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Novel, modern data fusion strategies have been elaborated and tested on various fields and 

instances. There is no need to recapitulate all results and conclusions as the publications are 

readily available mostly as open access contributions. 

However, at least one characteristic figure has been selected for each issue emphasizing one 

of the important conclusions. 

 

1) Pattern recognition. 

 Class modelling methods (sometimes called one class modelling) could be considered as a 

significant contribution of chemist to the classification tasks. The most frequently applied 

method is the soft independent modeling of class analogies (SIMCA). Our thorough survey of 

classification data sets and a rigorous comparison of classification methods clearly show the 

unambiguous superiority of other techniques over SIMCA in any classification task. The 

ordering of classification techniques was validated with a randomization test and cross-

validation. Whereas SIMCA frequently (but not always) passed the randomization test, cross-

validation unambiguously proves its inferiority to other techniques in supervised classification 

tasks.  

The next figure shows a comparison of nine classifiers on 27 highly different data sets 

(linearly not separated and class in class situations included). Sum of Ranking differences 

(SRD) is a city block (Manhattan) distance between the individual classifier and the reference 

ranking (golden standard), here the hypothetical best classifier showing the best performance 

(maximum of row values) on each data sets. 

 

Figure 1. Normalized SRD values (scaled between 0 and 100) compared to random 

ranking (increasing part of the black cumulative distribution function (CDF) curve, right y 

axis) for the leave-one-out non-error rates (NER%) of 27 data sets. SRD values are plotted on 

the x and left y-axes, the right y-axis The 5% error level (XX1) is also given.  

Notations: Classification And Influence Matrix Analysis (CAIMAN: D-discriminant, M-

modeling), classification and regression trees (CART), k-nearest neighbors (KNN), linear 



discriminant analysis (LDA), nearest mean classifier (NMC), quadratic discriminant analysis 

(QDA), soft independent modeling of class analogy (SIMCA) and unequal dispersed classes 

(UNEQ). 

SRD ranks and groups the classifiers. It is easy to perceive that the line for SIMCA is the 

farthest from the reference: it is worse than the hypothetically worst classifiers (min), i.e. 

SIMCA is the worst from among the studied classifiers. It can happen as the various data sets 

rank SIMCA reverse order, at least partly.  

 The publication summarizes six case studies for diverse classification task; all validated 

with randomization tests and various variants of cross-validation. 

[1] Anita Rácz, Attila Gere, Dávid Bajusz, Károly Héberger*, Is soft independent modeling 

of class analogies a reasonable choice for supervised pattern recognition? 

 RSC Advances, 8, pp. 10-21. (2018)  

 https://doi.org/10.1039/c7ra08901e  if(2018)=3.049 

 

2) Comparison of binary similarity coefficients 

 A comprehensive evaluation of binary similarity measures has been completed for the 

elucidation of patterns among samples of different botanical origin and various metabolomic 

profiles. Baroni-Urbani–Buser (BUB) and Hawkins–Dotson (HD) similarity coefficients were 

selected as the best measures by sum of ranking differences (SRD) and analysis of variance 

(ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ones ranked the 

worst.  

 First binary fingerprints were calculated; then, 44 similarity metrics for nine data sets: 

coding is 1-metabolic present, 0-absent. The uncertainties were estimated by >50 repeated 

resampling (bootstrap), i.e. a part of the rows were eliminated and SRD procedure was carried 

out on the remaining objects.  

 Definitions, labels, and names of similarity metrics are given in the Appendix, Table A1. 

 

 Figure 2. ANOVA decomposition of similarity metrics as a factor. Dashed lines 

symbolize the limit of the best/consistent (lower part), worst (upper part) and medium groups 

https://doi.org/10.1039/c7ra08901e


of similarity metrics based on SRD values. 95% confidence limits are plotted with vertical 

bars. The dotted lines are arbitrary. 

 The similarity metrics can be split to three groups based on this plot: those having smaller 

SRD values than 15 can be considered the most consistent based on the 9 datasets. Metrics 

between SRD values of 15 and 25 are in the medium group, while the weakest ones have SRD 

values greater than 25. 

 Comparison with the cluster analysis based on quantitative profiles has validated the 

findings: the best similarity coefficient (BUB) has provided the same pattern (almost exactly) 

as the quantitative data. 

 

 Figure 3. Comparison of cluster analysis trees (linkage rule: Ward’s method). (a) 

Reference (quantitative results). (b) Binary fingerprints with the BUB (best) distance metric. 

