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Introduction 

The amount of data gathered over the last few decades has exponentially increased on 

many fronts, from consumer electronics to scientific measurements. More and more data is 

collected, stored, transferred, and processed as various sensors become more and more 

affordable. Since it is impossible to pick out the most important portions of the data, it has 

become necessary in many applications to extract pertinent information from large amounts of 

data. Traditional data processing algorithms are frequently unable to handle this volume of data. 

The issues are numerous. For instance, the computations are too time-consuming, or the results 

are only accurate for a small portion of the input. 

The following three research goals were established for this project based on my prior 

work and the field’s current state-of-the-art. 1) Examine how Self-Organizing Maps (SOM, 

Kohonen Network) can be used to solve the issue of finding events in large amounts of data. 2) 

creating and using Where-What Networks for the detection of objects. 3) Look into pruning 

techniques and how they might be used on the designed networks. A new network structure to 

process incoming video from a drone for object detection with GPGPU or FPGA 

implementation, an extension of the SOM network, and a technique to reduce the neural 

network size while maintaining performance were among the potential outcomes. The goal was 

to publish three papers at international conferences and two peer-reviewed journal articles. 

One journal paper and three conference publications were published throughout the 

project. Additionally, one conference abstract has been submitted with the option to submit an 

extended abstract (which is still being reviewed), and another journal paper’s draft is almost 

complete. The results of this unpublished work are described in greater detail in the following 

pages, while the results of these publications are briefly introduced. 



KNN Algorithm Predictor for Data Synchronization of Ultra-Tight GNSS/INS 

Integration 

The journal article [1] presents a method for localizing aircraft using extremely tight 

GNSS-INS coupling. The shortcomings of each system can be balanced out by the combined 

strengths of the GNSS and INS systems. This paper introduces a new technique of using a 

predictor on GNSS output before integrating with the INS. The time synchronization between 

the INS and GNSS must be achieved to simultaneously estimate the errors from the two 

systems. Therefore, a prediction between the sampling instants of the GNSS receiver is 

necessary. While GNSS receiver information is available once every second, INS information 

is available every 0.1 seconds. For GNSS receivers, various predictors can be used, with the 

best one being chosen based on the outcomes of the predictions. In order to satisfy the 

synchronization process between INS and GNSS and to predict the output of the GNSS receiver 

when its signal is lost (data blocking) for a short period of time, the KNN predictor algorithm 

searches the database for data that is similar to the current data. 

Due to its advantages, such as anti-jamming immunity and increased dynamic ranges, 

the ultra-tight integration of GNSS and INS was utilized in this paper. Different scenarios, both 

with and without blocking for a brief period of time, involved clutching the GNSS data. The 

results show that as the GNSS-data-blocking period is extended, the error values in the three 

axes (X, Y, and Z) get more significant. The error values rise when the GNSS data-blocking 

time is prolonged. Additionally, for the same blocking periods in the GNSS data, the errors 

obtained using GNSS/INS with predictor are lower than those obtained using INS alone and 

GNSS without predictor. Using GNSS/INS with the KNN predictor will result in a smooth 

change in the standard deviation in all three axes, even when there is a blocking time in the 

GNSS receiver, according to the measurements presented in the paper. The paper’s topic was 

not initially mentioned in the research proposal, but the accurate estimation of the UAV ego-

motion is crucial for object detection [2]. 

3D Cave Mapping with UAVs 

The conference paper [3] presents a proof-of-concept system to produce an environment 

map, and it could all be implemented onboard a drone. We currently have a camera that can 

recognize a specific object and calculate its distance using laser data and a laser-based mapping 

system that can produce 2D maps. These components are housed on a small 3D printed module 

that is simple to mount on a drone. Maps can only be created in 2D and must be expanded to 

3D. Given the currently available technology, there are two viable options for an onboard sensor 

setup. Two 2D LiDAR sensors rotated 90 degrees to one another, and a solid-state 3D LiDAR. 

An Intel RealSense L515 camera is being tested at the moment [4]. The project’s ultimate 

objective is to develop an autonomous system allowing the drone to map the cave without user 

input. Even though it’s a long shot, this objective calls for a real-time map to be accessible. An 

onboard drone can simultaneously create a lower resolution map in real-time instead of making 

the map offline. The measurements can be recorded to develop high-resolution offline maps. 

