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1 Introduction

The aim of this project was to study finite geometric problems with algebraic techniques. The project
was planned for 3 years, but it had to be closed after 1 year and 7 months because it was not
compatible with the principle investigator’s new position. During the project we published 5 articles
and submitted 2 other manuscripts which are currently under review. Two of the published articles
([11, 12]) were submitted before the starting date of the project, but the revision process was done
during the period of this report. The topics of these papers are closely related to the theme of this
project. Two papers are joint works with Hungarian colleagues, the rest of them were done within an
(informal) international cooperation, mostly with Italian researchers.

In the research proposal, the topics of the project were divided into two parts: piq linear structures
(such as linearised polynomials, or special subspaces of a vector space) and point sets derived from
them and piiq the study of combinatorially defined point sets, usually by associating algebraic curves,
which helps to understand them better. The obtained results are presented in Sections 2 and 3,
respectively. As we will see, curves and hypersurfaces play an important role also in the problems of
piq, and techniques about linearised polynomials can be useful for problems of piiq as well.

2 Linear structures

In this section we summarise our results from [3, 4, 12, 11] and their aftermath.

Let V be an r-dimensional vector space over Fqn , the finite field of qn elements. Then V is also
a vector space over Fq of dimension rn and an Fq-subspace U of V is called scattered if it meets the
one-dimensional Fqn-subspaces of V in Fq-subspaces of dimension at most 1. In the seminal paper
of Blokhuis and Lavrauw [6] it was proved that the maximum dimension of a scattered subspace U
of V is rn{2. If the dimension of U reaches this upper bound, then U is called maximum scattered.
Maximum scattered subspaces are well-studied objects of finite geometry, which have been linked to
Fqn-linear MRD-codes (MRD-codes with a maximum idealiser), two-character sets, two-weight codes,
strongly regular graphs.

In [4] with Bartoli and Montanucci we proved a conjecture on the number of inequivalent maximum
scattered subspaces constructed in [10] and, as a consequence, we obtained a lower bound on the
number of inequivalent MRD-codes contained in the corresponding family. The constructions in [10]
produced the first examples of Fqn-linear MRD codes which are not of Gabidulin or Twisted Gabidulin
type and hence this family is in the focus of interest since then (see for example [15, 16, 21]). In
our proof first we gave a sufficient and necessary condition for b P Fq6 such that the Fq-subspace
tpx, fpxqq : x P Fq6u is maximum scattered in Fq6 � Fq6 , where fpxq is the linearised polynomial

bxq � xq
4
. To do this we used some recent results about Dickson matrices and the number of roots

of linearised polynomials from [9]. Then we used some delicate counting techniques involving rational
points of quadratic surfaces.

In [11] with Marino, Polverino and Zullo we introduced h-scattered subspaces, a natural general-
ization of scattered subspaces (which is the h � 1 case). For the dimension of an h-scattered subspace
we proved the upper bound rn{ph� 1q, which generalises the Blokhuis–Lavrauw bound. We defined a
duality relation among such subspaces, and we gave various examples with maximum dimension. Our
examples were linked later by Zini and Zullo to Fqn-linear MRD-codes [22].
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In [3] with Bartoli, Marino and Trombetti we generalised further the concept of scatteredness. Let
F be a set of subsets of a set A. A subset S of A is called c-evasive for F if S meets the elements of
F in at most c points. This definition is due to Pudlák and Rödl [17]. In [3] we investigated the case
when A is the set of vectors of an r-dimensional vector space over Fqn , F is the set of h-dimensional
Fqn-subspaces of A and S is an Fq-subspace. We called S ph, kqq-evasive, if S meets the elements of F
in Fq-subspaces of dimension at most k. This notion generalizes the concept of scattered ph � k � 1q
and h-scattered ph � kq subspaces. We proved upper and (via constructions) lower bounds on the
maximum dimension of ph, kqq-evasive subspaces. We extended the duality relation introduced in [11]
from h-scattered subspaces to evasive subspaces. For n � 5, r � 3, and infinitely many values of
q, we constructed scattered subspaces of maximum possible dimension in the vector space A. These
are the first examples with these parameters. In the proof we represented the 3-dimensional Fq5-
vector space A as the finite field Fq15 and translated the problem of finding the size of intersection
of subspaces into the problem of finding the degree of the greatest common divisor of q-polynomials
over Fq15 . This allowed us to use the machineries from [9]. Our construction relies on the fact that
certain hypersurfaces cannot have common points of a certain type. To prove this we also used the
Magma Computational Algebra System. Our examples were linked later by Alfanaro, Borello, Neri
and Ravagnani to cutting blocking sets and minimal codes in the rank metric [1].

In [12] with Marino, Polverino and Zhou we classified MRD-codes with maximum left and right
idealisers in the ring of n � n matrices over Fq for n ¤ 9. Surprisingly, we found new examples
of this kind, which are not of Gabidulin type. These are the only known examples of this kind in
the literature. We also proved some non-existence results relying on the fact that certain curves
cannot have common Fq-rational points. One of our open questions about the asymptotics of possible
examples was answered later by Bartoli and Zhou in [2].

3 Combinatorially defined point sets

In this section we summarise our results from [14, 13, 8].

