
Deatailed report about the research conducted by the participants of the project K123782

The research conducted by the members of this project can be naturally divided into tree topics: Billiards
and related models, Fractals and Related Models and Fractal networks. The description of our results are
detailed according to this categorization.

1 Billiards and related models

Mathematical billiards study the motion of a point particle in a domain Q with piecewise smooth boundary
∂Q. The particle travels uniformly (with unit speed) inside Q, and bounces off elastically (the angle of
reflection equals the angle of incidence) at the boundary ∂Q. The dynamics can be studied either in contin-
uous time or in discrete time (from collision to collision), resulting in the billiard flow and the billiard map,
respectively. Depending on the shape of Q, billiards may exhibit a wide range of dynamical phenomena. In
particular, dispersing billiards are obtained by removing smooth and strictly convex scatterers Ci from the
d dimensional Euclidean plane Rd or the flat torus Td (where d ≥ 2). In this case both the map and the
flow have strong chaotic and ergodic properties with respect to their natural absolutely continuous invariant
measures. We refer to [28] for further details.

The main research goal of our project was to apply dispersing billiards (mostly of dimension d = 2) to
study various phenomena arising from physics and geometry. For the investigation of some of the problems we
considered other dynamical systems, in particular expanding maps of the interval, which resemble dispersing
billiards but are somewhat less complicated.

1.1 Lorentz gas

The Lorentz gas is a popular model of diffusion obtained from a dispersing billiard with periodic scatterer
configuration on R2 (which by periodicity can be reduced to a dispersing billiard on T2). Of particular
interest is the case when a single circular scatterer of radius ρ < 1

2 is placed about each point of the integer
lattice Z2, which necessarily produces infinite horizon: the free flight length between consecutive collisions
can be arbitrary large. This results in superdiffusive behaviour: a limit theorem for the position of the
particle with a non-standard

√
t log t scaling, proved by Szász and Varjú in [61], which was the starting point

of many further works on the long time asymptotic for fixed scatterer size ρ. In a different direction, Marklof
and Strömbergson in [45] studied the Boltzmann-Grad limit of the Lorentz gas which corresponds to a limit
process that arises from the billiard dynamics when the scatterer size ρ tends to 0. Marklof and Tóth in [46]
then studied the large time asymptotics of the process obtained in [45] and proved a limit theorem, again
with

√
t log t scaling. Our work [3] in a sense interpolates between these two class of results: we prove a limit

law for certain situations when time t → ∞ and scatterer size ρ → 0 can be scaled simultaneously.
In the paper [4] we study decay of correlations for flows and prove in particular the sharp upper bound 1

t
for the time correlations of dispersing billiard models on T2 corresponding to infinite horizon Lorentz gases.
The somewhat complementary work [9] investigates statistical properties for slowly mixing flows, specifically
we prove the (functional) central limit theorem, moment estimates and iterated versions of these results for
the famous Lorenz attractor (where Lorenz is not to be confused with Lorentz).

1.2 The ball-piston model and related questions

An important motivation for studying billiards is to find appropriate models for various statistical physics
phenomena, see the surveys [60] and [7] for further discussion. We mentioned (super)diffusion in the previous
subsection, another important problem is to derive the laws of heat conduction. To this end, a two step
strategy was proposed in [34]. The first step is to obtain, from an appropriate time scale of a mechanical
model, a mesoscopic Markovian dynamics of the slow variables, the energies of the particles; while the
second step is to derive Fourier’s law of heat conduction from the mesosocpic model. In [6] we introduced a
billiard ball-piston system as a mechanical model for which this strategy could be implemented. The rigorous
completion of the first step of the strategy for the ball-piston model, which we think is within close reach, has
been an important motivation for our research. Key technical ingredients, achieved in [10], were to develop
a flow version of the standard pair technique, introduced initially in [27] in the context of the billiard map,
and to express the breakthrough result of [2] on exponential decay of correlations for dispersing billiard flows
using this language. A related problem was to clarify various notions of Hölder continuity that are relevant
in this dynamical setting, which was accomplished in [62].
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1.3 Coupled chaotic maps

