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1. Domestic hot water production with solar heating systems 

In the second year of the project, we published papers [1] and [2]. In the papers, we worked out 

a new analytical system solution for a rather basic and frequently used two-dimensional 

ordinary differential equation model of complete collector-storage systems. The solution 

provides easy- and fast-to-use explicit formulas to determine both the temperature of the 

collector and the temperature of the storage. 

The analytical solution was validated with the measured data of the experimental solar heating 

system set up in the first project year. As a part of the validation of the (two-dimensional) 

system solution, the analytical solution of the (one-dimensional) solar collector sub-model 

(which is known in the literature) was also validated separately with the measured data of the 

collector itself. Based on the validation containing a relatively long time period of 19 days, the 

error of the new system solution is 3.4% in case of the collector and 2.0% in case of the storage, 

which means an outstanding precision in the field. 

For a continuation of the above work, we worked out a new control method based on the above 

analytical solution. We also completed the existing measured solar heating system with 

controlling equipment. With the aim of it, we will be able to test in practice the expectable new 

control methods. The theoretical results are ready, their validation and the preparation of the 

corresponding manuscript, to be published in a high quality (Q1) journal, are in progress. For 

additional information, the half-prepared manuscript (titled (in Hungarian) “Arányos 

szabályozás és konstans térfogatáram...”) is attached to this report in the Appendix below. 

Although it is relatively raw, it essentially contains the new results in the form of mathematical 

formulas. 

In the framework of the present project, we also developed an invention: It is a new solar device 

(that can be called solar pot) that serves for liquid heating and/or cooking, mostly for meals 

purposes, by means of the rather direct use of solar energy harvested by solar collectors. By 

now, the protection process has been successfully finished at the Hungarian Intellectual 

Property Office. (The cost of the patent process itself has been met by the financial support of 

an application that we gained inside our University (not by the present OTKA FK_19 fund).) 

Now our invention (utility model) is protected officially according to the following 

specification: patent number 5489, title (translated from Hungarian): Equipment for preparing 

food by means of solar irradiation and/or for heating liquid [3]. 

In the third year of the project, we worked out a black-box type multiple linear regression based 

mathematical model for (real-time) predicting the indoor temperature of mobile (office) 

containers. The model, having low computational demand, could be generalized for other types 

of residence places as well. We validated the model based on measured data, which has the 

following (exogenous) inputs: global solar irradiance, environment temperature and wind 

speed. Then we used the model to estimate the application potential of (hot water producing) 

solar collectors, installed on the top of containers, for space heating. Based on the results with 

respect to a single room container, with an inner area of about 5 m2, two solar collectors (having 

about 4 m2 area in sum) could extend the time with comfortable indoor temperature by more 

than 5 hours within a three-day period in spring (in Hungary), without any other auxiliary 

heating. These results have been published as a journal article in [4]. 

2. Exploitation of thermal water resources 

Based on the hydrogeological expertise of our Italian partners, we developed a game-theoretical 

model for the sustainable use of thermal water resources in the case of the Ischia volcanic island 

(Italy). In the game the spas are the players, the strategy of a player consists of a fixed pumping 

rate and daily time durations of pumping. The payoff of a player is proportional to the total 



quantity of withdrawn thermal water in a given time period. For the sustainability, the total 

pumping should be limited, since overpumping implies a significant recharge of the aquifers 

from seawater, changing the quality of the thermal water. For the obtained n-player normal 

form game, a special constrained Pareto optimal strategy choice is obtained, considered as 

solution of the game. The results have been discussed in international conferences [5], [6], [7], 

and published in paper [8].  

Going beyond the planned research, we started to collaborate with the Italian partner concerning 

the sustainability of two economic activities in the Tivoli Plain (Lazio Region, Italy): There are 

large number of active quarries in the area extracting travertine, needing massive dewatering, 

implying a substantial drawdown measured at the Acque Albule spring used by the Terme di 

Roma Spa, the other important economic actor in the area, and the water level of the near Aniene 

river is also an issue. This is a promising research line, since similar sustainability conflicts are 

known in Hungary, too. During the prolongation of the project, by now the Hungarian part of 

the involved research group already prepared the draft of the mathematical and computational 

part of a paper, and an abstract has been already submitted to the following international 

conference: “The Geoscience paradigm: Resources, Risk and future perspectives, 19-21 Sept. 

2023, Potenza, Italy” [9]. Furthermore, a manuscript on the results is to be published in a high 

quality (Q1) journal. For additional information, the half-prepared manuscript (titled “Game-

theoretical model for sustainable use of groundwater…”) is attached to this report in the 

Appendix below. Although it is relatively raw, it essentially contains the new results mostly in 

the form of mathematical formulas. The hydrogeological part is in preparation by the Italian 

partner. 

Conflicts on thermal water resources can often be described and solved mathematically with 

bimatrix games in case of two consumers. Pareto optimality is often used as the (cooperative) 

solution of such resource conflicts since they are not improvable in the following sense: In 

comparison with a Pareto optimal equilibrium (strategy pair) of the game, there are no such 

strategies for the consumers with which at least one of their payoffs (profits) would increase 

while the other’s payoff would not decrease. We worked out a new theorem, along with an 

algorithm, which makes it easier to check the Pareto optimality of a strategy pair in bimatrix 

games and, therefore, to solve certain conflict situations among consumers of thermal water 

resources. Then we proposed a nonlinear transform to make the payoff functions of the 

consumers linear with respect to the new transformed independent variables of the game. This 

transform makes it even more convenient to check the Pareto optimality of strategy pairs in 

certain cases. These results have been published as a journal article in [10]. 

