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1. Introduction 
 

During the last several years, there has been significant interest in the articulatory-to-acoustic conversion research 
field, which is often referred as “Silent Speech Interfaces” (SSI) [1]. This has the main idea of recording the 
articulatory movement, and automatically generating speech from the movement information, while the original 
subject is not producing any sound. Such an SSI system can be highly useful for the speaking impaired (e.g., after 
laryngectomy), and for scenarios where regular speech is not feasible but information should be transmitted from the 
speaker (e.g., extremely noisy environments; military applications). 
During the FK-17 OTKA project, we published 27 conference papers (the majority at top-ranked international 
conferences like Interspeech, IJCNN, Speech Synthesis Workshop), 7 international journal papers (mostly with 
Q1/Q2 ranking, sum impact factor: 14.919; and two more manuscripts are still under revision). Nine BSc, 13 MSc 
and 5 PhD students were involved as part of their project laboratory, thesis writing or individual research project. We 
had significant discussions with international researchers at renowned conferences (e.g., Interspeech 2017, 2018, 
2019, 2020, 2021, ISSP 2021, SSW11, AICV, SPECOM and DAGA 2021) about methods that they / we use, and 
also about potential cooperation possibilities (e.g., with Dr. Michael Pucher from ÖAW, Austria, a joint Austrian-
Hungarian cooperation grant is foreseen in the topic of Voicebanks and Speech Interfaces). 
With the cooperation of Prof. Bruce Denby (Sorbonne Université, France), who was the author of the first Silent 
Speech Interface related paper in 2010 [1], and Dr. Michael Wand (IDSIA, Switzerland), who is expert in advanced 
deep learning [2], we proposed a special issue of the MDPI Sensors journal, entitled "Future Speech Interfaces with 
Sensors and Machine Intelligence", https://www.mdpi.com/journal/sensors/special_issues/FSI-SMI. We contacted a 
large number of international colleagues in this field, and envisage receiving many significant manuscripts related to 
SSI. The call is still open until May 2022; currently there are four published papers, and two other submissions are 
under review or further processing. 
Within the FK-17 and PD-18 projects, we mostly proposed methods which are applying Ultrasound Tongue Imaging 
(UTI) while contributing to the SSI field with. Originally, we expected to use Electromagnetic Articulography (EMA) 
as well, but after the grant submission, Prof Jun Wang's research lab (U.Texas at Austin, USA) achieved significant 
research results in EMA-to-speech generation and recognition [3]. Therefore, in the current project, instead of EMA, 
we focused on ultrasound, lip video and MRI of the vocal tract. 
 

1.1 Key questions, goals of the project 
 
The key goals of the project were to 1) thoroughly analyze the articulatory phone recognition performance using the 
optimal combination of different articulatory tracking methods, 2) enhance spectral filtering of vocoding using 
articulatory data, 3) test and improve recognition-and-synthesis and direct synthesis in the field of silent speech 
interfaces. Finally, we planned to create a prototype silent speech interface that is using articulatory data as input and 
generates speech as output. 
 

2. Methods, experiments and results 
 
The project was divided into four work packages (WP), according to the main goals, and the results are summarized 
separately for each WP. Within the project, there was a strong cooperation between several universities: Budapest 
University of Technology and Economics (the PI, and his BSc, MSc and PhD students), University of Szeged (Gábor 
Gosztolya, László Tóth, Tamás Grósz), ELTE & MTA-ELTE Lingual Articulation Research Group (Alexandra 
Markó). Besides, during the four and half years, several other Hungarian and international researchers or PhD 



students joined for shorter periods (e.g., Csaba Zainkó and Géza Németh at BME, Amin Shandiz at SZTE, Dagoberto 
Porras from IUS, Colombia, etc.). 
 