In [14] with Weiner we investigated generalised Korchmáros-Mazzocca arcs of type p0,m, tq, that
is, point sets S of PGp2, qq (i.e., the projective plane over Fq), such that each point P of S is incident
with a t-secant and the other lines incident with P are m-secants (a k-secant of S is a line of PGp2, qq
meeting S in exactly k points). Under certain conditions, we proved the existence of a nucleus: a
common point of the t-secants. We also found examples without a nucleus, something which never
occur in case of Korchmáros-Mazzocca arcs (which is the m � 2 case). We also found relations with
group divisible designs and sharply focused arcs. Let q be a power of the prime p. Some of our
examples are interesting also from a coding theory point of view, since when p divides m and t then
these point sets correspond to code words in the dual of the code generated by the incidence vectors
of points and lines of PGp2, qq, and they usually have small, sometimes the smallest possible, weights.
When m or t is not divisible by p, then we were able to describe all examples. We also considered mod
p variants of such point sets. In the proofs we used polynomial techniques and a result on multisets
due to Szőnyi and Weiner [20].

There are many examples for point sets in finite geometry, which behave “almost regularly” in
some (well-defined) sense, for instance they have “almost regular” line-intersection numbers. In [13]
with Weiner and Sziklai we investigated point sets of AGp2, qq, the affine plane over Fq, for which there
exist some (sometimes: many) parallel classes of lines, such that almost all lines of one parallel class
intersect our set in the same number of points (possibly modulo p, the characteristic). The lines with
exceptional intersection numbers are called renitent, and we proved results on the (regular) behaviour
of these renitent lines. We proved that, under some conditions, the renitent lines are contained in a low
degree algebraic curve of the dual plane. If we strengthen these conditions, the degree becomes smaller.
In the proofs we used polynomial techniques. For illustration, we state here one of our theorems. Let
M be a multiset of AGp2, qq. For some integer r   q{2 the direction pdq is called pq � rq-uniform, if
there are at least pq� rq affine lines with slope d meeting M in the same number of points modulo p.
The rest of the lines with slope d are called renitent. Let F denote a set of pq� rq-uniform directions.
Then the renitent lines with slope in F are contained in an algebraic curve of degree r2 of the dual
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plane. With some further restrictions, we can push down the degree in the above result from r2 to r.
These results have immediate applications in the study of point sets S of PGp2, qq with the property
that each point of S is incident with r t-secants and pq � 1 � rq m-secants, and hence they naturally
extend some of our results from [14] and some earlier results on semiovals and directions determined
by affine point sets due to Blokhuis and Szőnyi from [5, 7, 19]. Indeed, fix an m-secant ` and consider
it as the line at infinity. Then the t-secants meeting ` in S can be considered as renitent lines. Our
manuscript is submitted to the European Journal of Combinatorics.

Let PGpr, qq denote the r-dimensional projective space over Fq. A k-cap in PGpr, qq is a set of
k points no three of which are collinear. A k-cap is said to be complete if it is not contained in a
pk�1q-cap. The study of caps is not only of geometrical interest, their concept appears also in coding
theory, since complete caps correspond to certain non-extendable linear codes. They are also natural

examples of 1-saturating sets. In 1959 Segre proved the lower bound
?

2q
r�1
2 for the size of the smallest

complete cap in PGpr, qq, [18]. Despite the many efforts made, apart from the case when q is even
and r is odd, all known constructions of infinite families of complete caps have size far from this lower
bound. In [8] with Cossidente, Marino and Pavese we constructed complete caps in Λ :� PGp4n�1, qq,
q ¡ 2, of size 2pq2n � q2n�1 � . . . � 1q and hence we proved that Segre’s bound is essentially sharp
when r � 4n� 1. To present our construction, first we introduce the p4n� 2q-dimensional Fq-vector
space V whose subspace lattice plays the role of the projective space Λ:

V :� tpa, b, aq, bq, . . . , aq2n , bq2nq : a, b P Fq2n�1u.

Denote by P pa, bq the projective point of Λ defined by the vector pa, b, aq, bq, . . . , aq2n , bq2nq for each
pa, bq � p0, 0q. Denote by Π1 and Π2 the 2n-dimensional projective subspaces consisting of the points
P p0, bq and P pa, 0q, respectively, where a and b run over the non-zero elements of Fq2n�1 . It can be
proved that the points of Λz pΠ1 Y Π2q can be partitioned into

�
ωPFq2n�1zt0u

Vω, where

Vω �
 
P px2, ωxq�1q : x P Fq2n�1zt0u( .

It turns out that the set Vω is a cap of Λ of size pq2n � q2n�1 � . . .� 1q. Let α be �1 if q is odd and
an element of Fqzt0, 1u if q ¡ 2 is even. Our main result states that V1Y Vα is a complete cap. When
n � 1, then Vω is a Veronese variety. In general, V1YVα can be viewed as the projection of two disjoint
Veronese varieties of PGp2n2�3n, qq from a suitable p2n2�n�2q-dimensional projective subspace. The
hardest part was to prove the completeness. After a series of algebraic manipulations this problem
boiled down to find a non-zero root in Fq2n�1 of certain linearised polynomials, or equivalently, to
prove that none of them induces a permutation of Fq2n�1 . We used a Dickson-like matrix to prove
that certain linearised polynomials have a non-zero root in the field of their coefficients if and only if
they have a non-zero root in the quadratic extension of this field. This result allowed us to search for
the non-zero roots in Fq4n�2 , where we could explicitly locate them. Our manuscript is submitted to
the Journal of the London Mathematical Society.
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