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The project examined various types of blocking problems in combinatorial optimiza-
tion, as well as related optimization problems, and made considerable progress in several
of these. In order to describe the results, we group them into four topics: �Generaliza-
tions of the mininum cut problem�, �Blocking paths, arborescences, and trees�, �Matroid
intersection and related problems�, and �Popular matchings and branchings�. Most of the
hardness results presented here are true under the assumption that the Unique Games
Conjecture is true. We will use the abbreviation UGC in these cases.

1 Generalizations of the minimum cut problem

1.1 Undirected graphs

In undirected graphs, the most studied generalization of the minimum cut problem is
minimum multiway cut, where terminal nodes and edge weights are given in the input,
and the aim is to �nd a partition of the node set such that each class contains exactly
1 terminal node, and the total weight of edges going between classes is minimized. It
is known that the problem is APX-hard, and the integrality gap of the so-called CKR
relaxation (an LP relaxation named after the authors C linescu, Karlo� and Rabani) is a
lower bound on the approximation factor if we assume UGC. There had been a sequence
of papers establishing lower bounds on the integrality gap, with the 1.2 of Angelidakis,
Makarychev and Manurangsi [1] seen as a possible candidate for the true value. In [3],
we ruled out this option by showing an integrality gap strictly larger than 1.2. The main
novelty of our approach is to use and extend the technique of Mirzakhani and Vondrák
[15] to analyze minimum multiway cuts in higher-dimensional simplices. This technique
has the potential to lead to even further improvements.

We also studied a di�erent generalization of minimum cut, called the s− t-separating
k-cut problem for �xed k [2, 5]. In this problem, we are given an edge-weighted undi-
rected graph with speci�ed terminal nodes s and t, and the aim is to remove a minimum
weight edge set so that the resulting graph has at least k components with s and t being
in di�erent components. This is an intermediate problem between the polynomial-time
solvable k-cut problem for �xed k (where no terminal nodes are given) and the NP-hard
3-terminal cut problem (where 3 terminals are given). In [2], we gave a polynomial-time
algorithm for this problem.

Vertex cut problems in undirected graphs have a rich history too, but �somewhat
surprisingly� the complexity of vertex k-cut for �xed k (where no terminals are given) has
been open. In [2], we have shown that the node-weighted 3-cut problem is NP-complete,
and is not approximable to a factor better than 4/3 assuming UGC (a 4/3-approximation
can be obtained by guessing 3 terminals and using the known 4/3-approximation algorithm
for 3-terminal vertex cut).
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1.2 Directed graphs

Directed minimum cut problems are generally more di�cult than their undirected coun-
terparts: while the undirected s−t-separating k-cut problem for �xed k is polynomial-time
solvable, even the following seemingly simpler s− t-bicut problem is NP-hard in directed
graphs: for given terminal nodes s and t, remove a smallest subset of edges such that
there is no s− t path and no t− s path in the remaining graph. Furthermore, it has been
shown by Chekuri, Madan and Lee that the problem cannot be approximated by a factor
less than 2 assuming the unique games conjecture (this result settled a question posed in
the original research plan of this project). In [5], we showed that the global variant of
the problem (where s and t are not given in the input) can be approximated to a factor
strictly less than 2.

Another way to de�ne multiway cut problems in directed graphs is to consider linear
cut problems, where an ordering is given on the terminal nodes. This class of problems
has applications in the theory of network security and network coding. In the linear
(s, r, t)-cut problem, we want to remove edges of minimum total weight such that no s− t,
s − r, and r − t path remains. This problem has a simple 2-approximation algorithm,
while a lower bound of 4/3 on approximability under UGC had been known. In [4],
we managed to completely close the gap, giving a

√
2-approximation algorithm, while

showing an integrality gap example of
√
2, which implies that no approximation of factor

better than
√
2 is possible assuming UGC. This is one of the few known cases where an

LP integrality gap leads to an irrational approximation factor. The result also implies a
lower bound of

√
2 on the approximability of (s, ∗)-bicut, which is the version of bicut

where only one of the terminals is given, i.e., we want to remove edges such that there is
a node t with no s− t path and no t− s path in the remaining digraph.