Bio-motivated vision system and artificial neural network for UAV obstacle avoidance 

The conference papers [5], [6] and the initial testing results describe the system 

developed for object detection and avoidance for small UAVs in an indoor environment. The 

findings demonstrate that, while there is no discernible difference between convolutional 

networks trained with and without preprocessing in terms of performance, preprocessing can 



shorten training times and reduce the size of training sets needed to achieve adequate 

performance. 

 

 

 

 

 

 

 
Figure 1. Test area and sample images from the drone camera. The first row shows the first test site, the gym of 

the University. The second row shows the second test site, the dining hall of the University. The left column is an 

overview of the environment with the obstacles. The middle column is the image from the drone camera, and the 

right column is the annotated image showing the object masks. The red mask is the display panel, and the green 

mask is the table with chairs. 

Various types of neural networks were developed and tested for detection, including 

YOLO [7] and U-net [8] variants. New publications on the Where-What-Network (WWN) 

during the project’s second year have brought attention to the fact that this structure is not yet 

sufficiently developed to be used in practice and is probably not the best candidate for further 

research due to its computational complexity [9]. Therefore, we maintained only the core 

concept of WWN in the conference publication written during the reporting period, namely that 

the developed algorithm uses a simplified human retina model during preprocessing. 

Additional investigation into object detection and control for avoidance maneuvers is 

covered in the journal draft. A new dataset was gathered and annotated in order to continue 

working on object detection and avoidance. We used chairs and tables in addition to the display 

panel, which was the only object type used (Figure 1). Additionally, the environment grew more 

complex. The tests were conducted in the dining hall rather than in the University’s gym. 

During the measurements, the lighting in the dining room was also changing. 

We performed neural network parameter tuning for the journal paper and created three 

test versions. The experiment demonstrated that all variants offered the control module 

adequate input for avoiding collisions and navigating the space. The control was also updated 

with image-based visual servoing [10] (Figure 2). We state that our system can adapt to various 

lighting conditions and avoid two types of objects. The necessary dataset size and the learning 

time are also reduced because of the bio-motivated preprocessing mimicking the mammal 

retina. We plan to publish the annotated dataset too in a public repository and a describing 

journal paper. The system can be augmented for further development with more object types 

and a more advanced navigation module. 



 
Figure 2. RQT graph of ROS nodes and topics running on the control computer. tello_driver_node provides the 

topics for drone commands, process_tello_images node runs the preprocessing and the U-net, tello_control_node 

calculates the free area and sends the adequate control command to the driver node. Two independent PID 

controllers calculate the drone’s appropriate pitch and roll commands. 

Event detection with Self-Organizing Maps for Feature Extraction of Wind Fields 

In the conference abstract sent to the 22nd Conference on Artificial Intelligence for 

Environmental Science [11] as part of the 2023 American Meteorological Society meeting, a 

new method was introduced to detect vortices in flow fields. The primary motivation is that it 

is essential to understand flow interactions in complex terrain for better modeling and 

forecasting. The paper introduces a method that can be used to automatically detect different 

kinds of events in big datasets, such as the observations of two MATERHORN field campaigns 

[12], [13]. 

Self-organizing Maps (SOM), also called Kohonen networks, were successfully used in 

the past to determine the main characteristics of large-scale meteorological systems [14]–[18]. 

The main advantage of using SOM is that it can drastically lower the dimension of the data. 

Meanwhile, it enhances essential features while keeping the topological connections which is 

present in the input. 

To detect primary events like flow patterns and vortices automatically, we use SOM to 

learn the main characteristics of our data for a given period. This learned pattern provides the 

“background,” which can be neglected during the feature extraction – an analogy to object 

detection in computer vision [19]. The background is coded with the weight vector of the SOM 

neurons. For the detection, a new input is coded with the Vector Quantization (VQ) technique, 

primarily used for lossy image compression[20]. The VQ forms a codebook for small parts or 

tiles of the image and describes images with a vector and the codebook. The coded input is 

reconstructed based on the codebook formed by the SOM neurons’ weight vectors and 

neglected from the original input „image,” calculating a saliency map. The features can be 

determined on the saliency map by a threshold or a more sophisticated method (like a small 

neural network) to avoid false detections due to noisy input. 



