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1 Introduction

Today, different sensors and approaches are often combined to build a detailed, geometrically correct and prop-
erly textured 3D or 4D (spatio-temporal) model of an object, a scene, or to achieve reliable object detection and
recognition. Visual and non-visual sensor data are fused to cope with varying illumination, surface properties,
motion, and occlusion. This research project aimed to produce generic ways of working with image patches
(without point correspondences) and to directly provide the corresponding 3D information (surface patches,
pose, or recognition). From a practical point of view, these methods open new possibilities for the application
of reconstruction, recognition, and fusion of 3D depth data with 2D imagery. Important examples occur in
security (surveillance), industry (visual inspection), and intelligent transportation (autonomous driving). The
algorithms proposed in this project are computationally efficient and require little user interaction, paving the
way for embedded vision systems, where limited computing power does not allow the use of many current tech-
niques. Thus, our algorithms can contribute to exciting technologies such as mobile computing, autonomous
vehicles, or drones. The contents of this report are grouped into 5 parts, which directly correspond to the main
chapters of the original project plan:

• Patch-based camera independent reconstruction using 3D priors (Section 2.1): in addition to patch-based
reconstruction we included Markov-based curvilinear reconstruction methods (Section 2.1.1)

• Beyond point correspondences (Section 2.2)

• Registration across different dimensions (Section 2.3)

• 3D-3D nonrigid registration for heterogeneous data (Section 2.4)

• Video object recognition (Section 2.5)

In Section 2.6 we included such results which were not categorized in the above classes but are closely related
to this research.

2 Results

2.1 Patch-based camera independent reconstruction using 3D priors

The mainstream approach to passive stereo reconstruction is based on projective geometry that provides a full
reconstruction framework. These methods typically rely on point correspondences and the epipolar geometry of
points. The reconstruction theory is well developed and tested for central perspective cameras [1]. Region-based
methods proved to be highly accurate and robust. We proposed a novel solution for multi-view reconstruction,
relative pose and homography estimation using planar regions. The proposed method doesn‘t require point
matches, it directly uses a pair of planar image regions and simultaneously reconstructs the normal and distance
of the corresponding 3D planar surface patch, the relative pose of the cameras as well as the aligning homography
between the image regions. When more than two cameras are available, then a special region-based bundle
adjustment is proposed, which provides robust estimates in a multi-view camera system by constructing and
solving a non-linear system of equations. The method is quantitatively evaluated on a large synthetic dataset
as well as on the KITTI vision benchmark dataset [2].

Nowadays, depth (RGBD) cameras are gaining more and more attention. Having partial depth data of a
scene, one can use it as a prior for efficient image-based (stereo or multiview) 3D reconstruction to produce



an accurate 3D scene representation. We proposed a novel graph-cut based 3D reconstruction method which
is able to take into account partially available depth data as a prior. We formulate the energy as a function
written as a sum of terms that can be minimized in two different representations: (1) assignment-based, which
yields a standard binary energy, in this approach occlusion and uniqueness is handled naturally; as well as (2)
a multi-label representation which yields to a non-binary energy where occlusion is only handled by assigning
a special label to occluded pixels, while uniqueness is not handled explicitly. Both representations have their
advantages and disadvantages, which are analyzed and discussed into details through various experimental
results on the publicly available Middlebury stereo datasets and on real stereo images. Results show, that the
use of depth prior information from different sources produces better 3D reconstructions [3].

2.1.1 2D and 3D models for the reconstruction of curvilinear objects

Besides the recognition methods of 3D objects from multiple directions, we turned to other problems such as
segmentation and structural reconstruction of objects in cluttered environments [4]. We focus on objects that
have line-like (piecewise-linear) or curvilinear structures such as trees (with branches), veins in organs or road
structures in aerial images [5], [6], [7]. We tried different approaches for the representation of such patterns and
we first found parts-based methods to be the most efficient. We created a Marked Point Process (MPP) with
Reversible Jump Monte Carlo Markov Chain Optimization for the optimal reconstruction of such structures
from parts and used it for the delineation and segmentation of tree images. For the initial detection of part
of the object, we used different neural networks such as SegNet and DeepLab, and the MPP was building its
model over the initial estimates [8], [9]. Finally, we found that the simultaneous detection of segments, segment
borders, and parts’ center lines with CNNs is very accurate and computationally efficient, and even the layering
of occluding parts can be determined in many cases [10]. As the final approach we are planning to include
stereo images to generate not only 2D or 2.5D but realistic 3D models of trees.