With respect to the mathematical description of resource allocation problems, like 

allocating/distributing (limited) thermal water resources among several users, we proved 

another new theorem (along with two new lemmas) for the explicit expression of properly 

assigned (dependent) variables by means of the other (independent) variables in a system of 

inequality and quadratic equality constraints. The sum of the (nonnegative) variables may be 

either prefixed (if the available resource is limited) or not. The constraints may describe the 

feasible set in various resource allocation tasks (possibly in optimization or game-theoretical 

contexts) or in other problems. Furthermore, a practical algorithm was derived for assigning in 

a feasible way the independent variables (corresponding to the freely adjustable portions of the 

used thermal water to be distributed), to which (possibly limited) arbitrary nonnegative values 

can be prescribed. Practical examples were provided to facilitate utilizing the results. This work 

has been published as a journal article in [11]. 

3. Further achievement in the framework of the project 



We organized the 1st International Conference on Efficiency, Solar and Thermal Energy for the 

Human Comfort on 9 July 2021 in the Hungarian University of Agriculture and Life Sciences 

(former Szent István University), Gödöllő, Hungary. Together with the University, we issued 

the Book of Abstracts of the Conference [12]. The editors – Gábor Géczi, Richárd Kicsiny and 

László Székely – are all members of the current OTKA FK_19-supported research project, the 

data of which (National Research, Development and Innovation Office (Hungary), Grant No. 

131895) we indicated  in the Book of Abstracts. The Conference had 25 participants, among 

which 8 were foreigner researchers. 

4. Publications 

Our results were discussed in international conferences [2], [5], [6], [7], and published as 

journal articles [1], [4], [8], [10], [11]. Additionally, an abstract [9] is already submitted to an 

international conference and two further papers are under preparation. Furthermore, our 

invention [3] was protected at the Hungarian Intellectual Property Office and we organized an 

international conference with a book of abstracts [12]. 
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5. Level of completeness 

With respect to the topic of Domestic hot water production with solar heating systems, we 

estimate that our level of completeness compared to the work amount planned originally in the 

project is more than 100%. With respect to the topic of Exploitation of thermal water resources, 

we estimate that our level of completeness compared to the work amount planned originally in 

the project is more than 95%. The total level of completeness compared to the originally 

planned work amount is more than 100%. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

For additional information, in this appendix, two half-prepared manuscripts (titled “Arányos 

szabályozás és konstans térfogatáram...” and “Game-theoretical model for sustainable use of 

groundwater…”) worked out in the framework of the present project are enclosed. 



Arányos szabályozás és konstans

térfogatáram, átlagos h®mérséklettel

GG, KR, SZL

May 3, 2023

1 Introduction

2 Models

2.1 Nomenclature

2.2 General model for h®cserél® nélküli rendszerre kev-

ert tartály és arányos szabályozás esetén

Consider the di�erential equation
Ṫc =

Acη0
ρcccVc

Ic +
ULAc

ρcccVc

(Tce − Tav) +
v

Vc

(Ts − Tc),

Ṫs =
v

Vs

(Tc − Ts),
(1)

where

Tav =
Tc + Tcold

2
. (2)

Arányos szabályozás esetén

v = a(Tc − Ts), (3)

then 
Ṫc = − a

Vc

(Ts − Tc)
2 +

ULAc

ρcccVc

(Tce − Tav) +
Acη0
ρcccVc

Ic,

Ṫs =
a

Vs

(Ts − Tc)
2.

(4)

1



A kollektor h®veszteségét elhagyva
Ṫc = − a

Vc

(Ts − Tc)
2 +

Acη0
ρcccVc

Ic,

Ṫs =
a

Vs

(Ts − Tc)
2.

(5)

By taking the di�erence of the two equations of system (5) and introducing
the new variable

x = Tc − Ts (6)

we get the following separable di�erential equation

ẋ = −ac1x
2 + c2, (7)

where

c1 =
1

Vc

+
1

Vs

, c2 =
Acη0
ρcccVc

Ic. (8)

Note that both c1 and c2 are positive. According to this the quadratic func-
tion

f(x) = −ac1x
2 + c2 (9)

on the right side of equation (7) has two distinct real roots of opposite sign

x1 = −
√

c2
ac1

, x2 =

√
c2
ac1

, (10)

which also means that f can be factorized:

f(x) = −ac1x
2 + c2 = −ac1

(
x−

√
c2
ac1

)(
x+

√
c2
ac1

)
. (11)

It follows as well that the di�erential equation (7) has two equilibria, namely
x1 and x2. Note that from a practical point of view only the case x(0) =
Tc(0)−Ts(0) > 0 case is relevant. Observe that x2 is a locally asymptotically
stable equilibrium, that is for all solutions with x(0) > 0

lim
t→∞

x(t) = x2.

For all solution for which x(0) ∈]0, x2[ are strictly monotonically increasing,
furthermore all solution for which x(0) ∈]x2,∞[ are strictly monotonically
increasing due to the sign of f on these intervals.
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Statement 1. Depending on x(0) > 0 the solution of di�erential equation
(7) is the following for all t ∈ [0,∞[:

(a) if x(0) ∈]0, x2[ then

x(t) =

√
c2
ac1

1− 2
√
ac1x(0)+

√
c2√

c2−
√
ac1x(0)

e2
√
c1c2at + 1

 , (12)

(b) if x(0) = x2 then
x(t) ≡ x2, (13)

(c) if x(0) ∈]x2,∞[ then

x(t) =

√
c2
ac1

1 +
2

√
ac1x(0)+

√
c2√

c2−
√
ac1x(0)

e2
√
c1c2at + 1

 . (14)

Proof. Case (b) is obvious. We prove only Case (a), the proof of Case (c) is
analogous to Case (a), the details of it are left to the Reader.

