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Balázs Ráth

In this document I describe the results of my research for the three years that I have spent
as a postdoctoral fellow of NKFI from 2016 to 2019 at the Department of Stochastics of the
Mathematics Institute of Budapest University of Technology and Economics (BME).

1 Random graphs

1.1 Age evolution in the mean field forest fire model via multitype
branching processes

This joint work (42 pages) with Edward Crane (Bristol) and Dominic Yeo (Oxford) is submitted
to Annals of Probability. The decision of editors after the first round of referee reports was
“Major revision required”, and currently we are addressing the requests of the referees. The
version submitted to AoP is on arXiv and it is also linked in the electronic list of publications
of this NKFI PD final report.

The mean field forest fire (MFFF) process was introduced by Ráth and Tóth in [10]. It
can be viewed as an adjustment to the Erdős–Rényi dynamics, which destroys the edges of
potential giant components as they are forming, and thus maintains the system in a critical
state forever.

• The model has n vertices, with some (possibly random) initial set of undirected edges at
time 0.

• Each possible edge joining two vertices appears at rate 1/n, independently.

• At rate λ = λ(n) each vertex is struck by lightning, independently. When a vertex is
struck by lightning, the vertex survives but all of the edges in its connected component
(or cluster) are instantaneously deleted. Those edges may subsequently reappear.

The most interesting asymptotic regime for the lightning rate is 1/n � λ(n) � 1. In this
regime, clusters of any fixed finite size are destroyed at a negligible rate when n is large. How-
ever, the total rate of lightning strikes in the model diverges, so if a cluster of size comparable
to n were able to form then it would only survive for time o(1). This is the asymptotic regime
of lightning rates for which the model displays self-organized criticality.

The goal of our paper is to describe the local graph structure of the MFFF at time t as
n→∞ in terms of a multitype branching process, and also to give a simple description of the
time evolution of the parameters that govern this multitype branching processes.

At any time t ≥ 0 each vertex v has an age ant (v), which is defined to be the time since
it was last burned, or an0 (v) + t if it has not yet been burned. Let πnt = 1

n

∑
v δant (v) be the

empirical measure of these ages.
Our central observation is that conditional on the ages ant (v) and ant (w) of two vertices v and

w, the probability that they are joined by an edge at time t is exactly 1−exp(−ant (v)∧ant (w)/n).
Furthermore, these events are independent for distinct pairs of vertices. So conditional on πnt ,
the graph seen at time t is an inhomogeneous random graph (IRG) in the sense of Bollobás et
al [4].

We show that the empirical age distributions πnt converge as n→∞ to a deterministic limit
distribution πt, moreover (πt, t ≥ 0) satisfies an autonomous differential equation, which we

1



call the age differential equation. To describe this, we first recall from [10] that there exists a
so-called gelation time tgel ≥ 0, at which the model makes a phase transition from subcritical
to critical behaviour. For 0 ≤ t < tgel the age of each vertex simply increases at rate 1 unless it
burns before tgel. Only an asymptotically negligible proportion of the vertices burn before tgel,
so the limiting age distribution satisfies the simple transport equation

dπt
dt

= −δ′0 ∗ πt . (1.1)

Here δ′0 is the derivative of the Dirac delta at 0, so this statement is an equality of Schwarz
distributions. The situation is more interesting for t ≥ tgel, when the model is critical. Then,
for each such t, there exists a unique non-negative, continuous and non-decreasing function
s 7→ θt(s) satisfying

∫
θt(s) dπt(s) = 1 and

θt(s) =

∫ ∞
0

θt(u) (u ∧ s) dπt(u), s ∈ [0,∞]. (1.2)

In fact, θt is the normalized right eigenfunction corresponding to the eigenvalue λt = 1 of
the Perron-Frobenius operator associated with the (critical) multi-type branching process that
arises as the local limit of the graph at time t as n→∞.

We define µt to be the probability measure absolutely continuous with respect to πt with
Radon–Nikodym derivative dµt

dπt
(s) = θt(s) . Then for t > tgel, πt satisfies the following distribution-

valued differential equation:

dπt
dt

= −δ′0 ∗ πt − ϕ(t)µt + ϕ(t)δ0 , ϕ(t) =

(∫
θt(s)

3 dπt(s)

)−1
. (1.3)

My conference and seminar talks about this result:

• 2019 March 18.

Venue: Institute of Information Theory and Automation, Prague, Czech Republic

Title: ”On random graphs and forest fires”

• 2019 June 26.

Venue: Felix-Klein Colloquium, University of Leipzig, Germany

Title: ”On random graphs and forest fires”

1.2 A moment-generating formula for Erdős-Rényi component sizes

This paper is published in Electronic Communications in Probability and it is also linked in
the electronic list of publications of this NKFI PD final report.

