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In this report we summarize the results of the NKFIH project no. PD-125502 achieved by
the Principal Investigator (PI), Gergely Ambrus.

The results of the project are collected in the following seven publications:

• G. Ambrus, S. Nietert, Polarization, sign sequences and isotropic vector systems. Pacific
J. Math. 303 (2019), no. 2, 385-399.

• G. Ambrus and M. Matolcsi, On the density of planar sets without unit distances. Accepted
for publication, Discrete Comput. Geom. (2020). arXiv:1809.05453.

• G. Ambrus, On a frame energy problem. Submitted (2020). arXiv:2002.03974.

• G. Ambrus, P. Nielsen, and C. Wilson, New estimates for convex layer numbers. Submitted
(2020). arXiv:2006.03799.

• G. Ambrus, A. Hsu, B. Peng, and S. Jan, The layer number of grids. Submitted (2020).
arXiv:2009.13130.

• G. Ambrus, Longest k-monotone chains. Submitted (2020). arXiv:2009.13887

• G. Ambrus, B. González Merino, Large signed subset sums. Manuscript, 2020.

The project proposal concentrated on two main topics: (1) Extremal vector systems and
sharp inequalities; and (2) Limit shapes and typical behaviour of random points. During the
3-year-period of the project, the PI managed to prove substantial results in both of these topics,
as well as answering questions from other fields. We list the results below.

Extremal vector systems. Given a vector set v1, . . . , vN ⊂ Sd−1 and p > 0, the `p-potential
of the system at the unit vector w as

Up((vi)
N
1 , w) =

n∑
i=1

|〈w, vi〉|p.

This is an analogue of the classical Riesz potential for inner products. The `p-polarization of
(vi)

N
1 is given by

Mp((vi)
N
1 ) = max

v∈Sd−1
Up((vi)

N
1 , v).

The quantity

Mp
N (Sd−1) = min

u1,...,un∈Sd−1
max
w∈Sd−1

n∑
i=1

|〈w, ui〉|p

is called the N th `p-polarization (or Chebyshev) constant of Sd−1.
Polarization problems have been subject to very active research in the last 15 years, although

their study dates back to at least 1967 [20]. In the planar case, Mp
n(S1) has a direct connection

to the classical notions of Riesz potentials and Chebyshev constants.
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In a recent article jointly written with S. Nietert [3], the PI succesfully determined the order
of magnitude of Mp

n(Sd−1) for p > 0. Moreover, they showed that for p = 2, the `2-polarization
optimal vector sets are exactly the isotropic vector sets, whereas for p = 1, they showed that
the polarization problem is equivalent to that of maximizing the norm of signed vector sums.
Finally, for d = 2, they proved the optimality of equally spaced configurations on the unit circle.

In a closely related joint work with B. González Merino [10], the PI considered the problem
of large signed subset sums. The question is the following. For every d > 2, n > d and k 6 n
positive numbers, determine the largest number c(d, n, k) so that for any system of n unit vectors
u1, . . . , un ⊂ Sd−1 there is a subset ui1 , . . . , uik of cardinality k of them with corresponding signs
ε1, . . . , εk ∈ {±1}, so that ∣∣∣∣∣∣

k∑
j=1

εjuij

∣∣∣∣∣∣ > c(d, n, k).

This question is, in some sense, dual to the small subset sums problem studied in [12]. In [10],
the PI and his coauthor completely solved the question in the case d = 2, and they determined
the sharp asymptotics for the higher dimensional quantities. They also proved sharp results in
the cases k = 2, and n = d+ 1.

In another publication related to extremal vectors sets [6], the PI studied the extremum
problem

max
v1,...,vN∈Rd

c16|vi|26c2 ∀i

min
16k6N

|vk|2

σ2 +
∑

l 6=k〈vk, vl〉2
.

He showed that in the case σ = 0, uniform tight frames are the only optimal configurations:
these are systems of vectors v1, . . . , vN ∈ Rd for which |vi| = R for every i and some constant
R, and

N∑
i=1

vi ⊗ vi = λ Id

holds with some positive constant λ. He also gave quantitative bounds on how far tight frames
are being from optimal for small values of σ2. The motivation for studying this question is the
practical application in telecommunication systems, in particular by Huawei Technologies, Ltd.
This result has led to an ongoing joint research project between the PI and the company.