Since x(0) is neither x1 nor x2 then the solution of separable di�erential
equation (7) can be obtained in the following way. Rewriting equation (7)
into the form

ẋ

−ac1x2 + c2
= 1, (15)

and integrating with respect to time over the interval [0, t] leads to∫ t

0

1

−ac1x2(s) + c2
· ẋ(s)ds =

∫ t

0

1ds. (16)

A substitution in the integral on the left side of the equation gives∫ x(t)

x(0)

1

−ac1u2 + c2
du = t. (17)

Factorization yields

− 1

ac1

∫ x(t)

x(0)

1(
u−

√
c2
ac1

)(
u+

√
c2
ac1

)du = t. (18)
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One can easily check (e.g. using partial fraction decomposition) that the
integral can be written in the form

− 1

ac1

∫ x(t)

x(0)

√
ac1

2
√
c2

u−
√

c2
ac1

−

√
ac1

2
√
c2

u+
√

c2
ac1

du = t. (19)

Using Newton�Leibniz Theorem and the assumption on x(0) gives

1

2
√
ac1c2

[
ln

∣∣∣∣u+

√
c2
ac1

∣∣∣∣− ln

∣∣∣∣u−
√

c2
ac1

∣∣∣∣]x(t)
x(0)

= t, (20)

ln
∣∣∣u+

√
c2
ac1

∣∣∣∣∣∣u−
√

c2
ac1

∣∣∣


x(t)

x(0)

= 2
√
ac1c2t, (21)

ln

∣∣∣x(t) +√
c2
ac1

∣∣∣∣∣∣x(t)−√
c2
ac1

∣∣∣ − ln

∣∣∣x(0) +√
c2
ac1

∣∣∣∣∣∣x(0)−√
c2
ac1

∣∣∣ = 2
√
ac1c2t, (22)

ln


∣∣∣x(t) +√

c2
ac1

∣∣∣∣∣∣x(t)−√
c2
ac1

∣∣∣ ·
∣∣∣x(0)−√

c2
ac1

∣∣∣∣∣∣x(0) +√
c2
ac1

∣∣∣
 = 2

√
ac1c2t, (23)

x(t) +
√

c2
ac1√

c2
ac1

− x(t)
·

√
c2
ac1

− x(0)

x(0) +
√

c2
ac1

= e2
√
ac1c2t. (24)

Expressing x(t) from the equation concludes the proof.

Note that formulas (12)�(14) also yield that if x(0) > 0 then

lim
t→∞

x(t) = x2.

From the point of view of control, it is important to know when is the dif-
ference between the temperature of the collector and the temperature of the
storage is su�ciently close to the equilibrium, that is for a given (small) d > 0
we need to determine the smallest time instance t0 ∈ [0,∞[ for which

|x(t0)− x2| = d (25)
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holds. Note, that since x2 is locally asymptotically stable, for all t ≥ t0

|x(t)− x2| < d (26)

holds.

Statement 2. Let x(0) > 0 and d > 0 be given. Then for the solution of
di�erential equation (7) the relation

|x(t)− x2| ≤ d (27)

holds if one of the followings hold:

(a) x(0) ∈]0, x2[ and

t ≥ 1

2
√
ac1c2

· ln

(
2− d

√
ac1
c2

)(√
c2
c1
−
√
ax(0)

)
(√

ax(0) +
√

c2
c1

)
· d ·

√
ac1
c2

, (28)

or

(b) x(0) = x2, or

(c) x(0) ∈]x2,∞[ and

t ≥ 1

2
√
ac1c2

· ln

(
2 + d

√
ac1
c2

)(√
ax(0)−

√
c2
c1

)
(√

ax(0) +
√

c2
c1

)
· d ·

√
ac1
c2

. (29)

Proof. Case (b) is obvious. Case (a) and Case (c) follows from the rearrange-
ment of inequality (27).

From the point of view of control it is worth also to know that for a
desired equilibrium point x2 > 0 what value of TÉRFOGATÁRAM should
be chosen. That is, from the expression for x2

x2 =

√
c2
ac1

(30)

we have to express a as a function of x2. Reorganisation of the above equation
yields

a =
c2
x2
2c1

. (31)

5



2.3 General model for h®cserél® nélküli rendszerre rétegzett

tartály esetén, a kollektor h®veszteségének �gyelem-

bevételével, arányos szabályozás esetén

Consider the di�erential equation

Ṫc =
Acη0
ρcccVc

Ic +
ULAc

ρcccVc

(Tce − Tav) +
v

Vc

(Tcold − Tc). (32)

Arányos szabályozás esetén

v = a(Tc − Tcold), (33)

then

Ṫc = − a

Vc

(Tc − Tcold)
2 +

ULAc

ρcccVc

(Tce − Tav) +
Acη0
ρcccVc

Ic. (34)

Let us introduce the trivial di�erential equation for Tcold:

Ṫcold = 0, (35)

then we consider the following systemṪc = − a

Vc

(Tc − Tcold)
2 +

ULAc

ρcccVc

(Tce − Tav) +
Acη0
ρcccVc

Ic,

Ṫcold = 0.