The Erdős-Rényi graph Gn,p is the random graph on n vertices where each pair of vertices
is connected with probability p, independently from each other. We denote by Pn,p the law
of Gn,p and En,p the corresponding expectation. We assume that the vertex set of Gn,p is
[n] = {1, . . . , n} and we denote by C the connected component in Gn,p of the vertex indexed by
1. We denote by |C| the number of vertices of C.

For any n ∈ N, p ∈ [0, 1], j ∈ Z ∩ (−n,+∞), and k ∈ [n] we define

gn,p(j, k) = (1− p)jk
k−1∏
i=0

n− i+ j

n− i
. (1.4)
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The central result of our paper is the following formula: for any n ∈ N, j ∈ Z ∩ (−n,+∞)
and p ∈ [0, 1] we have

En,p [ gn,p(j, |C|) ] =
n+ j

n
(1− Pn+j,p[ |C| > n ]) . (1.5)

Note that if j ≤ 0 then the r.h.s. is simply n+j
n

, moreover the formulas (1.5) for j ∈ Z∩ (−n, 0]
together uniquely characterize the distribution of |C| under Pn,p.

This formula allows us to give elementary proofs of some results of [6] and [7] about the
susceptibility in the subcritical graph and the CLT [9] for the size of the giant component in
the supercritical graph.

My conference and seminar talks about this result:

• 2017 September 11.

Venue: Randomness and Graphs : Processes and Structures, Eurandom, Eindhoven, The
Netherlands

Title: A moment-generating formula for Erdős-Rényi component sizes

1.3 The window process of slightly subcritical frozen percolation

This paper, joint work with Dominic Yeo (Oxford), is still in being typed. In 2018 April we
were already confident enough to give a conference talk about the results. However, the typing
was delayed, because we felt that other, more urgent projects had to be finished before this one.
The current (unfinished) version is linked in the electronic list of publications of this NKFI PD
final report.

The mean field forest frozen percolation process was introduced by Ráth in [11]. Similarly
to the mean field forest fire model, it can be viewed as an adjustment to the Erdős–Rényi
dynamics, which destroys large connected components.

• Initially, the model has n vertices and no edges.

• Each possible edge joining two vertices which are still alive at time t appears at rate 1/n,
independently.

• At rate λn each vertex which is still alive at time t is struck by lightning, independently.
When a vertex is struck by lightning, its connected component (in the graph spanned by
the set of alive vertices at time t) is instantaneously deleted (i.e., its vertices are removed
from the set of alive vertices).

We assume ln(n)4/3n−1/3 � λn � 1
ln(n)

. In this asymptotic regime of lightning rates, the model
displays self-organized criticality, but the lightnings are frequent enough so that components of
size n2/3 never appear (this would be the order of magnitude of the size of the largest connected
component in the critical window of the Erdős–Rényi graph), thus our model remains “slightly
subcritical”.

Let us denote by An(t) the number of alive vertices at time t, thus An(0) = n. Denote by
(Fn(t)) the filtration generated by the process (An(t)). The starting point of our paper is the
observation that given Fn(t), the graph spanned by the vertices which are alive at time t is
distributed as an Erdős–Rényi graph with An(t) vertices and edge probability 1− e−t/n. As a
consequence, (An(t)) is a Markov process (albeit not time-homogeneous).

We define the window process (Wn(t))t≥0 by

Wn(t) =
tAn(t)

n
. (1.6)
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Heuristically, given Fn(t), Wn(t) is roughly equal to the expected number of neighbours of a
vertex in the graph at time t. Thus, heuristically, if Wn(t) > 1 then the graph is “supercritical”,
if Wn(t) < 1 then it is “subcritical” and if Wn(t) ≈ 1 then it is “critical”. It was already proved
in [11] that Wn(t) converges in probability to 1 ∧ t as n → ∞, thus for all t ≥ 1 the graph is
critical. In order to get the precise asymptotics of Wn(t), let us denote by an(t) the solution of
the ODE

d

dt
an(t) = −λn ·

an(t)

1− t · an(t)
, an(0) = 1. (1.7)

Denote by
wn(t) := an(t) · t, t ≥ 0. (1.8)

Let us first note that for each t, we have wn(t)→ 1 ∧ t as n→∞. We will see that wn(t) is a
good deterministic approximation of Wn(t). We define the rescaled window fluctuation process
as

Zn(t) = (nλn)1/2 · (Wn(t)− wn(t)) . (1.9)

Our first main result describes the scaling limit of the window fluctuation process:

Theorem 1.1. Let t ∈ (1,+∞). Let

Z̃n(s) := Zn(t+ λns)
(1.9)
= (nλn)1/2 · (Wn(t+ λns)− wn(t+ λns)) , s ∈ R. (1.10)