(c) Binary fingerprints with Di1 (worst) distance metric. The two largest clusters (indicated 

with red and blue) were compared. It is clearly seen that the number of misclassifications (as 

compared to the reference) is one for the BUB, and 10 for the Di1 measure. 

 The above figures clearly show that the clustering by binary coding might be similarly 

useful as clustering by quantitative data, provided optimal binary coefficients is used. 

[2] Anita Rácz, Filip Andrić*, Dávid Bajusz, Károly Héberger, Binary similarity measures 

for fingerprint analysis of qualitative metabolomic profiles,  

 Metabolomics, 14, Article Number: 29. pp. 1-9. (2018) 

 https://doi.org/10.1007/s11306-018-1327-y  if(2018)=3.167 

 

3) Model validation 

Three types of cross-validation (randomized and stratified fivefold and leave-one-out 

cross-validation), three types of variable selection algorithms were compared with factorial 

analysis of variance (ANOVA) tests. We also examined the effect of the applied datasets 

(calibration, test samples, and both sets) based on the original predicted values. Sum of 

ranking differences (SRD) values can be used as a promising and useful performance 

parameter for the ranking and evaluation of numerous regression models. When experimental 

values were used in data fusion step (for gold standard) the best models could be found based 

https://doi.org/10.1007/s11306-018-1327-y


on their SRD values. We also carried out a systematic comparison of various modeling 

techniques such as PLS regression, principal component regression (PCR) and support vector 

machines (SVM). The properly validated support vector machine models proved to be the 

best for all of the four used datasets.: 

 

Figure 4. Box and whisker plots of the transmission spectral models based on fivefold cross-

validated SRD in the case of dry material content. The “~” mark means that there is no 

statistically significant difference between the two models according to Wilcoxon's matched 

pair test at the 5% level. 

[3] Anita Rácz*, Marietta Fodor, Károly Héberger, Development and comparison of 

regression models for determination of quality parameters in margarine spread samples 

using NIR spectroscopy,  

 Analytical Methods, 10, Issue 25, pp. 3089-3099. (2018)  

 https://doi.org/10.1039/c8ay01055b  if(2018)=2.378 

 

4) Data fusion for cross-validation variants 

 Prediction performance often depends on the cross- and test validation protocols applied. 

Several combinations of different cross-validation variants and model-building techniques 

were examined, applying five-fold cross-validation (with random, contiguous and Venetian 

blind forms) and leave-one-out cross-validation (CV). External test sets showed the effects 

and differences between the validation protocols SRD can provide a unique and unambiguous 

ranking of methods and CV variants. Venetian blind cross-validation proved to be a 

promising validation realization tool. The variable selection was always advantageous, and 

the modelling had a larger influence on the performance parameters than any or all of the CV 

variants. 

 The use of variable selection, cross-validation (CV) variants and modelling methods were 

used as factors for ANOVA. SRD analysis was performed with the original experimental 

values (toxicity values), and with the average as the reference. With the experimental values 

we can choose those models and combinations of parameters that led to the best predictions of 

the original experimental values. On the other hand, the use of the average could show us the 

most consistent models 

https://doi.org/10.1039/c8ay01055b


 

 Figure 5. Box and whisker plots of the r2 and Q2 values for model building methods: (a) 

for case study 1; and (b) for case study 2. The median was used as the center points (boxes), 

the rectangles contain 50% of the data (first and third quartile), and the whiskers are located at 

the minimum and maximum values. Notations: multiple linear regression (MLR), artificial 

neural networks (ANN), principal component regression (PCR), Partial least squares 

regression (PLS), support vector machine (SVM). 

  The smallest gaps between red and green boxes mean the best validated models; 

however, on the expenses of the performances on the training data sets. It is somehow odd 

that the least validated technique, the multiple linear regression (MLR), is the most frequently 

used one. PCR rarely applied nowadays, though it is the best validated technique. 