Limit shapes and typical behaviour of random points. In the article [9], the PI studied
higher order convexity properties of n random points chosen independently, uniformly in the unit
square [0, 1]2, denoted by Xn. The framework constructed by him is a common generalization
of the famous question of the longest increasing subsequences in random permutations (see e.g.
[1]) and the problem of longest convex chains [11]. Based on the work of Eliás and Matoušek,
[17], he introduced the concept of k-monotone chains. He proved that if Lkn denotes the maximal
cardinality of a k-monotone chain in Xn, then for every k > 1,

lim
n→∞

n−
1

k+1 ELkn = αk

with some positive constant αk. Furthermore, n−
1

k+1 Lk(Xn) → αk almost surely, as n → ∞.
The proof is based on the subadditive ergodic theorem of Kingman [19].

The PI also established concentration properties of the random variable Lkn by showing that
for every k > 1, and for every ε > 0,

P
(
|Lkn − ELkn| > εn

1
2(k+1)

)
6 5e−ε

2/5αk
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holds for every sufficiently large n. This is proved by utilizing Talagrand’s concentration esti-
mates [22].

In addition to the topics specified in the original project proposal, the PI also conducted
research in the following two topics.

Density of planar sets without unit distances. In his joint work with M. Matolcsi [10],
the PI studied the following question: What is the maximal upper density of a measurable
planar set A with no two points at distance 1? This 40-year-old problem has attracted special
attention recently, with a sequence of progressively improving estimates, the strongest of which
currently being that of Bellitto, Pêcher, and Sédillot [13], who gave the upper estimate 0.25646.
Erdős conjectured that the density of such a set may not exceed 0.25. In their work, M. Matolcsi
and the PI show that any Lebesgue measurable, 1-avoiding planar set has upper density at most
0.25442, getting tantalizingly close to the conjecture of Erdős. In order to do so, they revert to
the Fourier analytic method described by Oliveira Filho and Vallentin [21]. They applied the
novel way of estimating densities of triple correlations, which translates to density estimates of
prescribed triangles in the set A. These theoretical constraints are then used to formulate a
linear programming problem, which may be solved with the aid of numerical methods.

Estimates for layer numbers. In the articles [7] and [8], the PI studies the following com-
putational geometric problem. Let X ⊂ Rd be a finite point set. Define the peeling process as
follows: in every step, we remove the set of vertices of the convex hull of the previous iteration.
The sets of points removed in each step form the convex layers of X, while the total number of
steps needed to completely delete X is the layer number of X, which we denote by τ(X). The
convex layer decomposition of planar sets was first studied by Eddy [16] and Chazelle [14] from
the algorithmic point of view. The latter article gave an O(n log n) running time algorithm for
computing the convex layers of an n-element planar point set. Therefore, layer numbers may be
computed quickly and efficiently.

In the article [7], the authors studied evenly distributed families of point sets contained in Bd,
the d-dimensional unit ball. A family of sets X1, X2, X3, · · · ⊂ Bd is said to be evenly distributed
if |Xi| → ∞ and the minimal distance between pairs of points of Xi is of order Θ(|Xi|−1/d).
This is a simplification of the definition appearing in [15], which studies the planar case of the
problem.

Together with his coauthors, the PI showed that τ(Xi) > Ω(|Xi|1/d) for every evenly dis-
tributed family {Xi}∞i=1 ⊂ Bd. Moreover, this bound is shown to be sharp. On the other hand,
they proved that for such families of sets, τ(Xi) 6 O(|Xi|2/d) holds. This improves on the
previous bounds for every d > 3. That this upper bound is nearly sharp is illustrated by their
construction: for every d > 1, there exists an evenly distributed family {Xd

i }∞i=1 in Rd with

τ(Xd
i ) = Θ

(
|Xd

i |
2
d
− 1

d 2d−1

)
.

Another well studied question is the layer number of the grids [n]d = {1, . . . , n}d. Har-Peled
and Lidický [18] proved that τ([n]2) = Θ(n4/3). The PI and his coauthors showed that for every

d > 1, τ([n]d) > Ω
(
n

2d
d+1

)
. This estimate is conjectured to be tight, since this is proved to

be the layer number of the random point sets. On the other hand, they showed that for every
d > 3, the layer number of the d-dimensional grid satisfies τ([n]d) 6 O(nd−9/11). These are the
first nontrivial estimates for the layer number of high dimensional grids. The applied methods
include number theoretical and combinatorial tools.
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