Coupled systems consist of a graph of interactions to each vertex of which a dynamical system is associated.
These individual systems are called sites and the strength of their interaction – which occurs along the edges
of the graph – is scaled by some parameter ε > 0. Our research focused on the case when the individual
systems are strongly chaotic (such as expanding maps of the interval) and the interaction is mean field, that
is, we consider a complete graph with N nodes. For small values of ε, the coupled system has a unique ergodic
absolutely continuous invariant measure, for larger values of the coupling strength, however, other types of
behavior arise. In particular, for the specific case of coupled doubling maps, in [33] Fernandez discussed the
ergodicity breaking phenomena (emergence of multiple absolutely continuous invariant measures), rigorously
for N = 3 sites and numerically for higher values of N . In [53], on the one hand, we reconsidered the
N = 3 case giving an alternative, symmetry-based approach to ergodicity breaking, and on the other hand,
introduced a continuum version of the model for which we proved that complete synchronization occurs for
sufficiently high values of ε. Within the framework of our project this research was continued in several
directions. In particular [54] extends the proof of ergodicity breaking from N = 3 to N = 4 sites. In [8],
using spectral methods, the results on the continuum version are generalized from the case of the doubling
map to a large class of piecewise expanding maps as individual dynamical systems at the sites. In another
perspective, ergodicity breaking can be regarded as the emergence of multiple invariant measures in self-
consistent dynamical systems, an example for which is discussed in [55].

1.4 Open dispersing billiards

An open dispersing billiard is obtained when removing only finitely many disjoint, smooth and strictly
convex scatterers from the entire plane R2. It is a standing assumption that the configuration satisfies the
non-eclipse condition: the convex hull of any two scatterers is disjoint from all remaining scatterers. This
ensures that the periodic points have a natural coding associated to a subshift of finite type. The length of
the periodic orbits together with their natural coding is called the marked length spectrum. We are mainly
interested in the problem of spectral determination related to Mark Kac’s famous question “Can one hear
the shape of a drum?” ([41]) which in this dynamical context can be interpreted as follows: is it possible
to reconstruct the geometry of the configuration from the marked length spectrum? The investigation of
open dispersing billiards from this perspective was initiated in our paper [5], where in particular we proved
that the marked length spectrum determines the marked Lyapunov spectrum. In the follow up work [29]
the question of spectral determination is answered in the affirmative for open dispersing billiards with three
scatterers subject to some symmetry and genericity conditions.

2 Fractals and Related Models

Let Φ = {fi}Ni=1 be a finite set of contracting maps, mapping Rd into itself. Hutchinson [39] showed that
there exists a unique non-empty compact set X, called the attractor of Φ, which satisfies X =

⋃N
i=1 fi(X).

Moreover, for every probability vector (p1, . . . , pN ) there exists a unique probability measure µ, called sta-
tionary measure, supported on X such that µ =

∑N
i=1 pi(fi)∗µ, where f∗µ = µ ◦ f−1 is the push forward of

µ with respect to f .

2.1 Conformal systems

In the special case, when the maps are similarities, Hutchinson [39] gave a natural upper bound on the upper
box-counting dimension of the attractor and the upper packing dimension of the stationary measure, called
similarity- and Lyapunov dimension, respectively. Hochman’s Theorem [35] states that under the exponential
separation condition the Hausdorff dimension of the attractor equals the similarity dimension and the lower
Hausdorff dimension of the stationary measure equals to the Lyapunov dimension. So far it was an open
question whether the super-exponential condensation (i.e. no exponential separation) implies exact overlap
between two different iterate of the maps. Bárány and Käenmäki [14] showed a counterexample, that is, there
exists a self-similar IFS such that there is no exact overlap but the system is not exponentially separated.

We studied self-similar systems in further aspects. Bárány and Szvák [23] studied the dimension of
stationary measures for systems with non-distinct fixed points, while Simon and Vágó [59] considered some
parametrized families of IFSs formed by similarities (like orthogonal projections of Sierpiński-carpet) and
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showed that the set of parameters for which the stationary measure is singular forms a dense-Gδ set. Note
that the result of Shmerkin and Solomyak [56] implies that the dimension of the directions that the projection
of the natural stationary measure on the Sierpiński-carpet is singular has Hausdorff dimension 0 but the result
of Simon and Vágó [59] implies that it has packing dimension 1.

In the more general setting when the maps are conformal, Bárány, Kolossváry, Rams and Simon [21]
studied the Assouad dimension and the positivity of the Hausdorff measure of the attractor. Furthermore,
Prokaj and Simon [52] studied systems, where the maps are only piecewise linear maps and determined for
typical parameters the dimension of the attractor.

2.2 Non-conformal systems

The dimension theory becomes significantly more difficult if the maps of the IFS are affine maps. Falconer
[30] generalized the concept of similarity dimension, called affinity dimension in this case, while Jordan,
Pollicott and Simon [40] generalized the concept of the Lyapunov dimension for the affine setting. In both
cases, these values are equal to the dimensions of the attractor and the stationary measure for almost all
translation parameters if the norm of the matrices is at most 1/2.