[4] Anita Rácz, Dávid Bajusz and Károly Héberger*, Modelling methods and cross-validation 

variants in QSAR: a multi-level analysis,  

 SAR and QSAR in Environmental Research, 29, Issue 9, pp. 661-674. (2018)  

 https://doi.org/10.1080/1062936X.2018.1505778  if(2018)=2.287 

 

5) New fusion techniques for interaction fingerprints 

As a complementary method to ligand docking, Interaction fingerprints (IFP) can be 

applied to quantify the similarity of predicted binding poses to a reference binding pose. A 

large number of similarity metrics (44) were compared, and various parameters of the IFPs 

themselves have also been customized. In a large-scale comparison, we have assessed the 

effect of similarity metrics and IFP configurations to a number of virtual screening scenarios 

with ten different protein targets and thousands of molecules. The performances were 

compared based on area under curves (AUC) values and on original similarity data. Similarity 

metrics were evaluated with several statistical tests and the novel, robust sum of ranking 

differences (SRD) algorithm: we evaluate the consistency (or concordance) of the various 

similarity metrics to an ideal reference metric, which is provided by data fusion from the 

existing metrics. We could find better similarity metrics than the Tanimoto coefficient. Better 

coefficients than the Tanimoto one were identified: Simple Matching (SM), Rogers-

Tanimoto, Sokal-Sneath, Consoni-Todeschini 1 and 2, and Austin-Colwell coefficients can be 

recommended. The recommended indices can be seen in Figure 6 (next Page), these are the 

metrics, below the first dotted line.  

The notations and classification of similarity measures (see Appendix Table A1) were kept 

the same as in ref. [Todeschini R, Consonni V, Xiang H et al. (2012) Similarity coefficients 

for binary chemoinformatics data: overview and extended comparison using simulated and 

real data sets. J Chem Inf Model 52:2884–2901. https ://doi.org/10.1021/ci300 261r ]  

A link is given to calculate these coefficients in Python are as follows: 

https://github.com/davidbajusz/fpkit  

https://doi.org/10.1080/1062936X.2018.1505778
https://github.com/davidbajusz/fpkit


 

Figure 6. Factorial ANOVA with the similarity measures as one of the factors. Average 

values are marked with blue dots and the blue lines below and above the dots denote 95% 

confidence intervals. Normalized SRD values [%] are plotted against the similarity measures. 

The red dashed lines are arbitrary thresholds defined to select the best few metrics, and to 

identify the region with the less consistent similarity measures 

[5] Anita Rácz, Dávid Bajusz*, Károly Héberger, Life beyond the Tanimoto coefficient: 

similarity measures for interaction fingerprints, 

Journal of Cheminformatics 10, Article Number: 48 (2018) 

https://doi.org/10.1186/s13321-018-0302-y  if(2018)=4.154 

 

6) Row maximum, minimum and mean as data fusion methods 

Carefully selected case studies (three) have disclosed similarities and differences in 

validation variants. The next validation variants have been examined: stratified (contiguous 

block), repeated Monte Carlo resampling, and how many times the data set is split (5-7-10). 

The fair method comparison algorithm called sum of ranking differences (SRD) can rank and 

group the model validation variants. SRD in combination with variance analysis reveals 

whether the differences among validation variants are significant or merely the play of 

random errors. In special circumstances any of the influential factors for validation variants 

can exert significant influence on evaluation as shown by sums of (absolute) ranking 

differences (SRDs): The optimal validation variant should be determined individually again 

and again. A random resampling with sevenfold cross-validations seems to be a good 

compromise to diminish the bias and variance alike.  

In this manuscript SRD is considered as a bias term and analysis of variance (ANOVA) 

decomposes the random fluctuations around the biases according to the factors. Figure 7 was 

selected as an example of comparison of classifiers. The original publication introduced a new 

algorithm called random projection (RP). 

https://doi.org/10.1186/s13321-018-0302-y


It is interesting to mention that random projection (applied to the last three classifiers in the 

figure 7) to optimal dimension is not necessarily a viable option; it can provide low bias and 

small variance and reversely high bias and high(er) variance. The reason is probably that the 

optimized solution can hardly be further improved; on the other hand, not perfect technique(s) 

such as kNN can be significantly improved by random projection. 

 

Figure 7. Interaction of the three factors: ways of cross‐validation (validation variants): A, 

blockwise, i.e., contiguous, and B, (Monte Carlo) random resampling. Line plots show the 

number of folds (5, 7, and 10).  

The figure also shows the categorization of classifiers (the best ones have the smallest bias 

and smallest variance alike). The dotted lines are arbitrary thresholds, visually set. Linear and 

radial basis function has also been used with GP and SVM, linear and radial, respectively. 

Abbreviations for classifiers: ESkNN, ensemble of subset of kNN classifiers; GP, 

Gaussian process; kNN, k‐nearest neighbors; LDA, linear discriminant analysis; NSC, nearest 

shrunken centroids; OTE, optimal tree ensemble; PenLDA, penalized LDA; QDA, quadratic 

discriminant analysis; RF, random forest; RP, random projection; SRD, sum of ranking 

differences; SVM, support vector machine; the number after the abbreviations means 

“sufficient dimension reduction (SDR=5) assumption. References for non-trivial classifiers 

can be found in ref. [6] below. 