(36)

By taking the di�erence of the two equations in the previous system we
obtain the equation

˙(Tc − Tcold) = − a

Vc

(Tc − Tcold)
2 +

ULAc

ρcccVc

(Tce − Tav) +
Acη0
ρcccVc

Ic. (37)

Using the de�nition for Tav, the above equation takes the form

˙(Tc − Tcold) = − a

Vc

(Tc−Tcold)
2+

ULAc

ρcccVc

(
Tce −

Tc + Tcold

2

)
+

Acη0
ρcccVc

Ic, (38)

or equivalently

˙(Tc − Tcold) = − a

Vc

(Tc−Tcold)
2− ULAc

2ρcccVc

(Tc−Tcold)+
ULAc

ρcccVc

(Tce−Tcold)+
Acη0
ρcccVc

Ic.

(39)
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Let us introduce the new variable

y = Tc − Tcold (40)

and the notations

c3 =
1

Vc

, c4 =
ULAc

2ρcccVc

, c5 =
Acη0
ρcccVc

Ic +
ULAc

ρcccVc

(Tce − Tcold). (41)

Note that while c3 and c4 are always positive, c5 is not for all arbitrary
parameter values, but in real life applications it usually is, since the speci�c
solar heating system turns on only in the case when Tce ≥ Tcold. Therefore,
in this paper we shall assume that c5 > 0. With these notations equation
(39) can be written in the form

ẏ = −ac3y
2 − c4y + c5. (42)

Since for the quadratic function

g(y) = −ac3y
2 − c4y + c5 (43)

of the right side of equation (42) c24 + 4ac3c5 > 0 holds, therefore it has two
distinct real roots, furthermore they are of opposite sign

y1 = −c4 +
√

c24 + 4ac3c5
2ac3

, y2 = −c4 −
√

c24 + 4ac3c5
2ac3

, (44)

which also means that g can be factorized:

g(y) = −ac3y
2 − c4y + c5 = −ac3(y − y1)(y − y2). (45)

It follows as well that the di�erential equation (42) has two equilibria, namely
y1 and y2. It is important to note that only the case y(0) = Tc(0)−Tcold(0) > 0
is relevant. Observe that y2 is a locally asymptotically stable equilibrium.
For all solution for which y(0) ∈]0, y2[ are strictly monotonically increasing,
furthermore all solution for which y(0) ∈]y2,∞[ are strictly monotonically
decreasing due to the sign of g on these intervals.

IDE TEGYÜNK EGY ÁBRÁT AZ 1D-S FÁZISDIAGRAMMRÓL?
Before stating the main result of this section let us introduce the notation

α = y2 − y1 =

√
c24 + 4ac3c5

ac3
. (46)
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Statement 3. Depending on y(0) > 0 the solution of di�erential equation
(42) is the following for all t ∈ [0,∞[:

(a) if y(0) ∈]0, y2[ then

y(t) = y2 −
α

y(0)−y1
y2−y(0)

· ec3αat + 1
, (47)

(b) if y(0) = y2 then
y(t) ≡ y2, (48)

(c) if y(0) ∈]y2,∞[ then

y(t) = y2 +
α

y(0)−y1
y2−y(0)

· ec3αat − 1
. (49)

Proof. The proof is analogous to that of Statement 1, therefore the details
are left to the Reader.

Next, we shall solve the inequality

|y(t)− y2| ≤ d (50)

for a given, su�ciently small d > 0. Compared to the previous case, here we
will need an extra, technical assumption as well.

Statement 4. Let y(0) > 0 and α > d > 0 be given. Then for the solution
of di�erential equation (7) the relation

|y(t)− y2| ≤ d (51)

holds if one of the followings hold:

(a) y(0) ∈]0, y2[ and

t ≥ 1

c3αa
· ln (α− d) (y2 − y(0))

d(y(0)− y1)
, (52)

or

(b) y(0) = y2, or

8



(c) y(0) ∈]y2,∞[ and

t ≥ 1

c3αa
· ln (α + d) (y(0)− y2)

d(y(0)− y1)
. (53)

Proof. Case (b) is obvious. Case (a) and Case (c) follows from the rearrange-
ment of inequality (51).

Remark 1. Az St. 3-ban és 4-ben szerepl® formulák a c4 = ULAc

ρcccVc
= 0

választással érvényesek arra az esetre is, amikor elhanyagoljuk a kollektor
h®veszteségét.

From the point of view of control it is worth also to know that for a
desired equilibrium point y2 > 0 what value of TÉRFOGATÁRAM should
be chosen. That is, from the expression for y2

y2 = −c4 −
√

c24 + 4ac3c5
2ac3

(54)

we have to express a as a function of y2. Reorganisation of the above equation
gives

2ac3y2 + c4 =
√

c24 + 4ac3c5, (55)

which, after taking the square of both sides of the equation and simpli�cation
leads to

a(ac3y
2
2 + c4y2 − c5) = 0. (56)

Since a > 0 it follows that
a =

c5 − c4y2
c3y22

. (57)

2.4 General model for h®cserél® nélküli rendszerre rétegzett

tartály esetén, a kollektor h®veszteségének �gyelem-

bevételével, konstans térfogatáram esetén

Let us again consider di�erential equation (32) in the case when v is a positive
constant.