2.2 Beyond point correspondences

Recently, there has been much interest in object detection and matching using local invariant features (e.g.
SIFT [11], SURF [12]) or regions (e.g. MSER [13]). Since these features are invariant to translation, rotation,
and scaling, points or regions can be matched between images accurately. Moreover, if the matches have already
been obtained, the transformations between the patches around the feature centers or regions can be obtained
as well. Omnidirectional cameras are particularly interesting here, because state of the art point descriptors
implicitly assume a perspective geometric relation between images. We show that novel camera calibration
methods can be constructed to estimate camera parameters for non-conventional optics too: a novel method is
proposed [14] for the absolute pose estimation of a central 2D camera with respect to 3D depth data without
the use of any dedicated calibration pattern or explicit point correspondences. The proposed method has no
specific assumption about the data source: plain depth information is expected from the 3D sensing device, and
a central camera is used to capture the 2D images. Both the perspective and omnidirectional central cameras
are handled within a single generic camera model. Pose estimation is formulated as a 2D-3D nonlinear shape
registration task which is solved without point correspondences or complex similarity metrics. It relies on a set
of corresponding planar regions, and the pose parameters are obtained by solving an overdetermined system of
nonlinear equations. The efficiency and robustness of the proposed method were confirmed on both large-scale
synthetic data and on real data acquired from various types of sensors.

While many handcrafted features have been proposed for keypoints, only a few methods exist for line
segments. It is well known, however, that line segments are commonly found in man-made environments, in
particular urban scenes, thus they are important for applications like pose estimation, visual odometry, or 3D
reconstruction.

First, we addressed the problem of estimating the absolute pose of a multiview calibrated perspective
camera system from 3D - 2D line correspondences [15]. We assume, that the vertical direction is known, which
is often the case when the camera system is coupled with an IMU sensor, but it can also be obtained from
vanishing points constructed in the images. We proposed two solutions, both can be used as a minimal solver
as well as a least squares solver without reformulation. The first solution consists of a single linear system
of equations, while the second solution yields a polynomial equation of degree three in one variable and one
systems of linear equations which can be efficiently solved in closed-form. The proposed algorithms have been
evaluated on various synthetic datasets as well as on real data. Experimental results confirm state of the art
performance both in terms of quality and computing time. Then the method has been extended to generalized
camera systems [16]: The only assumption about the imaging model is that 3D straight lines are projected via
projection planes determined by the line and camera projection directions, i.e. correspondences are given as a
3D world line and its projection plane. Since modern cameras are frequently equipped with various location



and orientation sensors, we assume that the vertical direction (e.g. a gravity vector) is available. Therefore we
formulate the problem in terms of 4 unknowns using 3D line - projection plane correspondences which yields
a closed form solution. The solution can be used as a minimal solver as well as a least squares solver without
reformulation. The proposed algorithm have been evaluated on various synthetic datasets as well as on real
data. Experimental results confirm state of the art performance both in terms of quality and computing time.

Subsequently, the problem of multicamera absolute and relative pose estimation has been considered in [17]:
The algorithm relies on two solvers: a direct solver using a minimal set of 6 line pairs and a least squares
solver which uses all inlier 2D-3D line pairs. The algorithm have been validated on a large synthetic dataset,
experimental results confirm the stable and real-time performance under realistic noise on the line parameters
as well as on the vertical direction. Furthermore, the algorithm performs well on real data with less then half
degree rotation error and less than 25 cm translation error on a 10m range outdoor scene.