Almost all classifiers are significantly different; however, post hoc tests (Bonferroni and 

Scheffé) amalgamate four of them (LDA, linear SVM, PenLDA, and radial GP, i.e. SRD 

values of 18 and 21). Indeed, they are related techniques; it shows the inner consistency of the 

SRD analysis.  

General trends can be observed: the variance become smaller as the number of folds in 

cross-validation decreases. Contiguous variant has higher variance, if the original data set 



contains structure (systematic arrangement). SRD is sensitive enough to reveal the non-

negligible structure in the data. Therefore, a randomization of objects (samples) is 

recommended before the SRD analysis. 

[6] Károly Héberger* and Klára Kollár-Hunek, Comparison of validation variants by sum of 

ranking differences and ANOVA, 

 Journal of Chemometrics, 33, pp. 1-14, Article number: e3104 (2019) 

https://doi.org/10.1002/cem.3104  if(2018)=1.847 

 

7) Effects of data reduction in QSAR model building 

QSAR/QSPR (quantitative structure‐activity/property relationship) modeling has been a 

prevalent approach in various, overlapping sub‐fields of computational, medicinal and 

environmental chemistry for decades. The generation and selection of molecular descriptors 

and fingerprints is an essential part of this process. Variable reduction is to be done before 

any modeling. Variable reduction is an unsupervised technique, generally includes 

elimination of correlated variables and variables with zero (or minimal variance). In this 

study, we examined in detail the effect of various possible descriptor intercorrelation limits on 

the resulting QSAR models. 

 

Figure 8. An example of SRD ranking of intercorrelation limits (filtering threshold) The 

black curve corresponds to the cumulative distribution of SRD values based on random 

rankings cannot be seen in the blown-up. On the left Y and X axes, normalized SRD [%] 

values are plotted, while the right Y axis shows the percentages for the distribution of random 

rankings. 

The non-monotonous character of intercorrelation limits can easily be perceived.  

[7] Anita Rácz, Dávid Bajusz, Károly Héberger*, Intercorrelation limits in molecular 

descriptor preselection for QSAR/QSPR. 

 Molecular Informatics, 38, Article Number: 1800154 (2019) 

 https://doi.org/10.1002/minf.201800154  if(2018)=2.375 

 

https://doi.org/10.1002/cem.3104
https://doi.org/10.1002/minf.201800154


8) Data fusion for ensemble docking 

Ensemble docking is a widely applied concept in structure-based virtual screening—to at 

least partly account for protein flexibility—usually granting a significant performance gain at 

a modest cost of speed. In this study, several data fusion methods were tested and compared 

for ensemble docking. Seven fusion rules were applied and four performance parameters were 

used for the comparison of the fusion metrics. We have found much better alternatives for the 

consensus scoring instead of the widely applied minimum fusion rule. 

 

Figure 9. Bubble plots for various (diverse) datasets. Average precision (AP) values are 

plotted against the area under receiver operating characteristic curves (AUC) values. Bubble 

sizes correspond to the SRD and the color scale correspond to Boltzmann-enhanced 

discrimination of receiver operating characteristic (BEDROC) values, increasing from red to 

green (see color scale on the right). The abbreviations denote the fusion rules: MED – 

median, GEOM – geometric mean, HARM – harmonic mean, EUC – Euclidean distance, 

MIN – minimum, SUM – sum (it equals the mean here).  

Bubble plots allow a multidimensional evaluation, in the present case four. The higher the 

AP, the AUC values the better, green is better than yellow or even the red in case of 

BEDROC, whereas SRD values the smaller the better. Although there are some conflicts 

between data sets, several general conclusions can be dawn, e.g. The frequently applied 

minimum fusion rule is never the best, but can be the worst, etc. 

[8] Dávid Bajusz, Anita Rácz*, Károly Héberger Comparison of Data Fusion Methods as 

Consensus Scores for Ensemble Docking,  

 Molecules, 24, Article Number: 2690 (2019)  

 https://doi.org/10.3390/molecules24152690  if(2018)=3.060 

 

https://doi.org/10.3390/molecules24152690


9) Multi-level comparison of machine learning classifiers 

Machine learning classification algorithms are widely used for the prediction and 

classification of the different properties of molecules such as toxicity or biological activity. 