Ṫc =
Acη0
ρcccVc

Ic +
ULAc

ρcccVc

(Tce − Tav) +
v

Vc

(Tcold − Tc). (58)
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Then, using the de�nition of Tav and after reorganisation one can easily see
that the equation takes the form

Ṫc = −
(

ULAc

2ρcccVc

+
v

Vc

)
Tc +

Acη0
ρcccVc

Ic +
ULAcTce

ρcccVc

+

(
v

Vc

− ULAc

2ρcccVc

)
Tcold.

(59)
Observe that this di�erential equation is an inhomogeneous linear one with
constant coe�cients. Let

c6 =
ULAc

2ρcccVc

+
v

Vc

, c7 =
Acη0
ρcccVc

Ic +
ULAcTce

ρcccVc

+

(
v

Vc

− ULAc

2ρcccVc

)
Tcold,

(60)
note that the �rst constant is always positive, furthermore, in usual real life
applications

v >
ULAc

2ρccc
(61)

holds. RICSI, EZ NÁLUNK TELJESÜL, DE EZ IGAZ ÁLTALÁBAN IS????
With the introduction of these constants (59) becomes

Ṫc = −c6Tc + c7. (62)

Statement 5. The solution of di�erential equation (62) is

Tc(t) =

(
Tc(0)−

c7
c6

)
e−c6t +

c7
c6
. (63)

Proof. Application of the constant variation formula concludes the proof.

Note, that the only (positive) equilibrium point of di�erential equation
(62) is

Tc,eq =
c7
c6

(64)

which is globally asymptotically stable. It means that independently of the
initial value of collector's temperature all solutions will tend to Tc,eq as t
tends to in�nity. Furthermore, for all solution for which Tc(0) ∈]0, Tc,eq[ are
strictly monotonically increasing and all solution for which Tc(0) ∈]Tc,eq,∞[
are strictly monotonically decreasing.

Next, we shall solve the inequality

|Tc(t)− Tc,eq| ≤ d (65)

for a given, su�ciently small d > 0.
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Statement 6. Let Tc(0) > 0 be given. Then for the solution of di�erential
equation (62) the relation

|Tc(t)− Tc,eq| ≤ d (66)

holds if one of the followings hold:

(a) Tc(0) ∈]0, Tc,eq[ and

t ≥ 1

c6
· ln

−Tc(0) +
c7
c6

d
, (67)

or

(b) Tc(0) = Tc,eq, or

(c) Tc(0) ∈]Tc,eq,∞[ and

t ≥ 1

c6
· ln

Tc(0)− c7
c6

d
. (68)

Proof. Case (b) is obvious. Case (a) and Case (c) follows from the rearrange-
ment of inequality (66).

Remark 2. Az St. 6-ban és 7-ben szerepl® formulák a

c6 =
v

Vc

választással érvényesek arra az esetre is, amikor elhanyagoljuk a kollektor
h®veszteségét.

From the point of view of control it is worth also to know that for a
desired equilibrium point Tc,eq what value of v should be chosen. That is,
from the expression for Tc,eq

Tc,eq =
c7
c6

=

Acη0
ρccc

Ic +
ULAcTce

ρccc
+ vTcold

ULAc

ρccc
+ v

(69)

we have to express v as a function of Tc,eq. Direct calculations give

v =
Acη0Ic + ULAcTce − ULAcTc,eq

ρccc(Tc,eq − Tcold)
. (70)
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X. Mathematical model 

X.1. Model building 

The drawdown of the water level in a given quarry group is a result of pumping in all 

quarry groups. Furthermore, the volume of the extracted travertine is considered approximately 

proportional to the water volume pumped out from the given excavation area. Hence every 

quarry group is interested in the maximization of the total volume of water pumped in this 

quarry group. Therefore there is a conflict situation where the application of a game-theoretical 

model is at hand. In addition, there will also be sustainability conditions related to the Acque 

Albule spring and the Aniene river.   

At this point we introduce the usual terms and notation of game theory: The quarry 

groups are considered players (numbered 𝑖 = 1, ⋯ ,14). Every player i chooses a pumping rate 

𝑥𝑖 = 𝑄𝑖   as strategy. Vector 𝑥 = (𝑥1, ⋯ , 𝑥14) called multi-strategy, determines the drawdown 

∆ℎ𝑖(𝑥1, ⋯ , 𝑥14) in quarry group i. If Ai is the excavation area of the latter quarry group, then  

 

𝑓𝑖(𝑥1, ⋯ , 𝑥14) = ∆ℎ𝑖(𝑥1, ⋯ , 𝑥14)𝐴𝑖       (X1) 

 

is considered the gain or payoff function of player i. Here, for the multi-strategy (𝑥1, ⋯ , 𝑥14) 

we have 

0 ≤ 𝑥𝑖 ≤ 𝑄𝑖 𝑚𝑎𝑥,       (X.2) 

 

where 𝑄𝑖 𝑚𝑎𝑥 is the maximum (possible) pumping rate in the ith group. 