2 Blocking paths, arborescences and trees

A spanning arborescence in a directed graph is a rooted directed spanning tree, where
there is a unique path to each node from the root. In the following, we will call this
an out-arborescence, and in-arborescence will be used for a spanning tree where there
is a unique path from each node to the root. Blocking problems for arborescences have
several variations based on which types are to be blocked and what kind of edge or node
weights are given. The problem of blocking all in-arborescences (or that of blocking
all out-arborescences, by reversing the edges) is a well-known polynomial-time solvable
problem.

An interesting NP-complete variant is the problem where a root r and node weights are
given, and we want to remove nodes of minimum total weight such that no in-arborescence
and no out-arborescence exists. We show in [4] that this problem is approximation-
equivalent to (s, r, t)-linear cut, so there is a polynomial-time

√
2-approximation algo-

rithm, and this is best possible assuming UGC. The same results hold for the edge-
weighted variant.

Another variant is the node double cut problem, where no root is �xed; the aim is
to remove nodes of minimum weight so that no out-arborescence exists in the remaining
digraph (from any root). This problem relates to network security, since the minimum
number of node failures preventing network consensus coincides with the minimum node
double cut. In [2], we have shown that node double cut has a 2-approximation algorithm,
and has no (3/2− ϵ)-approximation for any positive ϵ, assuming UGC. The problem has a
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�xed-terminal variant called (s, t)-double cut, where the aim is to remove nodes such that
there is no node in the remaining graph that can reach both s and t. Node double cut can
be solved by solving (s, t)-double cut for every pair s, t. For this problem, we have been
able to provide a tight approximation bound of 2 in [2] (again, inapproximability holds
assuming UGC). Note that here the edge-weighted variants are solvable in polynomial
time using network �ows.

As mentioned before, given a root r, blocking all out-arborescences using edges of
minimum total weight is also solvable in polynomial time. In [6], we considered the
generalization where we only want to block k-arborescences, where a k-arborescence is the
edge-disjoint union of k out-arborescences. We showed that this problem is NP-complete
if k is part of the input (it was already known that it is in P if k is �xed.)

The paper [6] also considered problems related to blocking k-braids (edge-disjoint
unions of k s − t paths) in both undirected and directed graphs. We proved that the
weighted problem is NP-complete if k is part of the input. We also considered the problem
when not all k-braids have to be blocked, only the optimal ones with respect to some cost
function. We showed that computing the minimum number of blocking edges is possible in
polynomial time in both the undirected and the directed case. We also gave a polynomial-
time algorithm for the problem of blocking optimal k-spanning trees (disjoint unions of k
spanning trees) in undirected graphs.

3 Matroid intersection and related problems

Matroid intersection problems are ubiquitous in graph theory, since structures like branch-
ings in directed graphs or matchings in bipartite graphs can be expressed as common in-
dependent sets of two matroids. However, matroid intersection encompasses much more
than these two cases: for example, k-arborescences can also be expressed as common bases
of two matroids, so general matroid results can be applied to a broad class of problems.

In [8], we examined the guaranteed approximation factor of lexicographically optimal
solutions compared to the maximum weight ones � note that for independent sets of
matroids, these two coincide. We showed that for both matroid intersection problems
and for matchings in general graphs, the approximation factor can be bounded using the
minimum ratio of two distinct weight values, and an optimal solution is guaranteed if this
ratio is at least two.

Matchings in general graphs and branchings in directed graphs (the latter a matroid
intersection problem) have a common generalization in mixed graphs (graphs with both
undirected and directed edges), called matching forests. In [14], we investigated whether
the disjoint union of k matching forests can be re-partitioned into k matching forests in an
equitable way � where equitability means that the number of edges (undirected, directed
or the union of the two) should be almost equal in all matching forests. The motivation
for this question is that such an equitable decomposition is not possible for matroid
intersection in general; moreover, no upper bound can be given for the di�erence between
the sizes. In contrast, we showed that for matching forests, we can �nd a decomposition
that is simultaneously equitable for undirected and directed edges, with a di�erence of
at most 2 between the sizes. We also introduced a covering version of matching forests,
called mixed edge covers, and proved similar equitable decomposition results for them.