Performance metrics give diverse information about the performance of machine learning 

methods; therefore, compound metrics created with data fusion are highly desirable The most 

optimal and robust performance parameters were found in addition to the different 

classification scenarios, such as balanced or imbalanced groups, 2-class or multi-class 

problems. The algorithms were compered and their robustness and validation features were 

revealed. 

The workflow applied for the comparisons is summarized in Figure 10 

 

Figure 10. Workflow of the comparative study. Briefly, after descriptor generation and 

reduction, eleven machine learning methods are applied for model building (for each 

combination of 2-class/multiclass and balanced/imbalanced cases). After the calculation of the 

performance parameters, statistical analysis of the results is carried out with sum of ranking 

differences (SRD) and factorial analysis of variance (ANOVA). The complete process is 

carried out on three highly diverse datasets. 

SRD values are, on average, higher for 2-class classification scenarios (farther from the 

reference), meaning that there is a greater degree of disagreement between the performance 

metrics in this case, highlighting the importance for their informed selection and application 

during model evaluation. The difference is even more pronounced if the dataset is 

imbalanced. 

The relatively small distance from the reference (SRD = 0) suggests that the hypothetical 

best classifier is well approximated with the bagging (Bag), k-nearest-neighbor (lBk), and 

Decorate (Dec) methods. 

 Figure 11 (B, next page) Decomposition of the classifiers according to dataset 

composition (balanced vs. imbalanced classes). Normalized SRD values for the eleven 

classifiers. Error bars mean 95% confidence intervals.  

 It can properly be seen that some classifiers behave considerably differently if the 

experimental design is balance or imbalanced. Some classifiers, such as Bagging, Decorate, 

Support vector machine and Naïve Bayes are not sensitive to dataset composition. whereas 

Hyperpipe, k-nearest neighbor, random forest and to a lesser extent Megaboost are highly 



sensitive ones. These findings call for the selection of classifiers according to the 

experimental design. Only severel classifiers are suitable in both cases and the special gain 

justifies the usage of hyperpipe and k-nearest neighbors for the imbalanced case. 

 

 

Abbreviations: Naïve Bayes (NaiB), FilteredClassifier (Fil), k-nearest neighbor (lBk), 

Lazy, HyperPipe (Hip), MultiboostAB (Mboo) library SVM (SVM), oneR, based on 1-rule, 

(OneR), Bagging (Bag), Ensemble Selection (EnS), Decorate (Dec), Random Forest (RF) 

 

10) Multi-level comparison of performance metrics for binary classification 

There is a steady problem with usage of SRD algorithm. In some cases, the definition of 

reference (gold standard, benchmark) is not obvious and the results are highly dependent on 

the selected reference. To overcome this difficulty all variables have been selected as 

reference and ordered them according to the sum of the SRD values. The techniques is called 

SRD-COVAT (Comparisons with One VAriable at a Time. [https://dx.doi.org/10.1016/j.jpba.2016.04.001]  

Figure 12. (next page) Results of the SRD-COVAT method: 2-class classification with 

balanced (A) and imbalanced (B) classes; and multiclass classification with balanced (C) and 

imbalanced (D) classes. Clusters of similarly behaving performance parameters are separated 

with black lines (squares) on the plot based on visual inspection. 

Abbreviations for performance parameters: Accuracy (ACC), Area under the 

accumulation curve (AUAC), Area under the ROC curve (AUC), Average precision (AP), 

Average rank (position) of actives (positives) (ARP), Balanced accuracy (BACC), 

Bookmaker informedness (BM), Boltzmann-enhanced discrimination of receiver operating 

characteristic (BEDROC), Brier score loss, (BR), Cohen’s kappa (Cohen), Diagnostic odds 

ratio (DOR) Enrichment factor (EF 1 or 5 %), F1 score (F1), Jaccard score (Jaccard), 

Matthews correlation coefficient (MCC), Markedness (MK), Negative likelihood ratio (LRn), 

https://dx.doi.org/10.1016/j.jpba.2016.04.001


Negative predictive value (NPV), Positive likelihood ratio (LRp), Positive predictive value 

(PPV), ROC enrichment (ROC_EF) Robust initial enhancement (RIE), True positive rate 

(TPR), True negative rate (TNR). Detailed descriptions and definitions can be found in the 

Appendix Tables A2-A4 and in ref. [9].  