Now sustainability conditions are described as follows:  

formázott: Sorköz:  1,5 sor



The drawdown of water level of the Acque Albule spring and the Aniene river are also 

dependent on the pumping rates 𝑥𝑖, and we have the following two sustainability constraints 

for them (in metres): 

 

∆ℎ𝑎𝑏(𝑥1, ⋯ , 𝑥14) = 𝑔1(𝑥1, ⋯ , 𝑥14) ≤ 1,27 ,     (X.3) 

∆ℎ𝑟𝑖𝑣(𝑥1, ⋯ , 𝑥14) = 𝑔2(𝑥1, ⋯ , 𝑥14) ≤ 3,84 .     (X.4) 

 

Now, the strategy choice of the players is limited by these constraints. Therefore we define the 

set of admissible multi-strategies: 

 

𝐺 = {(𝑥1, ⋯ , 𝑥14) ∈ [0, 𝑄1 𝑚𝑎𝑥] × … × [0, 𝑄14 𝑚𝑎𝑥]|𝑔1(𝑥1, ⋯ , 𝑥14) ≤ 1.27, 𝑔2(𝑥1, ⋯ , 𝑥14) ≤ 3.84} 

 

Hydrogeological simulations have shown that these constraints really count, since e.g. pumping 

at maximum rates in all groups is not sustainable.   

 

X.2. Cooperative solutions of a game 

The idea of a simultaneous maximization of all payoff functions leads to a constrained 

vector (or multi-criterial) optimization problem 

𝐹(𝑥) → max (𝑥 ∈ 𝐺), 

where 𝐹 = (𝑓1, 𝑓2, … , 𝑓14).  

The idea of a cooperative solution of the game is based on the concept of Pareto 

optimality. Keeping the above notation also for the general case of n players, let G be a subset 

of Rn and 𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑛) a function mapping G into Rn. 

Point x*∈G  is called Pareto optimal for F (and the corresponding function value F(x*) is called 

Pareto optimal value), if there is no other multi-strategy  

𝑥 ∈ 𝐺  such that 𝑓𝑖(𝑥∗) ≤ 𝑓𝑖(𝑥)  (𝑖 = 1,2, ⋯ , 𝑛), 

and at least for one i the inequality is strict. If G is interpreted as the set of admissible multi-

strategies, (𝑓1, 𝑓2, … , 𝑓𝑛) are the payoff functions, x* is also called a cooperative solution of the 

n-person game. Cooperative solution means that there is no other strategy choice that makes 

one player better off without making some other player worse off.  

The set P of the above Pareto optimal function values is called the Pareto frontier of 

function F (Blasco et al. 2008): 

𝑃 = {𝐹(𝑥)|𝑥 ∈ 𝐺 is Pareto optimal for 𝐹}. 

X.3. Scalarization 



Let Sn be the interior of the standard simplex in Rn, that is, the set of all vectors 

(𝜆1, … , 𝜆𝑛) with positive coordinates summing to 1. Then it is straightforward to check that for 

all 𝜆 ∈ 𝑺𝑛 , any solution of the scalar optimization problem  

𝜆1𝑓1(𝑥) + ⋯ + 𝜆𝑛𝑓𝑛(𝑥) → max  (𝑥 ∈ 𝐺).    (X.5) 

is Pareto optimal for F. In practice, except for some degenerate cases, most Pareto points can 

be obtained by the above sclarization, see Geoffrion (1968). Using the Pareto points, the Pareto 

frontier of F can be obviously generated.  

From the above construction it is obvious that by scalarization, in general, an infinite 

number of cooperative solutions can be obtained. In fact, as the illustrative case of Figure 

X+1.1. b) below shows that the Pareto frontier is the “North-East border” of the range of 

function f.  

Considering a game, there should be a reasonable way to single out a unique cooperative 

solution. In the following, from Kicsiny et al. (2022) we adapt the construction of the so-called 

nearly ideal solution. 

 

X.4. Nearly ideal solution of the game 

The following construction was proposed by Salukvadze (1971a,b) for dynamic vector 

optimization problems, and soon was easily adapted to the static case. First, for every fixed  𝑖 =

1,2, ⋯ , 𝑛, we solve the scalar optimization problem 

𝑓𝑖(𝑢) → max  (𝑢 ∈ 𝐺)      (X.6) 

 (𝑖 = 1, ⋯ , 𝑛), that is, we maximize the payoff of player i considering all admissible multi-

strategies. Suppose that 𝑢𝑖
∗ ∈ 𝐺 is a solution of problem (X.6), and define 𝜔𝑖 = 𝑓𝑖(𝑢𝑖

∗). Then 

vector  

Ω = (𝜔1, … , 𝜔𝑛)      (X.7) 

is called the ideal value of the game. Of course, in general, there is no multi-strategy where the 

ideal value would be attained. Nevertheless, in the Pareto frontier we can seek a point nearest 

to the ideal value. If for some multi-strategy 𝑢0 ∈ 𝐺, we have 𝐹(𝑢0) ∈P, and 𝐹(𝑢0) is a solution 

of the optimization problem  

 𝑑(𝑝, Ω) → min (𝑝 ∈ 𝑃),     (X8) 

then 𝑢0 is called a nearly ideal solution of the game. (Here d denotes the Euclidean distance.) 

𝐹(𝑢0) can be called the nearly ideal value of the game. 

Remark X.1. We note that in the application to be presented below, the mathematical 

properties of the functions involved in the model will imply that optimization problems (X.5) 

and (X.6) have solutions. In the numerical realization of the above game-theoretical model 

(after discretization), optimization problem (X.8) will also have a solution. 



 

X.5. Data, model fitting and numerical realization 

For the definition of the constraints and the payoff functions, we will need the data of 

Table X.1.  