Then
Z̃n(·)⇒ Z̃(·)

in D[−T̃ , T̃ ] for all T̃ <∞, where Z̃ is the stationary Ornstein–Uhlenbeck process which satisfies
the SDE

dZ̃(s) = − 1

t2
Z̃(s) ds+

1

t
dB(s). (1.11)

Thus, heuristically, if Wn(·) gets too far from wn(·), its drift pulls it back closer to wn(·).
Our second main result confirms the “slightly subcritical” part of [11, Conjecture 1.1] by

showing that the typical size of a burnt component is λ−2n :

Theorem 1.2. Let t ∈ (1,+∞) and

Un(s) := nλ2n

(
Wn

(
t+

s

nλ2n

)
−Wn(t)

)
. (1.12)

Let U(·) be the Lévy process defined by

U(s) :=
1

t
s− 1

t

∫ s

0

∫ ∞
0

yN(dy, du), (1.13)

where N(·, ·) is a Poisson point process on R2
+ with intensity 1√

2π
y−3/2e−y/2dydu.

Then
Un(·)⇒ U(·)

in D[0, T̂ ] for each T̂ <∞.

Note that the limiting process U(·) is a pure jump process with constant upward drift and
downward jumps, with a dense set of downward jump times.

The proof of the above stated results consists of multiple ingredients: (i) the analysis of
the non-trivial asymptotics (as λn → 0) of the ODE (1.7), (ii) comparison of the infinitesimal
generators of the Markov processes Wn(·), Z(·) and U(·), which boils down to the study of the
component size distribution of the slightly subcritical Erdős–Rényi graph (using the formula
(1.5), among other tools).

My conference and seminar talks about this result:
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• 2018 April 12.

Venue: UK Easter Probability Meeting 2018, University of Sheffield, UK.

Title: The window process of slightly subcritical frozen percolation

2 Correlated percolation models

2.1 On the threshold of spread-out voter model percolation

Joint work with Daniel Valesin (Groningen). This paper is published in Electronic Communi-
cations in Probability, and it is also linked in the electronic list of publications of this NKFI
PD final report.

The voter model on Zd with range R ∈ N is a Markov process (ξt)t≥0 on {0, 1}Zd
. In the

usual interpretation, sites of Zd represent individuals (“voters”) and the states 0 and 1 represent
two conflicting opinions. Individuals are all endowed with independent exponential clocks (all
with parameter 1); whenever the clock of individual x rings, another individual y is chosen
uniformly at random within `1-distance at most R from x, and then x copies the opinion of y.

Let Id,R denote the set of extremal stationary distributions of the voter model on Zd and
range R. In case d = 1 or 2, for any R, this set consists only of δ0 and δ1, the two measures
that give full mass to the configurations which are identically equal to 0 or 1, respectively. In
case d ≥ 3, Id,R consists of a one-parameter family of measures

{µα,R : 0 ≤ α ≤ 1}.

Each of the measures µα,R is invariant and ergodic with respect to translations in Zd. Addi-
tionally,

µα,R({ξ : ξ(0) = 1}) = α,

so that α is a density parameter.
For given values of d, R and α, let ξ ∈ {0, 1}Zd

be a configuration sampled from µα,R.
Consider the subgraph of the nearest-neighbor lattice Zd induced by the set of vertices {x :
ξ(x) = 1} (i.e., the set of open sites). Let Perc be the event that this subgraph contains an
infinite connected component (cluster).

By ergodicity, µα,R(Perc) is either 0 or 1. The statement that the measures µα,R exhibit a
non-trivial percolation phase transition with respect to the density parameter α means that,
for any d ≥ 3 and R ∈ N, there exists αc = αc(R) ∈ (0, 1) (depending on d and R) such that
µα,R(Perc) = 0 if α < αc and µα,R(Perc) = 1 is α > αc. It is already known (c.f. [13]) that this
is indeed the case under two sets of assumptions: first, d ≥ 5, and second, d = 3 or 4 and R
large enough.

The main result of our paper is as follows. For any d ≥ 3, as R → ∞, the critical density
value for percolation phase transition of the stationary measures of the voter model with range
R converges to the critical density value for independent Bernoulli percolation:

lim
R→∞

αc(R) = pc. (2.1)

This convergence result seems natural, but the proof is not at all automatic, since it is known
that µα,R cannot be stochastically dominated (or minorated) by a Bernoulli product measure.

Our main tools are (i) the multi-scale renormalization methods of [12] and (ii) a new lemma,
which allows for a direct comparison between the measures µα,R and Bernoulli product mea-
sures, which relies on a natural coupling of systems of independent random walks, coalescing
random walks (that are used in the construction of µα,R) and annihilating random walks.

My conference and seminar talks about this result:

5



• 2018 June 13.

Venue: The 40th Conference on Stochastic Processes and their Applications, Gothenburg,
Sweden.