2.1 WP1: Articulatory movement based phone recognition 
 
First, after the project start in 2017, we recorded a database with five male and four female Hungarian subjects for 
the later experiments (200 sentences, roughly 20 minutes data from each of them). Besides, we recorded a female 
speaker at five different sessions. The recordings involved the acquisition of tongue-ultrasound and lip video as 
articulatory data, and speech as well. The recordings were done at the facilities of ELTE, with the equipment of the 
MTA-ELTE Lingual Articulation Research Group, including the “Micro” ultrasound system. We recorded both 
regular speech (full sentences) and silent articulation, in midsagittal orientation. From the speech, the spectral features 
and F0 were extracted; whereas the ultrasound data was stored in raw scanline format (binary pixels, 64 scanlines, 
842 points on each). 
After the recordings were done, we conducted the following experiment related to phone recognition [4]. We 
recognized that the learning of speech recognition and speech synthesis targets (acoustic model states vs. vocoder 
parameters) are two closely related tasks over the same ultrasound tongue image input, so here we experimented with 
the multi-task training of deep neural networks (see Fig. 1.), which seeks to solve the two tasks simultaneously. Our 
results showed that the parallel learning of the two types of targets is indeed beneficial for both tasks. Moreover, we 
obtained further improvements by using multi-task training as a weight initialization step before task-specific 
training. Overall, we reported a relative error rate reduction of about 7% in both the speech recognition and the speech 
synthesis tasks [4]. 
 

 
Fig. 1: Structure of the multi-task DNN, for the case of 3 shared and 2 task-specific layers. From [4] 

 
2.2 WP2: Articulatory motivated spectral filtering in vocoding 

 
During submission of the FK-17 project, Alexander Sepulveda (Industrial University of Santander, Bucaramangua, 
Colombia) signed a declaration of international cooperation. As a result of this, we hosted an international student at 
BME (Dagoberto Porras Plata, from the same university in Colombia) for professional internship between Oct – Dec 
2018, who was involved in the acoustic-to-articulatory inversion (AAI) experiments of the project [5]. We 
implemented several different Deep Neural Networks (DNNs) to estimate the articulatory information from the 
acoustic signal. Ultrasound Tongue Imaging was used as the target articulatory information, and we tested two 
approaches: 1) the EigenTongue space and 2) the raw ultrasound image, and found that raw target data and a simple 
neural network with two hidden layers were more suitable for this inversion task. After that, we implemented several 
advanced DNNs (convolutional and recurrent neural networks), to estimate ultrasound images from the acoustic 
signal. From these experiments, a journal manuscript has been written, which is still under review [6]. Also, within 



the AAI scenario, we tested real-time MRI of the vocal tract for the target of the DNNs [7]. As the result, LSTMs 
can achieve smooth generated MR images of the vocal tract, which are similar to the original MRI recordings. This 
way, we could compare two articulatory imaging methods (namely ultrasound and MRI) in the AAI field. 
Next, in this WP, we experimented with novel vocoders for text-to-speech (TTS) synthesis and voice conversion 
(VC) with Mohammed Al-Radhi, being the PhD student of the PI. We proposed a continuous vocoder using 
continuous F0 (contF0) in combination with Maximum Voiced Frequency (MVF), and applied this for recurrent 
neural network based voice conversion [8]. The continuous vocoder was applied in DNN-based TTS and tested with 
both English and Arabic speech [9]. As an extension, Continuous Noise Masking (CNM) was proposed to overcome 
the issues of simple vocoders (e.g., buzziness) [10]. Within Statistical Voice Conversion (SVC), multiple features 
from the speech of two speakers (source and target) are converted, using DNNs [11]. We integrated into the SVC 
framework the continuous vocoder, by converting its contF0, maximum voiced frequency, and spectral features. The 
continuous vocoder, that we used earlier for UTI-to-F0 prediction [12], was further developed for speech synthesis 
and voice conversion [13]. We applied Continuous Wavelet Transform (CWT) to characterize and decompose speech 
features [14]. It can retain the fine spectral envelope and achieve high controllability of the structure closer to human 
auditory scale. Finally, a demo application 'conTTS' was created [15]. 
 