 

 
Although three clusters can always be observed, the performance for the individual metrics 

are different. Balanced accuracy, Matthews correlation coefficient, Cohen kappa, Bookmaker 

informedness, etc. are always among the best representations, whereas the usage of Brier 

score should be avoided for multiclass classifications.  

 

[9] Anita Rácz, Dávid Bajusz*, Károly Héberger, Multi-Level Comparison of Machine 

Learning Classifiers and Their Performance Metrics,  

 Molecules, 24, Article Number: 2811 (2019) 

 https://doi.org/10.3390/molecules24152811  if(2018)=3.060 

 

https://doi.org/10.3390/molecules24152811


11) Practical applications of data fusion 

Data fusion can be used for grouping trans-resveratrol and anthocyanin concentrations 

according to (oak) barrel type and, wine sorts (Kadarka, Kékfraknos, Cabernet France). 

[10] Z Guld, A Rácz*, H Tima, M Kállay, Dn Sárdy, Effects of aging in oak barrels on the 

trans-resveratrol and anthocyanin concentration of red wines from Hungary  

 Acta Alimentaria, 48, pp. 349-357. (2019)  If(2008-2018)=0.274-0.505 

 https://doi.org/10.1556/066.2019.0004  

 

Similarly, the 100-point OIV sensory test and quantitative descriptive analysis can be 

amalgamated and as factors decomposed in wine sensory analysis. 

[11] Z. Guld, D. N. Sárdy, A. Gere*, A. Rácz Comparison of sensory evaluation techniques 

for Hungarian wines  

 Journal of Chemometrics. 34 e3219. (2020)  

 https://doi.org/10.1002/cem.3219  if(2018)=1.847 

 

12) Software development 

SRD is developed as an MS Excel macro, and is freely available for download at: 

http://aki.ttk.mta.hu/srd.  

FingerPrint Kit - Python-based cheminformatics package for fingerprint-related tasks. 

https://github.com/davidbajusz/fpkit/ , are available via: 

https://doi.org/10.5281/zenodo.1217969  

We have also developed a python code to calculate numerous classification performance 

metrics which were compared in our recent paper, ref. [9]. The code is made available upon 

request and is planned to be released via github. 

 

13. Summary 

 The above summary (Part 1-12) of works on data fusion demonstrate the usefulness and 

abilities of the novel algorithm called sum of ranking differences (SRD). SRD is not only a 

simple distance metric, but an algorithm containing three steps [12,13]:  

 i) a data fusion act: the ideal ranking (benchmark, golden standard, or reference) is fixed: 

the average assumes a kind of consensus, minimum for errors, misclassification rates, etc. 

corresponds to the hypothetical best method with the smallest error. Another possibility is the 

maximum e.g. for correlation coefficients, non-error rates. Intuitively, one can easily accept 

that we are better off, if closer to the golden standard reference (benchmark). 

 ii) Calculation of the SRD values: it equals with Spearman's footrule (after data fusion) 

only if no ties present in the input matrix, but we developed a metric, i.e. “SRD with ties” 

[14], then. 

 iii) Validation options: Exact theoretical distributions were derived for randomization test, 

if the number of rows (n)<14. The random distribution is approximated reasonably with the 

Gaussian distribution between 13<n<1400. Cross-validation assigns uncertainties to the SRD 

values. At present 5-10-fold cross-validation with and without repeated sampling is included 

in our program [13,15]. 

 In case the 'data structure' is unknown a priori; then, a fair method comparison is the best 

choice by using SRD.  

 If the variables, (factors, indicators) are conflicting, the only proper solution is an 

optimization by multicriteria decision making (MDCM) also known as post-Pareto analysis 

(PPA). Although virtually endless number of tools exist for that, SRD is known to be a 

consensus of numerous MDCM tools [16]. Recent examinations clearly and unambiguously 

have shown that SRD realizes a multicriteria optimization. [16,17]. 

 

https://doi.org/10.1556/066.2019.0004
https://doi.org/10.1002/cem.3219
http://aki.ttk.mta.hu/srd
https://github.com/davidbajusz/fpkit/
https://doi.org/10.5281/zenodo.1217969


[12] K. Héberger*, Sum of ranking differences compares methods or models fairly,  

TRAC - Trends in Analytical Chemistry 29, pp. 101-109. (2010) 

https://doi.org/10.1016/j.trac.2009.09.009  

[13] K. Héberger* and K. Kollár-Hunek, Sum of ranking differences for method 

discrimination and its validation: comparison of ranks with random numbers 

Journal of Chemometrics 25, pp. 151-158. (2011)  

https://doi.org/10.1002/cem.1320 

[14] K. Kollár-Hunek and K. Héberger*, Method and Model Comparison by Sum of Ranking 

differences in Cases of Repeated Observations (Ties)  