Finally, pose estimation without the knowledge of the vertical direction becomes a more complex problem
yielding various formulations and solutions: For estimating the absolute and relative pose of a camera system
composed of general central projection cameras [18] such as perspective and omni-directional cameras, we derive
a minimal solver for the minimal case of 3 line pairs per camera, which is used within a RANSAC algorithm for
outlier filtering. Then, we also formulate a direct least squares solver which finds an optimal solution in case of
noisy (but inlier) 2D-3D line pairs. Both solver relies on Grobner basis, hence they provide an accurate solution
within a few milliseconds in Matlab. The algorithm has been validated on a large synthetic dataset as well
as real data. Experimental results confirm the stable and real-time performance under realistic outlier ratio
and noise on the line parameters. Comparative tests show that our method compares favorably to the latest
state of the art algorithms. Then a new algorithm for estimating the absolute and relative pose of a multi-view
camera system is proposed in [19]. We derive a direct least squares solver using Grobner basis which works
both for the minimal case (set of 3 line pairs for each camera) and the general case using all inlier 2D-3D line
pairs for a multi-view camera system. The algorithm has been validated on a large synthetic dataset as well as
real data. Experimental results confirm the stable and real-time performance under realistic outlier ratio and
noise on the line parameters. Comparative tests show that our method compares favorably to the latest state
of the art algorithms.

2.3 Registration across different dimensions

This problem arises in calibration of nonconventional optics/sensors (e.g. omnidirectional optics, Lidar, etc.).
While standard projective camera calibration is extensively studied and has many working solutions, the cali-
bration of camera systems consisting of different sensors (e.g. Lidar, traditional color camera, or infra camera)
is less studied. The problem of extrinsic calibration for 3D Lidar and color camera was first addressed in [20]
which generalized the algorithm proposed by Zhang in [21]. For high precision aerial image registration the
work presented in [22] is based on the information of the Lidar scan intensity. For low precision and high
frame rate systems used e.g. for navigation purposes, the registration challenges are addressed in different
ways. Usually there are several Lidar-camera scan pairs acquired and the registration is performed on these
image pairs [23]. Other works are related to Lidar-omnidirectional camera registration [24]. In such mixed
environments, correspondence-free and target-less calibration is particularly important since, due to unusual
optical distortions and different sensory information, correspondences are difficult to establish. Furthermore,
target-less calibration is important when images taken at different time (e.g. a Lidar scan and an infra im-
age) need to be fused. A strongly related area is image-based navigation, which is becoming more and more
important with the widespread use of smart mobile phones and UAVs.

Our preliminary results on calibrating a pair of perspective and Lidar-cameras was presented in [25]. Based
on these results, we formulated pose estimation as a region based registration for central and non-perspective
optics, such as omnidirectional cameras and various depth sensors.

As a real-life application, a workflow was proposed [26] for Cultural Heritage applications in which the
fusion of 3D and 2D visual data is required. Using data acquired by cheap, standard devices, like a 3D scanner
having a low quality 2D camera in it, and a high resolution DSLR camera, one can produce high quality color
calibrated 3D model for documenting purpose. The proposed processing workflow combines a novel region
based calibration method with an ICP alignment used for refining the results. It works on 3D data, that do
not necessarily contain intensity information in them, and 2D images of a calibrated camera. These can be
acquired with commercial 3D scanners and color cameras without any special constraint. In contrast with the
typical solutions, the proposed method is not using any calibration patterns or markers. The efficiency and
robustness of the proposed calibration method has been confirmed on both synthetic and real data.

Another workflow is proposed for cultural heritage applications [27] where the fusion of 3D and 2D visual
data is required. Using a metric 3D point cloud acquired by a Lidar scanner and 2D images of a commercial
high-resolution DSLR camera, we show how to produce a high-quality, metric 3D model for documenting
or architectural planning purpose. The proposed processing workflow describes the data acquisition tasks, the



steps of the data processing, and the proposed method used for colorizing the point cloud from multiple cameras
by choosing the camera with the best view based on different conditions. We show results on two Reformed
Churches: Kolozsnema and Somorja.