The method’s performance is tested in a simulation where the wind field is calculated 

as an analytical solution of the stream function [21]. The simulation consists of 313 timesteps 

and a 144x144 lattice where three vortices are generated with changing circulation rates and a 

dominant, permanent flow. The output of the simulation is a two-component vector field for 

each timestep. The SOM network’s input is a 450-element 1D vector consisting of 3x3 tiles of 

the original vector field, the two components of wind placed in an interleaved manner 

throughout 25 timesteps. The background is generated with the first 25 steps consisting only of 

the permanent background flow with a small random fluctuation. 

 

  

Figure 3. The left graph shows the flow field rates of the three vortices generated in the simulation. The right graph 

shows an example vector field with isopotentials and streamlines in the background at 140s in the simulation. 

 
Figure 4. The graph shows the moving sum of flow field rates of each vortex and the whole vector field with a 25s 

window compared to the sum of differences calculated from the original vector field and the reconstructed vector 

field. The sum of differences follows the moving sum of the whole vector field in time. 

The detection performance of the method is measured, also describing the parameter 

tuning. Based on the measurements on simulated data, a 4x4 SOM network was enough to get 

the desired accuracy. Figure 5 shows the structure and the sample hits of the SOM network. 

Test of the method on measured and simulated data is also shown for observations and Weather 



Research and Forecast (WRF) model output from the two MATERHORN field campaigns. The 

background or dominant flow for such experiments can be constructed with the help of Proper 

Orthogonal Decomposition (POD), where the first mode is the dataset’s average. 

 
Figure 5. Structure and the sample hits of the 4x4 SOM network trained with MATLAB [22] 

Network pruning 

For the network pruning, I do not currently have publishable results yet. Several 

measurements were done to try and reproduce the original results, and we used publicly 

available datasets and source code for testing. Without going into details about the algorithms, 

we got the following results. The tables show that the original measurements are reproducible 

(Table 1).  

I briefly introduce the tested methods. The SNIP algorithm’s goal is to identify 

significant (or sensitive) connections so that less significant connections can be eliminated 

without the need for pruning and relearning cycles. An auxiliary variable, which displays the 

strength of the connection between two neurons based on the impact of altering a connection to 

the loss function, aids in achieving the desired result [23], [24]. In contrast to the SNIP 

algorithm, the GraSP method tries to minimize the change in the loss after the first training step 

by removing the weights that “reduce gradient flow” the best [25], [26]. With Soft Filter 

Pruning (SFP), filters can be removed from a model while it is being trained from scratch or 

after it has already been trained. Each training epoch involves optimizing and training the entire 

model using the training data. In addition to maintaining the original models’ model capacity, 

it also avoids the greedy layer-by-layer pruning process and enables almost simultaneous 

pruning of all layers [27], [28].  

In contrast to traditional approaches, “Pruning from Scratch” (PfS) enables researchers 

to obtain a pruned structure from randomly initialized weights immediately. When pruning the 

network, the micro-level layer settings, particularly the number of channels in the layers and 

the channel pruning strategy, receive the majority of attention. An auxiliary variable also 

determines each channel’s significance and considers and optimizes the sparsity ratio in 

addition to the significance of the channels [29], [30]. 

 



Method Network Dataset Parameters 
Accuracy loss 

Original paper Measured 

SNIP LeNet5 MNIST 
Batch size = 100 

Target sparsity = 0.95 
0.8% 0.8% 

GraSP VGG19 Tiny ImageNet 

Batch size = 128 

Target ratio = 0.98 

Epoch = 300 

Learning rate = 0.1 

4.1±0.34% 3.73% 

GraSP VGG19 Cifar10 

Batch size = 128 

Target ratio = 0.98 

Epoch = 160 

Learning rate = 0.1 

2.04±0.12% 1.84% 

GraSP VGG19 Cifar100 

Batch size = 128 

Target ratio = 0.98 

Epoch = 160 

Learning rate = 0.1 

5.26±0.47% 4.99% 

SFP Resnet56 Cifar10 

Batch size = 128 

Pruning rate = 30% 

Epoch = 200 

Learning rate = 0.01 

0.49±0.2% 0.33% 

SFP Resnet110 Cifar10 

Batch size = 128 

Pruning rate = 20% 

Epoch = 200 

Learning rate = 0.01 

-0.25±0.41% -0.02% 

PfS VGG19 Cifar10 

Batch size = 128 

Sparsity ratio = 0.52 

Epoch = 200 

Learning rate = 0.01 

-0.31±0.08% -0.25% 

Table 1. Selected measurement results reproducing the original article’s performance evaluation.
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