Bárány, Hochman and Rapaport [11] proved a long stating conjecture, namely, for planar self-affine sets
and measures if the IFS satisfies the strong open set condition and the matrices are strongly irreducible
then the dimension of the attractor and the stationary measure equal to the affinity and the Lyapunov
dimension respectively. This result has been applied later widely, like Bárány, Jordan, Käenmäki and Rams
[12], who studied the Birkhoff-spectrum of continuous potentials and the Lyapunov-spectrum over planar
self-affine sets, and like Bárány, Rams and Simon [20], who studied the dimension of repellers of piecewise
affine expanding maps combining results of [11] with Hofbauer, Raith and Simon [36].

A natural step-forward in the understanding of the geometric properties of self-affine systems is to study
its local structure and its proper-dimensional Hausdorff measure. Bárány, Käenmäki and Rossi [15] studied
the Assouad dimension of self-affine sets under strong technical assumptions, which has been significantly
generalized later by Bárány, Käenmäki and Yu [16]. Furthermore, in [16] the Hausdorff measure of planar self-
affine sets was also studied under strong separation condition with dominated linear parts and the positivity
of the Hausdorff measure was characterized explicitly.

Kolossváry and Simon [42] studied the dimension of reducible planar systems, more precisely, generalized
Gatzouras-Lalley carpets with overlaps, for which [11] is not applicable.

Our knowledge becomes significantly limited in the most general case, namely, when the maps of the
IFS are general C1 non-conformal and non-linear mappings. In this case, even it was unknown so far
whether the upper box-counting dimension of the attractor is bounded above by the singularity dimension,
which is the natural generalisation of the affinity dimension, and whether the upper packing dimension of
the stationary measures is at most the Lyapunov dimension. These were verified by Feng and Simon [32]
recently. Furthermore, Feng and Simon [31] introduced a generalized transversality condition and showed in
the cases when the derivative matrices are diagonal or lower-triangular with certain order of the modulus of
the diagonal elements, that the dimension of the attractor and the stationary measure equal to the singularity-
the Lyapunov-dimension respectively for Lebesgue almost every translation parameters if the norm of the
derivative matrices is at most 1/2.

2.3 Multifractal analysis and dynamically defined subsets

Multifractal analysis plays an important role in the theory of fractal geometry. We have already studied
the Birkhoff-spectrum in [12] over planar self-affine sets. Bárány, Rams and Shi [18] studied the topological
entropy spectrum of weighted Birkhoff-averages, which are natural generalizations of the usual Birkhoff-
average, of continuous potentials over subshifts of finite type, where the weights were chosen randomly, and
established a conditional variational principle. Later, Bárány, Rams and Shi [19] studied the entropy and
packing spectrum of weighted Birkhoff-averages with deterministic monotone decreasing positive weights and
established its relation with the standard Birkhoff-spectrum.

Another important aspect of the multifractal analysis is the dimension of shrinking target subsets of the
attractors of IFSs motivated by the Diophantine approximation. Allen and Bárány [1] studied the Hausdorff
measure of shrinking targets of self-conformal sets with open set condition defined by geometric balls, Bárány
and Rams [17] studied the Hausdorff dimension of shrinking targets of Bedford-McMullen carpets defined
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by geometric balls and by cylinder sets, while Bárány and Troscheit [24] studied the Hausdorff dimension of
shrinking targets of generic self-affine sets defined by cylinder sets.

2.4 Chaos game

Barnsley [26] has introduced a natural Markov-chain on the attractor of an IFS {fi}Ni=1, called the chaos game,
by using place dependent probability vectors (p1(x), . . . , pN (x)) with transition probability pi(x) from x to
fi(x). By using such Markov chain, it is possible to plot the attractor of an IFS relatively quickly. Bárány,
Jurga and Kolossváry [13] determined the exact rate of the convergence of a typical orbit in Hausdorff metric
to the attractor. The chaos game has a unique stationary measure which Hausdorff dimension and absolute
continuity has been studied by Bárány, Simon, Solomyak and Śpiewak [22] for parametrized families of
conformal IFS on the line.

2.5 Interactions between fractal geometry and Fourier analysis

The study of the algebraic sums has an important role both in dynamical systems and in geometric measure
theory. Motivated by some configuration problems in geometric measure theory, Simon and Taylor [57] have
investigated the algebraic sum A + Γ, where A ⊂ R2 and Γ is a piecewise C2 curve. They determined the
Hausdorff dimension and the positivity of the Lebesgue measure of A + Γ with respect to the Hausdorff
dimension of A. Furthermore, Simon and Taylor [58] showed an example such that the set A+S1 has empty
interior although A has full Lebesgue measure and it is a dense-Gδ set, but they also showed that if the set A
with large measure and having general product like structure we have that the interior of A+Γ is non-empty
for C2-curves Γ with non-vanishing curvature.