Table X. 1. Some model parameters 

Quarry group Qi max (Max 

pumping 

rate, m3/s) 

Ai (Area, 

m2) 

1 0,47 48925 

2 0,66 112200 

3 0,89 330514 

4 0,38 317525 

5 0,63 271875 

6 0,20 288000 

7 0,23 256375 

8 0,32 169375 

9 0,50 124750 

10 1,12 118300 

11 0,18 251000 

12 0,18 79100 

13 0,08 110700 

14 0,08 268650 

 

In order to solve the (scalarization of the) vector optimization problem, we need mathematical 

formulae for the payoff functions  fi , as well as for the constraint functions g1 and g2, for which 

it is sufficient to have formulae for  

∆ℎ𝑖  (𝑖 = 1, … ,14),     ∆ℎ𝑎𝑏 , ∆ℎ𝑟𝑖𝑣, 

the drawdown of water level for each quarry group as well as that of the spring and the river, 

as functions of the multi-strategy (𝑥1, ⋯ , 𝑥14). (See formulae (X.2-(X.4)) 

With the aid of a hydrogeological software VINCENZO, PLEASE, PUT IN ITS NAME, 

several simulations have been carried out in different scenarios. In these cases the above 

drawdown values were computed with certain preset multi-strategies (pumping rates). For 

example, in scenario S1 all groups pump at maximum rate (maximal drawdown), in scenario 

S0 there is zero pumping (with zero drawdown). The effect of pumping in each single group 

was assessed, too. In these cases, the pumping rate in each one of the quarry groups was set to 

be 100, 70 and  50% of its maximum, respectively, while there was no pumping in the other 

groups. Results of these simulations can be found in the Appendix. VINCENZO, IS THIS OK 

WITH YOU? OR SHOULD WE PUT IN HERE YOUR SHORT DESCRIPTION OF THE 

SIMULATION MODEL, AND THE RESULTS AT THE BEGINNING OF THE NEXT 

SECTION?  

X+1. Results  

X+1. 1. General results 



In order to produce mathematical formulae for the water drawdowns as functions of the 

multi-strategy, quadratic regression was applied to this set of data. More precisely, we used the 

following regression function for each index i, where 

1 ≤ 𝑖 ≤ 14, or  𝑖 = 𝑎𝑏, or   𝑖 = 𝑟𝑖𝑣.  

∆ℎ𝑖(𝑥1, ⋯ , 𝑥14) = 𝑐𝑖 + 𝑏1
𝑖 𝑥1 + 𝑏2

𝑖 𝑥2 + ⋯ + 𝑏14
𝑖 𝑥14 + 𝑎1

𝑖 𝑥1
2 + 𝑎2

𝑖 𝑥2
2 + ⋯ + 𝑎14

𝑖 𝑥14
2 . (X+1. 1) 

Since we have 44 observations and 29 free coefficients, this kind of regression problem is 

mathematically correct. Results of the regression can be found in the Appendix. The 

corresponding correlation coefficients (R values) are mostly very close to 1, which shows a 

fairly good approximation. 

The numerical realization of the Pareto frontier results in a finite “approximation” 

obtained from a finite number of scalarized optimization problems. In fact, we have to choose 

a reasonable number of discrete points, which are “quasi-uniformly distributed” in Sn. If r > n 

is a positive integer, then it is obvious to pick all possible n-tuples, for which each coordinate 

is an integer multiple of 1/r. The number of such n-tuples is (
𝑟 − 1
𝑛 − 1

). 

The numerical solution of the above constrained scalar optimization problems was 

carried out with the Matlab software (Etter et al., 2004), particularly using its fmincon function. 

The results are presented in Table X+1. Filling the table, we use easily decodable, less 

mathematical notation. Firstly, from (X.7) we calculated in the ideal value of the game 

𝐹𝑖𝑑𝑒𝑎𝑙 = Ω. 

Then we generated Pareto optimal solutions in case 𝑟 = 20, that is, for (
19
13

) = 27,132 

different 𝜆 vectors. From these points we have chosen the nearly ideal value of the game, 

𝐹𝑛𝑒𝑎𝑟𝑖𝑑
= 𝐹(𝑢0), and the corresponding multi-strategy strat_near_id. Taking uniform weights 

𝜆 = (
1

14
, … ,

1

14
), we determined 𝐹max _𝑡𝑜𝑡, the maximal total payoff and the corresponding multi-

strategy strat_maxtot. Q_max is the first column of Table X.1, row lambda_near_id indicates 

the weights of scalarization corresponding to the nearly ideal value. In the last 2 rows there are 

the payoff values (and the total payoff) of scenario S1 belonging to the (non-admissible) multi-

strategy, when all groups pump at maximum rate. Values are calculated with data of simulation 

and regression, respectively.  

 



Table X+1.1. Results of the game-theoretical model  

quarry group 1 2 3 4 5 6 7 

F_ideal (m3) 763670 2192808 6598736 6172856 5871791 4675979 4186094 

F_near_id (m3) 676276 2072242 6357106 5944006 5666533 4482095 3982089 

F_maxtot (m3) 707095 2135435 6413529 6102573 5702328 4611468 4083563 

strat_near_id (m3/s) 0,275 0,598 0,457 0,354 0,400 0,194 0,164 

strat_maxtot (m3/s) 0,324 0,650 0,409 0,380 0,380 0,202 0,195 

Q_max (m3/s) 0,473 0,662 0,893 0,380 0,630 0,202 0,231 

lambda_near_id 0,05 0,05 0,05 0,1 0,05 0,05 0,05 

payoff_absmax_sim (m3) 890435 2614260 8114119 7493590 7286250 5731200 5178775 

payoff_absmax_reg (m3) 889479 2610589 8097071 7483192 7272892 5725416 5173992 

 

