purely geometric fields; see [5, 6, 9].

2.1 Triangles

We showed in [9] that every minimum area isosceles triangle containing a given
triangle T shares a side and an angle with T . This proves a conjecture of
Nandakumar motivated by a computational problem. We used this result to
deduce that for every triangle T ,

(1) there are at most 3 minimum area isosceles triangles that contain T , and
(2) there exists an isosceles triangle containing T , whose area is smaller than√

2 times the area of T .
Both bounds are best possible.

2.2 Cubes

It is a 300-year-old – rather counter-intuitive – observation of Prince Rupert
of the Rhine that one can cut a straight tunnel in a 3-dimensional unit cube,
through which another unit cube can be passed. A hundred years later, P.
Nieuwland strengthened Rupert’s problem and asked for the largest aspect ratio
so that a larger homothetic copy of the same body can be passed through it.
We showed [5] that cubes and, in fact all, rectangular boxes have Rupert-type
passages in every direction that is not parallel to its faces. In the case of the
cube, it was assumed without proof that the solution of the Nieuwland’s problem
is a tunnel perpendicular to the largest square contained by the cube. We proved
that this assumption is unnecessary not only for the cube, but also for all other
rectangular boxes.

2.3 Circles

We proved in [6] that for any arrangement of finitely many circles on the sphere
or in the hyperbolic plane, there is a polygonal tiling, each face of which contains
exactly one circle. The corresponding statement was known in the Euclidean
plane. We also showed that in the Euclidean plane there is no convex disc C
other than the circular one, with the property that any packing with similar
copies of C can be separated by a polygonal tiling. The analogous statement is
false on the sphere and it is not known in the hyperbolic plane. This study led
to another characterization of the Euclidean circle: It is the only convex disc all
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caps of which are isosceles. It can be conjectured that restricting this condition
to caps of a fixed angle would also characterize Euclidean circles.

3 Geometry and analysis

Here we describe some results whose proofs involve a mix of geometric and
analytical methods.

3.1 Riemannian manifolds

The total scalar curvature of a compact submanifold, possibly with boundary,
of a Riemannian manifold is the integral of the scalar curvature function of the
submanifold over the submanifold with respect to the volume measure induced
by the Riemannian metric. Csikós and Horváth proved in an earlier paper [20]
that if a connected Riemannian manifold of dimension at least 4 is harmonic,
then the total scalar curvatures of tubes of small radius about a regular curve
depend only on the length of the curve and the radius of the tube, and conversely,
if the latter condition holds for cylinders, i.e. for tubes about geodesic segments,
then the manifold is harmonic.

In [21], we showed that, in contrast to the higher dimensional case, a con-
nected 3-dimensional Riemannian manifold has the above mentioned property
of tubes if and only if the manifold is a D’Atri space. (A Riemannian manifold
is said to be a D’Atri space if the local geodesic reflection with respect to an
arbitrary point is volume-preserving). Furthermore, if the space has bounded
sectional curvature, then it is enough to require the total scalar curvature con-
dition only for cylinders to imply that the space is D’Atri. This result led to a
negative answer to the following question of Gheysens and Vanhecke [22]: Does
vanishing of the total scalar curvature of tubes about curves in a 3-dimensional
Riemannian manifold imply that the manifold is harmonic? To prove these
statements, we gave the following characterization of D’Atri spaces in any di-
mension: the total scalar curvatures of any two geodesic hemispheres lying on
a given geodesic sphere are equal.

3.2 Log-concave functions and
computational mathematics

We gave [1] a definition of the John ellipsoid of logarithmically concave functions
in an analogous manner to that used in the context of convex sets. As an
application, we showed a bound on the integral of the point-wise minimum of
log-concave functions. We studied a related problem in [2], a quantitative Helly
type question, and obtained a general bound which can be used to answer a
number of related problems.

We designed [3] an efficient algorithm for computing the covering radius of
rational polytopes in Rn. The algorithm is faster in relevant cases than the best
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previously known algorithm of Kannan from 1993. Applying this algorithm, we
managed to solve the first open case of a variant of the Lonely Runner Conjec-
ture. We studied [4] the Closest Vector Problem, and using a new geometric
approach which relies on set coverings, we obtained a fast algorithm to approx-
imate the optimum.

4 Applications

Apart from the algorithmic applications described in the last subsection, we
found further applications of our combinatorial techniques to geometry [14].
In other cases, we used geometric intuition and concepts to tackle “abstract”
(non-geometric) questions [12, 15].