2.3 WP3: Automatic articulatory-to-acoustic mapping using deep learning methods  
 

Although the main focus of this project was ultrasound as the articulatory acquisition technique, we compared several 
other types as well: ultrasound tongue imaging (UTI), lip video (LIP), and vocal tract Magnetic Resonance Imaging 
(MRI). The advantage of ultrasound is that the full tongue is visible with relatively good spatial and temporal 
resolution. Lip video, on the other hand, is much simpler to record; but contains significantly less information about 
the articulation. VT-RMI is significantly more complex and expensive to record, but can provide very detailed 
information about the full vocal tract. 
Silent Speech Interface systems apply two different strategies to solve the articulatory-to-acoustic conversion task. 
The recognition-and-synthesis approach applies speech recognition techniques to map the articulatory data to a 
textual transcript, which is then converted to speech by a conventional text-to-speech system. The direct synthesis 
approach (i.e., WP3) seeks to convert the articulatory information directly to speech synthesis (vocoder) parameters. 
First, we used various neural network types for articulatory-to-speech synthesis: fully connected network [16] and 
convolutional and recurrent networks [17]. A pre-processing using a Deep Convolutional AutoEncoder was also 
studied. From these, an architecture based on a CNN and bidirectional LSTM layers has shown the best objective 
and subjective results [17]. We also tested more complex architectures, like 3D convolutional networks [18], and 
multi-task learning [4].  
 

 
Fig. 2: Separate DNNs to estimate the voicing and the value of F0 from ultrasound input. From [19]. 

 
Next, we conducted experiments in ultrasound-to-F0 prediction: we compared a standard pulse-noise vocoder [19] 
(Fig. 2), several F0 estimation approaches [20] and also used a simple continuous F0 tracker which does not apply a 
strict voiced / unvoiced decision [12]. Continuous vocoder parameters (ContF0, Maximum Voiced Frequency and 
Mel-Generalized Cepstrum) were predicted using separate convolutional neural networks, with ultrasound as input. 
The methods were tested on four Hungarian speakers (2 males and 2 females), who were recorded in WP1. As further 
experiments, we proposed AutoEncoders for the representation of ultrasound tongue images [21]; and proposed voice 
activity detection from ultrasound images [22]. Also, we investigated the degree of session-dependency of standard 



feed-forward DNN-based models for ultrasound-based SSI systems [23]. Besides examining the amount of training 
data required for speech synthesis parameter estimation, we also showed that DNN adaptation can be useful for 
handling session dependency [23]. Next, we applied a flow-based neural vocoder (WaveGlow) for ultrasound-to-
speech synthesis [24]. Here, the training target was the 80-dimensional mel-spectrogram, which results in a finer 
detailed spectral representation than earlier methods [24]. Still, using UTI, we tested Generative Adversarial 
Networks (GAN) for generation of ultrasound images [25]. We compared ultrasound image representations (raw vs. 
wedge) as the input of SSI systems, of which a journal manuscript is still under review [26]. As a further experiment, 
we conducted recognition from ultrasound [27] and compared this with the direct synthesis approach and also with 
speech synthesis from text [28] (Fig. 3). 

 
Fig. 3: Comparison of direct ultrasound-to-speech synthesis approach and speech synthesis from text. From [28]. 

 
As a second articulatory acquisition technique, we tested lip videos & mouth movement [29]. Inspired by earlier lip-
to-speech studies, in our research we designed and implemented models that can generate spectral parameters of 
speech from lip videos. We used 1000 sentences from a male English speaker of the GRID audiovisual database [30], 
which contains video from the face of speakers, and synchronous speech. We tested two models that use 
convolutional and recurrent layers, of which the recurrent neural network was preferred. The results on lip processing 
might be useful for the FK-17 project, as recording the lip video is simple and cheap compared to other articulatory 
techniques. We developed a smartphone application that can record silent lip video and synthesize speech [31]. 
The third technique that we investigated within this WP is real-time MRI (rtMRI) of the vocal tract [32]. MRI has 
not been used before for articulatory-to-acoustic (forward) mapping; although its advantage is that it has a high 
`relative' spatial resolution. We trained various DNNs for articulatory-to-speech conversion, using rtMRI as input, in 
a speaker-specific way (Fig. 4 shows a CNN-LSTM network for this purpose). We used American English speakers 
of the USC-TIMIT articulatory database [33]. We evaluated the results with objective (Normalized MSE and MCD) 
and subjective measures (perceptual test) and showed that CNN-LSTM networks are preferred (similarly to the earlier 
cases of UTI and LIP). Next, neural vocoders were applied for MRI-to-speech reconstruction, and we showed that 
the approach can successfully reconstruct the gross spectral shape, but more improvements are needed to reproduce 
the fine spectral details [34]. 