 

quarry group 8 9 10 11 12 13 14 sum 

F_ideal 2720281 2339733 2300673 2804380 917795 1165468 2994897 45705162 

F_near_id 2471170 1968461 1834207 2591351 843301 1058888 2661229 42608955 

F_maxtot 2491499 1893157 1534351 2691179 853977 1056236 2598965 42875355 

strat_near_id 0,228 0,334 0,781 0,098 0,083 0,052 0,054  

strat_maxtot 0,263 0,375 0,498 0,137 0,106 0,058 0,058  

Q_max 0,315 0,500 1,115 0,180 0,180 0,080 0,080  

lambda_near_id 0,1 0,1 0,15 0,05 0,05 0,05 0,1  

payoff_absmax_sim 3319750 2669650 2531620 3539100 1162770 1461240 3653640 55646399 

payoff_absmax_reg 3317266 2667550 2530334 3537392 1162200 1460688 3652095 55580157 

 

X+1. 2. Illustrative case of 2 players 

Although there is no appropriate geometric illustration for the case 14 quarry groups (14 

players), the fictitious case of two players can be illustrated quite well. In this case only 2 

selected groups take part in the game. The others do not, that is, their pumping rates are set to 

be constant. Now the set of all admissible strategies and the corresponding payoff vectors can 

be illustrated on 2 dimensional plots. 

First, formally let us fix 𝑥𝑖 = 0.7𝑄𝑖 𝑚𝑎𝑥 for  𝑖 ≠ 5, 7  (the pumping rates are considered constant 

for the other quarry groups), and consider that only players 5 and 7 play. Only pairs (x5, x7) are 

considered multi-strategies. Figure X+1.1.a) shows the set of all admissible multi-strategies 

(red region).  

Without the sustainability conditions this would be a rectangle defined by the respective 

maximum pumping rates (for players 5 and 7, these equal 0.63 and 0.23 m3/s, resp., See Table 

X. 1). In Figure X+1.1.b) the green region represents the set of all payoff vectors belonging to 

the admissible strategies, in other words, the image of the red region of Figure X+1.1.a) with 

respect to the vector function F. (It also reflects the nonlinearity of the payoff functions.) 

The magenta line shows the Pareto frontier, which typically is the North East segment of the 

boundary of the green region. On this line the nearly ideal value of the game is indicated by a 



blue asterisk. This point has minimum Euclidean distance from the ideal value, which is situated 

outside the green region (indicated by red asterisk). 

The vector connecting the red and blue asterisks would be in fact orthogonal to the Pareto 

frontier if the aspect ratio of the coordinate system were equal to 1. 

 

 

Figure X+1.1. a) Set of admissible multi-strategies, playing only players 5 and 7  



 

Figure X+1.1. b) Set of all payoff vectors corresponding to the admissible multi-strategies of 

Figure X+1.1. a) 

 

X+2. Discussion and outlook 

Let us first discuss the results of the game model contained in Table X+1.1. First we can 

check our model whether the obtained numerical results are conform with some intuitive 

considerations. It is obvious that each coordinate of 𝐹𝑖𝑑𝑒𝑎𝑙 must be greater than or equal to the 

corresponding coordinate of 𝐹𝑛𝑒𝑎𝑟_𝑖𝑑, which obviously holds in our table. Also notice that the 

maximal total payoff 42 875 355 is a bit greater than 42608955, the sum of the payoffs of the 

nearly ideal value.  

If the players have an intension to further cooperate, the maximization of the total payoff 

also may be an issue. Then the total payoff can be redistributed according to an agreement. In 

Table X+1.1, as expected, the sum of coordinates of 𝐹max _𝑡𝑜𝑡 is greater than that of 𝐹𝑛𝑒𝑎𝑟_𝑖𝑑, 

and by coordinates, 𝐹𝑖𝑑𝑒𝑎𝑙 is greater than or equal to 𝐹max _𝑡𝑜𝑡. 

For a comparison, in the last 2 rows there are the payoff values (and the total payoffs) 

of scenario S1 belonging to the (non-admissible) multi-strategy, when all groups would pump 

at maximum rate. These values were computed in two different ways: based on the results of 

the hydrogeological simulation (9th row) and by means of regression (10th row).  Now the total 



payoff considering e.g. the simulated value 55 646 399 is substantially greater than that we can 

achieve under the sustainability constraints (42 875 355). Hence the “price of sustainability” 

would be around 0,23% reduction of the total exploited travertine 0,23%. Applying our model, 

the price of sustainability can be estimated for more strict and less strict sustainability 

constraints.  

In the present paper we dealt with cooperative solutions of our game-theoretical model. 

It might be interesting to find out, what about the non-cooperative solutions. We note that in 

Kicsiny (2022), thanks to the particular mathematical form of the game constrained by specific 

sustainability conditions, the obtained cooperative solution also turned out to be non-

cooperative solution (Nash equilibrium).  

Concerning the modelling methodological aspect of our study, let us observe that further 

versions and generalizations of the nearly ideal (or Salukvedze) solution of a game could be 

also applied, see Yu and Leitmann (1974) and LI, Duan (1990). For a somewhat different 

approach to multi-creterial optimization see Varga (1978). 

Finally we note that a continuation of the present research, a model should be developed 

for the case of the high-season when the Spa is open and pumping, therefore it will be an 

additional active player in the model.  
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