3 Fractal networks

Research on fractal networks is a dynamically growing field of network science. A central issue is to analyze
the fractality of the networks. The fractal property can be identified using the box-covering algorithm.
As this problem is known to be NP-hard, a plethora of approximating algorithms have been proposed
throughout the years. Our study on the box-covering algorithms [44] established a unified framework for
comparing approximating algorithms by collecting, implementing, and evaluating these methods in various
aspects including running time and approximation ability.

In another work of ours on the fractality of networks, we introduced a new concept [43]: the transfinite
fractal dimension of graph sequences that was motivated by the notion of fractality of complex networks
proposed by Song et al. We showed how the definition of fractality can be modified to be able to apply it
to networks with tree-like structure and exponential growth rate of neighborhoods. We also further general-
ized the concept of box dimension and introduced the transfinite Cesaro fractal dimension. Using rigorous
proofs, we determined the optimal box-covering and transfinite fractal dimension of various models: the hi-
erarchical graph sequence model, Song–Havlin–Makse model, spherically symmetric trees, and supercritical
Galton–Watson trees.

3.1 Data-driven network analysis

Besides the rigorous mathematical way of investigating networks, we also study them using a data-driven
approach. For example, in one of our recent works [51], we studied how well real networks can be described
with a small selection of graph metrics, furthermore how well network models can capture the relations
between graph metrics observed in real networks. This work unifies several branches of data-driven complex
network analysis, such as the study of graph metrics and their pair-wise relationships, network similarity
estimation, model calibration, and graph classification. We found that network domains can be efficiently
determined using a small selection of metrics, moreover, we found that the models lack the capability of
generating a graph with a high clustering coefficient and relatively large diameter simultaneously. On the
other hand, models can capture exactly the degree-distribution-related metrics.

In another data-driven network analysis project, using bibliographic and co-authorship network analysis
methods, we studied how the research area of network science evolved over the last twenty years [48]. We
construct the co-authorship network of 56,646 network scientists and we analyzed its topology, dynamics,
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diversity, and interdisciplinarity. We also identified the most central authors, the largest communities, inves-
tigated the spatiotemporal changes, and compared the properties of the nodes to scientometric indicators.

Finally, in another related work we studied the robustness and error-tolerance of complex networks [49].
We considered a graph and we assigned colors to the vertices or edges, where the color-classes correspond
to the shared vulnerabilities. An important problem is to find robustly connected vertex sets: nodes that
remain connected to each other by paths providing any type of error. This is also known as color-avoiding
percolation. We studied various possible modeling approaches of shared vulnerabilities, we analyzed the
computational complexity of finding the robustly connected components.

3.2 Applications in education, social sciences, and telecommunication

In another line of research, we apply the modern tools of statistics and machine learning to answer research
questions arising in various fields such as education, telecommunication, and social/behavioral sciences. We
have several papers in the field of educational data science [37, 47, 50]. For example, in one of our works, we
employed and evaluated several machine learning algorithms to identify students at-risk and predict student
dropout of university based on the data available at the time of enrollment (secondary school performance,
personal details) [50]. Moreover, we also presented a data-driven decision support platform for education
directorate and stakeholders, and in addition, we provided an efficient visualization tool to analyze student
flow patterns by alluvial and Sankey diagrams[37]. In another work, we applied the tools of network science,
namely we introduced a data-driven probabilistic student flow approach to characterize prerequisite networks
and study the distribution of graduation time based on the network topology and on the completion rate of
the courses [47].

In another recent data science project of ours, we analyzed the data of 129,326 memes collected from
Reddit in the middle of March, 2020, when the most serious coronavirus restrictions were being introduced
around the world [25]. This work not only provides a looking glass into the thoughts of Internet users during
the COVID-19 pandemic, but we also performed a content-based predictive analysis of what makes a meme
go viral. Using machine learning methods, we also studied what incremental predictive power image related
attributes have over textual attributes on meme popularity.

Finally, we have conducted research on anomaly detection in telecommunication data sets. We have
developed a novel algorithm [38] that has a special feature: it not only indicates whether an observation is
anomalous or not but also tells what exactly makes an anomalous observation unusual. Hence, it provides
support to localize the reason of the anomaly. The proposed approach is model based; it relies on the
multivariate probability distribution associated with the observations. Since the rare events are present in
the tails of the probability distributions, we used copula functions, which are able to model the fat-tailed
distributions well. The presented procedure scales well; it can cope with a large number of high-dimensional
samples. Furthermore, our procedure can cope with missing values as well, which occur frequently in high-
dimensional datasets.

A comment about the change of the participants of the project.

There have been no changes in the senior participants of the project. However, during the five years
of the project some of our young participants joined to our group with the permission of the NKFI office.
They were: Máté Baranyi , Said Abdelkhalek Fatma ,Gabrielly Keszthelyi, Vilma Orgoványi, Dániel Rudolf
Prokaj.
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