2.3.1 New pose estimation and sensor calibration techniques

During our research we were focusing on different facets of the pose estimation problems including applications
in the cultural heritage [28] and industrial robotics as well. We analyzed the relative pose estimation between
augmented reality (AR) systems and a fixed robot, based on cross calibration between 2D cameras, using SVD
techniques [29], [30]. With this approach one can bring into the same coordinate system an AR visualizing tool
and an arbitrary other device with a 2D camera. Special focus was dedicated to the change detection problem
in urban scenes using 2D and 3D data as well [31].
We proposed an approach for the calibration of the depth camera mounted on the arm and the gripper frame,
which is based on a relative calibration to a fixed frame in space [32]. The main idea is to use a calibration
pattern as an external reference with an internally calibrated depth camera [33]. The position of this check-
board and fixed frame with respect to the depth camera can be determined with SVD based methods taking
into account the physical size of the pattern[34].
For the 3D data based pose estimation we developed an algorithm with for the efficient normal estimation
(base operation for 3D point cloud data processing) from ToF camera specific depth image processing based
on Feature Pyramid Networks. The results were tested on both embedded and server grade devices and the
related results were published in [35], [36], and [37].

2.4 3D-3D non-rigid registration for heterogeneous data

The need for heterogeneous 3D data registration is becoming a must in several applications including au-
tonomous navigation, mapping or even cultural heritage use cases. The main challenge in this type of data
fusion is the relaxation of the rigid-transformation constraints. Due to the different physical measurement prin-
ciples of the different sensors the resulting data undergoes a non-linear distortion, for which some un-distortion
can help, but the overall consistency of the resulting 3D models may suffer from problems like occlusion,
reflectance, shadow effects of surface unevenness. In order to deal with such situations a local, patch level
3D fusion approach is proposed which integrated in a global alignment procedure ensures the consistent 3D
data fusion for the slightly non-rigid deformation cases too. Typical use cases for this approach would include
the merging of the SfM 3D models with the geometrically correct (LiDAR, CAD model, etc) data. This can
compensate the shortcomings of the input data (e.g holes, surfaces with scattered points, uneven sampling,
lack of color information). Our approach [38] deals with the problem of fusing different (potentially partial)
3D meshes to fill in missing parts (holes) of an accurate reference 3D model using a less accurate but more
complete moving 3D model. Typically, accurate 3D models can be produced by range devices (Lidar) which
is often limited in setting viewpoints, while traditional Structure from Motion methods are using 2D images
which are less restricted in viewpoints, but overall produce a less accurate 3D mesh. Combining the advantages
of both modalities is an appealing solution to many real world problems. Herein we proposed a novel method
which detects holes in the accurate reference mesh and then each hole is filled from the less accurate 3D mesh by
gradually estimating local affine transformations around the hole’s boundary and propagating it into the inner
part. Experimental validation was done on a large real dataset, which confirms the accuracy and reliability of
the proposed algorithm.

In [39], a region-based approach is proposed to find a thin plate spline map between a pair of deformable 3D
objects represented by triangular surface meshes. The proposed method works without landmark extraction
and feature correspondences. The aligning transformation is simply found by solving a system of integral
equations. Each equation is generated by integrating a non-linear function over the object domains. We derive
recursive formulas for the efficient computation of these integrals for open and closed surface meshes. Based
on a series of comparative tests on a large synthetic dataset, our triangular mesh-based algorithm outperforms
state of the art methods both in terms of computing time and accuracy. The applicability of the proposed
approach was demonstrated on the registration of 3D lung CT volumes, brain surfaces and 3D human faces.

2.5 Video object recognition

It is obvious that video gives much more information about 3D objects than simply 2D projections. Not only
the different views of the objects can be recorded but the 3D structure can be reconstructed by structure from
motion techniques. However, these later approaches require good quality images and camera calibration with
relatively large computational power still far from most of the mobile computing platforms and intelligent sensor



motes. Luckily mobile computing devices often contain inertial measurements units (IMUs) and the calibration
of cameras can be combined with IMUs [40]. However, it is still an open question how to exploit the IMUs in
video recognition without going through the structure from motion processing methodology. Our research is
focused on a viewer centered recognition model where the relative position of the target object and the camera
is utilized. Our preliminary experiments already showed [41] that IMUs can help in the recognition process
with low computational demands. However, fast object tracking and/or segmentation still can be a problem in
this framework being also a subject for research. Most object recognition are passive from the model side. We
propose to build up model-driven interactive retrieval methods where the search engine gives hint how to move
the camera around the object to get the fastest and most reliable recognition result.