Chemometrics and Intelligent Laboratory Systems 127, pp. 139-146. (2013) 

http://dx.doi.org/10.1016/j.chemolab.2013.06.007 

[15] K. Héberger* and K. Kollár-Hunek, Comparison of validation variants by sum of ranking 

differences and ANOVA  

Journal of Chemometrics 33, pp. 1-14 Article number: e3104 (2019)   

 https://doi.org/10.1002/cem.3104 

[16] J. M. Lourenço and L. Lebensztajn*, Post-Pareto Optimality Analysis with Sum of 

Ranking Differences,  

 IEEE Transactions on Magnetics, 54, Issue: 8 pp. 1-10. Article Sequence Number: 

8202810 (2018).  

 https://doi.org/10.1109/TMAG.2018.2836327  

[17] A. Rácz, D. Bajusz and K. Héberger, Consistency of QSAR models: Correct split of 

training and test sets, ranking of models and performance parameters, 

 SAR and QSAR in Environmental Research, 26, pp. 683-700. (2015) 

 https://doi.org/10.1080/1062936X.2015.1084647 

 

14) Conclusion and outlook 

Sum of ranking differences (SRD) provides a unique and unambiguous ranking of 

methods, models, items, etc. SRD coupled with analysis of variance (ANOVA) provide a 

unique and unambiguous way of decomposing the effects and determine the best combination 

of factors. 

SRD is simple, it corresponds to principle of parsimony. SRD is a nonparametric 

technique, but highly sensitive; it is able to find differences, when other methods cannot. 

The validation using randomization test enhances its reliability. Validation by cross-

validation assigns uncertainties to the SRD values. Sign test or preferably Wilcoxon’s 

matched pair test is able to provide a statistically correct discrimination at a predefined error 

limit (say 5%).  

Selection the best item(s), ranking and grouping them belong to the most advantageous 

features of SRD. 

The method can be applied in all laboratories where measurement data are evaluated. It is 

suitable to determine consistency of training test set splits, the models can be classified into 

good and bad ones, etc. As it has recently become apparent [16,17, see above] that SRD 

corresponds to the optimum of multi-criteria decision analysis. It has great potential, can be 

used not only in chemistry but in all other fields, e.g. evaluation of performance of athletes, 

ranking of universities, optimal selection of voting districts, determination of dominant 

factors for sensory investigations, ranking and grouping the ways of determining the partition 

coefficient (logP), to list only a few. 

Novel techniques are planned to be developed: e.g. alternative distance measures, sum of 

absolute differences (SAD), weighted schemes, sum of percentile distances (PSD), sum of 

utility distances (SUD), coupled (hybrid) techniques and their applications. Therefore, a new 
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proposal was submitted to the National Research, Development and Innovation Office of 

Hungary under Grant Numbers K 134260, the decision has not been made yet. 
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Binary similarity coefficients and performance parameters are summarized in the Appendix 

Tables A1-A3. 

 



Appendix 

Table A1. List of the binary similarity coefficients, their definitions, concordance symmetry and metric properties.  