 
Fig. 4: CNN-LSTM network for MRI-to-speech forward mapping. From [32]. 



 
Another interesting finding of our MRI experiments was that 74% of the recordings of speaker `m1' in USC-TIMIT 
are out of sync [32]. We contacted the developers of the USC-TMIT database (Asterios Toutios & Shrikanth 
Narayanan from the University of Southern California, USA) and discussed with them that further investigations are 
necessary to check this audio-visual synchrony problem. They are open for future collaboration in this field, which 
can be the basis of a next research grant. 
In Sep 2019, as part of the PI's current FK-17 and the other PD-18 projects, we invited Maida Percival (PhD student 
at the University of Toronto, Canada; expert in ultrasound tongue recordings for linguistic purposes) to Budapest; 
and this co-operation resulted in numerous presentations [35]–[37]. In 2020, during such ultrasound recording 
sessions, the PI and colleagues observed a serious methodological issue: a limitation of ultrasound tongue imaging 
is the transducer misalignment during longer data recording sessions. We presented this problem at various 
conferences: Interspeech 2020 [38], UltraFest IX [36], ISSP 2020 [39]; and a large number of researchers confirmed 
that they have similar issues but do not have the solution yet (e.g. Alan Wrench & Pertti Palo, QMU, UK; Kevin 
Roon & Wei-Rong Chen & Douglas Whalen, Haskins & YALE & CUNY, USA; Michael Pucher, ÖAW, Austria; 
Judith Dineley, Augsburg University, Germany; Matthew Faytak, UCLA, USA; Sherman Charles & Steven Lulich, 
Indiana University, USA; Martijn Wieling, University of Groningen, The Netherlands; Kiyoshi Honda, Tianjin 
University, China – to mention a few). Therefore, further investigations of speaker dependency and solving the above 
problem of ultrasound transducer misalignment will be definitely useful for the whole speech community, dealing 
with articulation or speech production research. 
Lastly, we conducted cross-speaker experiments, using x-vectors [40]. Our first attempt to apply them in a multi-
speaker silent speech framework brought about a marginal reduction in the error rate of the spectral estimation step. 
Besides, we created an initial feasibility study for text-to-ultrasound prediction [41]. We extended a traditional 
(vocoder-based) DNN-TTS framework with predicting PCA-compressed ultrasound images, of which the continuous 
tongue motion can be reconstructed in synchrony with synthesized speech. Articulatory movement prediction from 
text input can be useful for audiovisual speech synthesis. A specific application is computer-assisted pronunciation 
training / computer-aided language learning, which can be beneficial for learners of second languages. 
Overall, in this WP, we conducted numerous experiments from various aspects (input representations, machine 
learning approaches, target representations, and session / speaker dependency), which all can help to create practical 
Silent Speech Interface systems.  
 

 
Fig. 5: Results of the subjective evaluation with respect to naturalness, speaker by speaker (top) and average 

(bottom). The errorbars show the 95% confidence intervals. From [24]. 