4.1 Compression schemes

Let B be a fixed finite domain and F a fixed family of binary functions f :
B → {0, 1}. For learning functions f ∈ F , several compression schemes were
suggested. Intuitively, the learner is given a sample, that is, the function f re-
stricted to a subset A of the domain B. But the learner has no space to store the
entire sample. Instead, she stores only a well chosen fragment of it and should
be able to restore the value f(x) for any x ∈ A from the fragment. Kuzmin and
Warmuth [13] suggested the following definition for an unlabelled compression
scheme for the family F : it consists of two functions, the compressing func-
tion α takes an arbitrary function on a subset A of the domain B and outputs
a subset C of A. The reconstruction function β takes a subset of B and an
element x ∈ B and outputs 0 or 1. Such a pair is an unlabeled compression
scheme if it correctly guesses f(x) for any x ∈ A, that is, if for any function
f ∈ F , for any subset A of the domain B, and for any element x ∈ A, we have
β(α(f |A), x) = f(x). The size of such a compression scheme is the size of the
largest set C output by the compression function.

Kuzmin and Warmuth observed that the size of any unlabeled compression
scheme for F must be at least the VC-dimension of F and proved that unlabelled
compression schemes of size equal to the VC-dimension exists for any maximal
size family F for any given VC-dimension. (Their proof contained a minor error
that has since been fixed.) They conjectured that for any family F , there exists
an unlabeled compression scheme whose size is equal to the VC-dimension. In
[12], we gave a counterexample to this conjecture. The proof is interesting for its
novel lower bound techniques. We also explored bounds for the size of optimal
unlabeled compression schemes for various function families.

4.2 Extremal edge-ordered graphs with
applications in discrete geometry

One of the objectives of the project was to develop the foundations of an ex-
tremal theory of ordered graphs.
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The basic question of Turán-type extremal graph theory is the following:
what is the maximal number of edges that an n-vertex graph can have if it
does not contain a fixed so-called forbidden subgraph. Results of this kind have
found many applications in various fields of mathematics and computer science.
Extensions of this theory study the same question about graphs equipped with
some additional structure such as a drawing in the plane (geometric graphs,
topological graphs), a linear order among the vertices (vertex-ordered graphs)
among others. We introduced edge-ordered graphs in [14]: these are simple
graphs with a linear order on their edge-set. The corresponding extremal prob-
lem is as follows: how many edges can an edge-ordered graph on n vertices have
if a it does not contain a given forbidden edge-ordered graph. In other words,
the forbidden graph comes with an edge-order and we allow our graph to con-
tain isomorphic copies of the underlying simple graph if they have a different
edge-order.

We started to build the extremal theory of edge-ordered graphs [14]. We
found an interesting version of the well known Erdős-Stone-Simonovits theorem
that applies to edge-ordered graphs. Each forbidden edge-ordered graph has
an order-chromatic number, an integer c ≥ 2 (or infinity), and the asymptotic
behavior of the corresponding extremal function is determined by this number,
unless it is 2. The order-chromatic number behaves differently from the classic
chromatic number in the following respect. It can be exponentially (possibly
twice exponentially) larger than the size of the edge-ordered graph. We showed
that when one forbids more than one edge-ordered graphs, the family often be-
haves as an edge-ordered graph with considerably lesser order chromatic number
than any of the edge-ordered graphs in the family.

We studied the extremal function of a few well-chosen forbidden patterns in
[14]. They include all edge-ordered paths and cycles of up to four edges, forests
consisting of star components and some other graphs. One of our results (about
the extremal function of an edge-ordered path with four edges) has already
found an application in discrete geometry. Keszegh and Pálvölgyi was able to
improve a bound on the number of possible touchings between two restricted
families of plane curves using our result.

4.3 Limit theory of finite trees

A limit theory of finite graphs was developed by Lovász, Szegedy and many
others. It proved useful in extremal graph theory and, in general, it has led to
a better understanding the structure of large graphs. The limit theory is based
on random sampling: if we take a uniform random sample of k vertices of a
much larger graph, and consider the subgraph induced by them, we obtain a
distribution on the k-vertex graphs. In the limit theory of large graphs, a graph
sequence is considered convergent if these distributions converge for any fixed
k. Its limit object is a two-variable real function.

We developed a similar theory for the convergence and limits of finite trees
in [15]. We also worked with random samples of vertices, but trees are sparse,
so the induced subgraphs are not informative (they are almost always empty).
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Instead, we considered trees as metric spaces with a normalized version of the
graph distance. This way one can apply the well developed theory of metric
measures. It is quite surprising that the limit objects we find (which we call them
dendrons) are typically not metric measure spaces. The relevant metric spaces
(so-called real trees) are needed for the description of the limit objects. However,
the probability distributions are defined not directly on the real trees T , but
on the product set T × [0, 1]. This product set is then equipped with a strange
“distance function” d that does not satisfy d(x, x) = 0 for most of the points x.
Nevertheless, sampling random points from the product, these “distances” give
the limit distribution of the normalized graph distances whenever finite graphs
are sampled.

We proved the existence and uniqueness of the limit dendrons for a conver-
gent sequence of finite trees using ultralimit theory. This requires the extension
of earlier results on ultralimits of metric and measure spaces.
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