2.5.1 Multiview recognition with information fusion of optical and directional information of
IMUs and probabilistic models for object recognition with 3D sensors

One main aspect of the proposed methods was the low computational demand regarding complexity and memory
usage. As planned we made new models for the retrieval and recognition of 3D objects with lightweight devices
with information fusion of optical and inertial information. Also we created techniques with 3D sensors using
Markov processes. The main ideas which were successfully exploited:

• Hough paradigm based approach: An object retrieval method was developed where compact visual de-
scriptors of different views of the object and the camera’s orientation was fused. We have shown that the
utilization of the very informative and lightweight orientation results in the increase of the hit-rate [42],
[43].

• Hidden Markov Model (HMM) based retrieval: In this approach, we modeled the views of objects from dif-
ferent directions as hidden states and the compact visual descriptors were considered as noisy observations
[44], [45]. This approach is also applicable to pose estimation [46].

• Fusing information from CNNs (convolutional neural network) confidence values [47].

• Applying active vision to improve performance of the above Hough transformation and HMM models
[48], [49].

• Active perception approach for object detection using 3D cameras based on Partially Observable Markov
Decision Processes [50], [51] while in the work [52] simple and robust deep network architectures were
trained for object recognition in indoor environment.

2.6 Other results related to object classification, recognition, and pose estimation

In the first months of the project we finished the research stretching over from the 2016 to develop lightweight
methods for the binary classification of time domain signals [53].
We also continued our research related to the analysis of remote sensing images. The analysis and classification
of image regions are targeted to estimate the urbanization used in many areas of biological research. There are
two main improvements on this field: we investigated the scalability of our method and we made experiments
with eye-tracking tools to discover the relations between the human’s recognition and the automatic mecha-
nisms [54], [55]. Our implementation of the urbanization score estimation method reached over 300 downloads
from 19 countries (used in a total of 30 countries).
An application motivated research topic was the usage of eye-tracker for the measurement and evaluation of
users’ behavior during operators’ training for manufacturing. With the help of the developed technique we can
design more efficient visual tutorials to enhance the process of training in industrial environments [56]. Another
computer vision technique being developed is to apply a surveillance method for the analysis and assessment
of human posture and motion activities at workplaces. The developed technique can be applied to estimate
human body parameters related to workplace ergonomic recommendations [57], [58].
Furthermore, advanced data analysis [59] and network latency mitigation were proposed in industrial robotics
perception scenarios in the works [60],[61]. Both research direction proved to be relevant for the next generation
Industry X.0 specific sensing and perception research domain.
For the outdoor robot 2D perception and navigation problem a grid based projection variant was proposed in
the work [62]. An active perception approach was studied based on Partially Observable Markov Decision Pro-
cesses (POMDP) used in an optimistic control setup [51]. A Recurrent Neural Network (RNN) based control
law for 2D image based navigation was studied in the experimental reporting [63].
In the last months of the project we investigated siamese neural networks for defect detection, first implemen-
tations were tested in traffic signs [64] but in future we are planning to apply the methods to other industrial



products as well.

In the future, we plan to extend the methods developed within this project both on fundamental levels
focusing on closed form solutions with optimistic optimization procedures for faster convergence suitable for
embedded GPU platforms. On the technological side we intent to validate our prior results in applied knowledge
transfer projects towards the industrial environment. These efforts hopefully will converge in a larger scale
H2020, EIDN, or COST project with our existing international network from the three institutions involved in
the current project.

3 Summary of Activities

The research project ran for 60 months after an extension due to Covid-19. Beside senior researchers BSc/MSc/PhD
students were also involved in the research. We organized 4 mini workshops for the participants of the project
to present and to discuss the research results and possible research directions. It was held twice in Veszprém,
once in Szeged and once in Transylvania.
We sincerely appreciate the support of OTKA to reach the above detailed results and the constructive and
anonymous reviews of the project proposal and midterm reports.
Quantitative summary of the scientific outputs of the project:

• 11 International journal papers1: 7 Q1 and 4 Q2 articles, cumulative IF: 59.426
[14]: Scimago (Computer Vision and Pattern Recognition): Q1, IF: 16.389,
[39]: Scimago (Computer Vision and Pattern Recognition): Q1, IF: 7.917,
[3]: Scimago (Operations Research): Q2, IF: 2.345,
[42]: Scimago (Computer Vision and Pattern Recognition): Q2, IF: 1.836,
[43]: Scimago (Electrical and Electronic Engineering): Q2, IF: 3.021,
[48]: Scimago (Signal Processing 2020): Q2, IF: 2.157,
[9]: Scimago (Computer Science): Q1, IF: 3.367,
[53]: Scimago (Electrical and Electronic Engineering): Q1, IF: 2.617,
[30]: Scimago (Computer Science Applications): Q1, IF:5.666,
[59]: Scimago (Computer Science): Q1, IF:4.098,
[61]: Scimago (Industrial and Manufacturing Engineering): Q1, IF: 2.861

• 23 International conference papers [15, 16, 17, 19, 18, 27, 2, 26, 38, 65, 44, 46, 47, 50, 52, 4, 5, 10, 29, 36,
57, 60, 64]

• 11 Other presentations (with abstracts only): [45, 49, 6, 7, 8, 32, 33, 34, 54, 55, 56]

• 6 PhD Thesis: Abdellali Hichem (2022), Robert Frohlich (2019), Zsolt Santa (2018, KEPAF Best PhD
Prize 2019), Metwally Rashad (2018), Amr Nagy (expected in 2022), Daniel Mezei (2021)

• 1 Technical report: [31]

Awards:

• KEPAF Best PhD Prize: Zsolt Santa (2019)

• KEPAF Best Paper Award: Hichem Abdellali (2021, based on [18])

• TDK 1. Prize: Nora Horanyi (1. Prize & Morgan-Stanley Prize, 2017)

• ETDK 1. Prize: Szilard Molnar (1. Prize, 2020)

Publicly available demo implementations of the methods developed within the project:

1. Absolute Pose Estimation of Central Cameras Using Planar Regions [14]: http://www.inf.u-szeged.

hu/~kato/software/AbsolutePoseCentralCam.html

2. Absolute and Relative Pose Estimation of a Multi-View Camera System using 2D-3D Line Pairs and
Vertical Direction [17]: http://www.inf.u-szeged.hu/rgvc/demos.php?did=pose_dicta

3. Multiview Absolute Pose Using 3D – 2D Perspective Line Correspondences and Vertical Direction [15]:
http://www.inf.u-szeged.hu/rgvc/demos.php?did=pose

1Please note: in some cases only previous year data is available and given.

http://www.inf.u-szeged.hu/~kato/software/AbsolutePoseCentralCam.html
http://www.inf.u-szeged.hu/~kato/software/AbsolutePoseCentralCam.html
http://www.inf.u-szeged.hu/rgvc/demos.php?did=pose_dicta
http://www.inf.u-szeged.hu/rgvc/demos.php?did=pose


4. Generalized Pose Estimation from Line Correspondences with Known Vertical Direction [16]: http://

www.inf.u-szeged.hu/rgvc/demos.php?did=pose_gPnLup

5. 2D Change detection based on 3D priot information [31]: http:ftp://users.utcluj.ro/public_html/
download/private/otka-tl.zip

International collaborations:

1. Naver Labs Europe, Meylan, France

2. Image science & computer vision group, University Jean Monnet, France

3. Janos Selye University, Slovakia

4. Technical University of Cluj-Napoca, Romania

Publications [57] and [58] do not contain project identifiers.

http://www.inf.u-szeged.hu/rgvc/demos.php?did=pose_gPnLup
http://www.inf.u-szeged.hu/rgvc/demos.php?did=pose_gPnLup
http:ftp://users.utcluj.ro/public_html/download/private/otka-tl.zip
http:ftp://users.utcluj.ro/public_html/download/private/otka-tl.zip
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[56] Á. Lipovits, K. Tömördi, Z. Vörösházi, and R. Jinda, “Investigating the visual forms of dynamic electronic
work instructions to improve learning efficiency and productivity in assembly processes,” in Pannonian
Conference on Advances in Information Technology (PCIT 2019), 2019, p. 84.
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