2.4 WP4: Evaluation and testing with users 
 
Within all of the previous tasks, we performed objective evaluations, and listening tests as subjective evaluations. 
An example for the results of a MUSHRA-like listening test is presented in Fig. 5, which shows that with the 
WaveGlow neural vocoder higher quality synthesized speech can be achieved than with previous vocoders [24].  
We developed prototype systems for Silent Speech Interfaces. Our developed contributions and prototype systems 
are available open-source:  

• https://github.com/BME-SmartLab/UTI-to-STFT 

• https://github.com/BME-SmartLab/txt-ult2wav 

• https://github.com/BME-SmartLab/txt2ult 

• https://github.com/BME-SmartLab/UTI-to-STFT-Tacotron2 

• https://github.com/BME-SmartLab/UTI-misalignment 

• https://github.com/BME-SmartLab/speech2uti 

• https://github.com/BME-SmartLab/UTI-raw-vs-wedge 

• https://github.com/malradhi/conTTS 

• https://github.com/BME-SmartLab/mri2speech 

• https://github.com/BME-SmartLab/speech2mri 
 
3 Summary and conclusions 
 
Articulatory-to-acoustic mapping is a novel research field within speech technology, having Silent Speech Interfaces 
as a long-term potential application. Within this project, we 1) proposed novel methods for recognition-and-synthesis 
and direct synthesis in the field of SSI, 2) analyzed and compared several articulatory tracking methods (ultrasound 
tongue imaging, lip video, and vocal tract MRI), 3) contributed to acoustic-to-articulatory inversion. We conducted 
numerous experiments, including ultrasound-to-speech, ultrasound-to-text, ultrasound-to-F0, lip-to-speech, MRI-to-
speech, employed various deep learning architectures (fully connected, 2D and 3D convolutional, recurrent neural 
networks, multi-task learning, autoencoders, generative adversarial networks), compared continuous and neural 
vocoders, investigated voice activity detection from ultrasound, and tested ultrasound data representations (raw 
scanlines / wedge orientation / PCA compression), recorded new Hungarian data and also applied English datasets. 
We first trained speaker-dependent neural networks, and later we proposed solutions for cross-session and cross-
speaker articulation-to-speech synthesis, proceeding towards a practical prototype. 
During the four years of the project, the main focus was on the ultrasound modality, but we also investigated video 
of the lip movement and MRI of the vocal tract. Numerous BSc/MSc/PhD students were involved in the projects, as 
part of their project laboratory, thesis writing, internship or individual research project. Table 1 summarizes that there 
were nine related BSc topics, 13 MSc theses, and 6 PhD research topics. 
We presented our results at high-ranked conferences (e.g. Interspeech, ISSP, SSW) and published in top journals 
(e.g. Multimedia Tools and Applications, Computer Speech and Language). Already during the four years of the 
project, we received 60+ citations. Those appearing in key journals are listed here: 

- Csapó & Xu, 2020 [38] is cited by Ribeiro et al. 2021 [42] (Speech Communication) 
- Al-Radhi et al., 2020 [10] is cited by Aichinger & Pernkopf 2021 [43] (IEEE/ACM Transactions on Audio, 

Speech and Language Processing) 
- Csapó et al., 2020 [24] is cited by Zhang et al., 2021 [44] (IEEE Access) 
- Gosztolya et al., 2020 [23] is cited by Gonzalez-Lopez et al., 2020 [45] (IEEE Access) 
- Csapó et al., 2019 [12] is cited by Lee et al., 2020 [46] (Sensors) and Gonzalez-Lopez et al., 2020 [45] (IEEE 

Access) 
- Porras et al., 2019 [5] is cited by Eshky et al., 2021 [47] (Speech Communication) and Shahrebabaki et al., 

2021 [48] (IEEE/ACM Transactions on Audio, Speech and Language Processing) 
- Gosztolya et al., 2019 [21] is cited by Wang et al., 2021 [49]  (Journal of the Acoustical Society of America 

– Express Letters), Lee et al., 2020 [46] (Sensors) and Gonzalez-Lopez et al., 2020 [45] (IEEE Access) 



- Grósz et al., 2018 [19] is cited by Zhang et al., 2021 [44] (IEEE Access), Wang et al., 2021 [49]  (Journal of 
the Acoustical Society of America – Express Letters) and Parlak&Altun, 2021 [50] (Mathematical Problems 
in Engineering) 

- Tóth el al., 2018 [4] is cited by Zhang et al., 2021 [35] (IEEE Access), Gonzalez-Lopez et al., 2020 [36] 
(IEEE Access), and Wu&Weng, 2021 [51] (Neural Networks) 

 
 

Table 1: Students involved in the FK-17 project. 
 