Title: On The Threshold Of Spread-out Voter Model Percolation

2.2 On the threshold of spread-out contact process percolation

This joint paper with Daniel Valesin (Groningen) is still being typed (currently 48 pages). We
consider the paper to be nearly finished: the proofs of some minor lemmas need to be typed
and the introduction needs to be written. The current version is linked in the electronic list of
publications of this NKFI PD final report.

In the R-spread out d-dimensional contact process, each site of Zd can be in state 0 (healthy)
or 1 (infected). An infected site heals at rate one and at rate λ it infects a uniformly chosen
vertex within a ball of radius R. It is known that there exists a critical threshold λc(R) such
that the upper stationary measure µλ,R of this interacting particle system is non-trivial if and
only if λ > λc(R). It follows from [5] that λc(R) goes to 1 as R goes to infinity.

Similarly to the case of the voter model (discussed in the previous subsection), one may
view a configuration sampled according to the upper stationary measure as a correlated near-
est neighbour site percolation model and define the percolation threshold λp(R) such that
µλ,R(Perc) = 0 if λ < λp(R) and µλ,R(Perc) = 1 is λ > λp(R).

We prove that for any d ≥ 2 we have

lim
R→∞

λp(R) =
1

1− pc
, (2.2)

where pc = pc(d) is the critical percolation threshold of Bernoulli site percolation on Zd. This
implies in particular that λc(R) < λp(R) for large enough R, answering an open question of [8]
in the R-spread-out case.

Our proof combines multi-scale renormalization, a new variant of the stochastic domination
results of [8] and a coupling of a family of independent branching random walks with the
graphical construction of the contact process.

My conference and seminar talks about this result:

• 2019 August 22.

Venue: Workshop on Complex Systems, Institute of Information Theory and Automation,
Prague, Czech Republic

Title: On the threshold of spread-out contact process percolation

2.3 Frozen percolation on the binary tree is nonendogenous

Joint work with Jan M. Swart (Prague) and Tamás Terpai (ELTE), submitted recently (45
pages). The arXiv version is linked in the electronic list of publications of this NKFI PD final
report.

Let (T,E) be a regular tree where each vertex has degree 3, and let U = (Ue)e∈E be an i.i.d.
collection of uniformly distributed [0, 1]-valued random variables, indexed by the edges of the
tree. We write Et := {e ∈ E : Ue ≤ t} (t ∈ [0, 1]). Aldous [1] has proved the following theorem.

Theorem 2.1. It is possible to couple U to a random subset F ⊆ E with the following properties:

1. e 6∈ F if and only if no endvertex of e is part of an infinite cluster of EUe \ (F ∪ {e}).
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2. The law of (U , F ) is invariant under automorphisms of the tree.

At time t ∈ [0, 1], we call edges in Et \ F open, edges in Et ∩ F frozen, and all other edges
closed. Then property (i) can be described in word as follows. Initially all edges are closed. At
time Ue, the edge e opens provided neither of its endvertices is at the time part of an infinite
open cluster; in the opposite case, it freezes.

In [1, Section 5.7], Aldous asked whether the set F of frozen edges is measurable w.r.t. the
σ-field generated by U , and cautiously conjectured that this might indeed be the case. In [2,
Thm 55], an apparent proof of this conjecture by Bandyopadhyay was announced that appeared
on the arXiv [3] but turned out to contain an error. In the last posted update of [3] from 2006,
Bandyopadhyay reported on numerical similations that suggested nonuniqueness, and from this
moment on this seems to have been the generally held belief. Our main result is that almost
sure uniqueness does not hold.

Theorem 2.2. There exists a triple (U , F, F ′) such that U = (Ue)e∈E is an i.i.d. collection
of uniformly distributed [0, 1]-valued random variables, F and F ′ are random subsets of E
satisfying property (i) of Theorem 2.1, the law of (U , F, F ′) is invariant under automorphisms
of the tree, and F 6= F ′ a.s.

The construction of Theorem 2.1 uses a so-called recursive tree process (RTP), c.f. [2, Section
2.3], and we prove Theorem 2.2 by showing that this RTP is nonendogenous, c.f. [2, Section
2.4]. In fact, we prove Theorem 2.2 by explicitly constructing a non-diagonal fixed point of the
bivariate recursive distributional equation (RDE) associated to the frozen percolation RTP, c.f.
[2, Theorem 11]. An essential role in our proofs is played by a frozen percolation process on a
continuous-time binary Galton Watson tree that has nice scale invariant properties.

My conference and seminar talks about this result:

• 2019 September 20.

Venue: Large Scale Stochastic Dynamics, Oberwolfach Workshop, Germany

Title: Frozen percolation on the binary tree is nonendogenous
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[13] Ráth, B., and Valesin, D. Percolation on the stationary distributions of the voter model.
Annals of Probability 45 (3), 1899-1951 (2017).

8