No Label Name Equation Scaling parameters Concordance 

symmetry 

Metricity 

α β 

1 SM 
Simple matching,  

Sokal-Michner p

da
sSM


  0 1 S M 

2 RT Rogers-Tanimoto 
cbp

da
sRT




  0 1 S M 

3 JT Jaccard-Tanimoto 
cba

a
s JT


  0 1 A M 

4 Gle Gleason 
cba

a
sGle




2

2
 0 1 A N 

5 RR Russel-Rao 
p

a
sRR   0 1 A M 

6 For Forbes 
))(( caba

pa
sFor


  0  p/a A M 

7 Sim Simpson 
)}(),min{( caba

a
sSim


  0 1 A N 

8 BB Braun-Blanquet 
)}(),max{( caba

a
sBB


  0 1 A M 

9 DK 
Driver-Kroeber, Ochiai, 

cosine ))(( caba

a
sDK


  0 1 A N 

10 BUB Baroni-Urbani-Buser 
cbaad

aad
sBUB




  0 1 I M 

11 Kul Kulczynski 














ca

a

ba

a
sKul

2

1
 

0 

 
1 A N 

12 SS1 Sokal-Sneath (1) 
cba

a
sSS

22
1


  0 1 A M 

13 SS2 Sokal-Sneath (2) 
dap

da
sSS






22
2  0 1 S N 



No Label Name Equation Scaling parameters Concordance 

symmetry 

Metricity 

α β 

14 Ja Jaccard 
cba

a
s Ja




3

3
 0 1 A N 

15 Fai Faith 
p

da
sFai

5.0
  0 1 I M 

16 Mou Mountford 
bcacab

a
sMou

2

2


  0 2 A M 

17 Mic Michael 22 )()(

)(4

cbda

bcad
sMic




  1 2 Q N 

18 RG Rogot-Goldberg 
cbd

d

cba

a
sRG







22
 0 1 S M 

19 HD Hawkins-Dotson 














dcb

d

cba

a
sHD

2

1
 0 1 S M 

20 Yu1 Yule (1) 
bcad

bcad
sYu




1  1 2 Q N 

21 Yu2 Yule (2) 
bcad

bcad
sYu




2  1 2 Q M 

22 Fos Fossum 
))((

)5.0( 2

caba

ap
sFos




  1  (p – 0.52)/p A M 

23 Den Dennis 
))(( cabap

bcad
sDen




  (p/2)1/2 p1/2 Q M 

24 Co1 Cole (1) 
))((

1
dcca

bcad
sCo




  p - 1 p Q N 

25 Co2 Cole (2) 
))((

2
dbba

bcad
sCo




  p - 1 p Q N 

26 dis Dispersion 2p

bcad
sdis


  1/4 1/2 Q N 

27 GK Goodman-Kruskal 
cbda

cbda
sGK






),min(2

),min(2
 1 2 S N 



No Label Name Equation Scaling parameters Concordance 

symmetry 

Metricity 

α β 

28 SS3 Sokal-Sneath (3) 




















dc

d

db

d

ca

a

ba

a
sSS

4

1
3  0 1 S M 

29 SS4 Sokal-Sneath (4) 
))()()((

4
dcdbcaba

ad
sSS


  0 1 S M 

30 Phi 
Pearson-Heron colligation 

coefficient ))()()(( dbdccaba

bcad
sPhi




  1 2 Q M 

31 Di1 Dice (1) 
ba

a
sDi


1  0 1 A N 

32 Di2 Dice (2) 
ca

a
sDi


2  0 1 A N 

33 Sor Sorgenfrei 
))((

2

caba

a
sSor


  0 1 A N 

34 Coh Cohen 
))(())((

)(2

dccadbba

bcad
sCoh




   1 2 Q N 

35 Pe1 Peirce (1) 
))((

1
dcba

bcad
sPe




   1 2 Q N 

36 Pe2 Peirce (2) 
))((

2
dbca

bcad
sPe




   1 2 Q N 

37 MP Maxwell-Pilliner 
))(())((

)(2

dbcadcba

bcad
sMP




   1 2 Q M 

38 HL Harris-Lahey 
)(2

)2(

)(2

)2(

dcb

cbad

cba

cbda
sHL









  0 p S N 

39 CT1 Consoni-Todeschini (1) 
)1ln(

)1ln(
1

p

da
sCT




  0 1 S M 

40 CT2 Consoni-Todeschini (2) 
)1ln(

)1ln()1ln(
2

p

cbp
sCT




  0 1 S N 



No Label Name Equation Scaling parameters Concordance 

symmetry 

Metricity 

α β 

41 CT3 Consoni-Todeschini (3) 
)1ln(

)1ln(
3

p

a
sCT




  0 1 A N 

42 CT4 Consoni-Todeschini (4) 
)1ln(

)1ln(
4

cba

a
sCT




  0 1 A N 

43 CT5 Consoni-Todeschini (5) 
)4/1ln(

)1ln()1ln(
25

p

bcad
sCT




  0 1 S M 

44 AC Austin-Colwell 
p

da
s AC




 arcsin

2
 0 1 S M 

 

 

Performance metrics for binary classifications 
Table A2. Local performance metrics for 2-class classification—One-sided. 

 



Table A3. Local performance metrics for 2-class classification—Two-sided. (n: total number of samples, k: total number of classes). 

 

 



 
All square bracketed references can be found in the original publication: 

Molecules 2019, 24, 2811; https://doi.org/10.3390/molecules24152811  

https://doi.org/10.3390/molecules24152811


Table A4. Global performance metrics for 2-class classification. 

 

 
All square bracketed references can be found in the original publication: 

Molecules 2019, 24, 2811; https://doi.org/10.3390/molecules24152811  
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