Name Type / Year Topic 

Rémi Balandras BSc project / 2017 acoustic-to-articulatory inversion (AAI) using modern 

machine learning (French & ultrasound) 

Léa Desse BSc project / 2017 AAI using modern machine learning (French & ultrasound) 

Chrysogone Paolo BSc project / 2017 AAI using modern machine learning (French & ultrasound) 

Eloi Moliner BSc thesis / 2017-2018 ultrasound-to-speech using CNNs & LSTMs 

Akif Alic MSc thesis / 2017-2018 voice conversion using machine learning 

Balaton Tamás BSc project / 2018 Variational AutoEncoders & ultrasound 

Blaskó Gergő BSc thesis / 2018 AAI based on ultrasound tongue imaging, using deep learning  

Dagoberto Porras Plata MSc internship / 2018-2019 ultrasound & acoustic-to-articulatory inversion 

Makrai Márton PhD individual research 

topic / 2018-2019 

hyperparameter optimization of deep neural networks for 

ultrasound-to-speech synthesis 

Nadia Hajjej MSc thesis / 2018-2019 application of Generative Adversarial Networks (GANs) for 

processing of ultrasound images 

Amarsaikhan Nasantogtok MSc thesis / 2018-2019 applying CycleGANs for ultrasound-speech conversion 

Khorkova Mariia MSc thesis / 2018-2020 lip-to-speech synthesis using DNNs 

Rácz Bianka BSc thesis / 2018-2019 lip-to-speech synthesis using CNNs and RNNs 

Varga Kristóf BSc thesis / 2018-2019 lip-to-speech synthesis using face tracking 

Bárány Bálint MSc thesis / 2018-2020 ultrasound-to-speech synth., iterative data loading 

Arthur Viktor MSc thesis / 2018-2022 vid-to-speech mobile application 

Maida Percival PhD individual research 

topic / 2019-2020 

ultrasound session & speaker dependency, manual contour 

tracking, transducer auto-rotation, linguistic aspects 

Amin Shandiz PhD individual research 

topic / 2019-2021 

data augmentation for UTI; speaker dependency, voice 

activity detection from articulatory data 

José Lopez PhD individual research 

topic / 2019-2021 

testing neural network architectures for ultrasound-to-speech, 

hyperparameter optimization 

Mohammed Al-Radhi PhD individual research 

topic / 2018-2022 

spectral filtering for text-to-speech, voice conversion, 

enhanced spectral filtering with articulatory data 

Torner Márton MSc project / 2020 DNN types for ultrasound-to-speech 

Pengyu Dai MSc thesis / 2019-2020 ultrasound-to-F0 

Dóka Zsolt BSc thesis / 2019-2020 lip-to-speech with MagPhase vocoder 

Szokoly Virág MSc project / 2021 DNN types for ultrasound-to-speech and TTS 

Yide Yu MSc thesis / 2020-2021 MRI-to-speech using neural vocoders 

Wu Liang MSc thesis / 2020-2021 acoustic-to-articulatory inversion using ultrasound 

Rysbekova Aliia MSc thesis / 2020-2021 Comparison of UTI-EMA-MRI-LIP video and its application 

for DNN-based articulation-to-speech  

Mohammad Areej 

Mohammad Mousa 

MSc thesis / 2020-2022 Ultrasound Tongue Imaging for Silent Speech Interfaces 

using deep learning 

Ali Raheem Mandeel PhD individual research 

topic / 2020-2022 

speaker adaptation for text-to-speech synthesis 
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