In [12], we gave a new characterization for integer base polyhedra, which are a general-
ization of matroid base polytopes to non-{0, 1} vectors. We showed that a polyhedron P
in the hyperplane

∑n
j=1 xj = k is a base polyhedron if and only if it satis�es the following
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linking property: for any f ∈ Zn and g ∈ Zn with f ≤ g, P has an integer element
between f and g if and only if it has integer elements both above f and below g. Our
result means that proving the linking property for a class of polyhedra is su�cient for
using all convenient properties of base polyhedra, such as integrality of intersection.

We also considered a partitioning problem which comes from schedulig theory [7]. In
scheduling with resource constraints and 0 processing times, we have a list of instantaneous
jobs with weights and resource requirements, and a set of resource arrival times with
resource quentities. We have to assign the jobs to resource arrival times in such a way
that enough resource is available for each job at its assigned date, and the aim is to
minimize the weighted completion time. Although a partitioning problem, this cannot be
formulated as a matroid problem due to the structure of the resource bounds, and the
problem is known to be NP-hard. Our main result is a polynomial-time approximation
scheme, which is based on a novel technique for converting a PTAS for a constant number
of arrival times into a PTAS for arbitrary number of arrival times � applying this technique
to other scheduling problems is a promising future research direction.

4 Popular matchings and branchings

In this section, we describe results related to a di�erent notion of blocking, which is based
on preferences of nodes over their incident edges. A well-known example is the popular
matching problem: if each node of a graph has a partial order on incident edges, then we
can compare two matchings by counting the number of nodes that prefer one to the other.
We say that a matching M is blocked by matching M ′ if M loses in such a comparison
with M ′. A popular matching is one that is not blocked by any other matching.

The existence and optimization of popular matchings is a well-studied area. In the
project, we considered various generalizations and related concepts, and their computa-
tional complexity.

In a bipartite graph G = (S, T ;E) with a quota function b : S ∪ T → Z+, a subgraph
F ⊆ E is a b-matching if the degree of each node v is at most b(v). The b-matchings
of G can be characterized as common independent sets of two matroids. Popularity
of b-matchings can be de�ned similarly as for matchings; we can also consider strong

popularity, which requires a b-matching to win a comparison against any other b-matching.
In [13], we gave a combinatorial polynomial-time algorithm for �nding a strongly popular
b-matching (if it exists) for the case when one side has strict preferences, while the other
side is indi�erent between choices. The relevance of this case is that deciding the existence
of a popular b-matching for such a system is NP-complete. Following our work, Brandt
and Bullinger [9] gave an LP-based algorithm for a more general class of strongly popular
matching problems.

A branching in a directed graph D is a subgraph where every component is an ar-
borescence. In such a subgraph, each node has at most one incoming edge. Thus, if each
node has a preference order on the incoming edges in D, then popularity of branchings
can be de�ned similarly as for matchings (being the root is the least preferred option).
The popular branching problem is relevant in voting theory, with relation to delegated
voting frameworks. In such a framework, voters may either vote on an issue, or delegate
their voting right to another person that they consider more knowledgeable on the issue.
Delegations should be transitive, so every vote is actually cast. Thus, delegation cycles
should be avoided, i.e., the delegation graph should be an in-branching (the reverse of a
branching). One may devise a system where voters can indicate multiple possible dele-
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gates (with a partial order on them), and the system chooses a feasible delegation graph.
It is a natural requirement for this graph to be a popular in-branching, which leads to the
problem of deciding whether a popular branching exists at all.

In [10], we gave a polynomial-time algorithm to decide if a popular branching exists,
and �nd one if so. If the preferences are weak orders (rankings with possible ties), then
our algorithm is also able to �nd a minimum cost popular branching according to an
arbitrary cost function on the edges. Weak orders also allow us to compute least unpopular
branchings if no popular one exists; for general partial orders, we showed that the latter
two problems are NP-hard.

We revisited the popular matching problem in [11], a paper that has recently been
accepted to the SODA 2022 conference. We again studied a bipartite preference system
with one-sided preferences (i.e., the other side is indi�erent between options), but now
we only considered perfect matchings. A popular assignment is a perfect matching that
is not blocked by any other perfect matching in the sense of popularity. This setting is
relevant to applications where the size of the matching has priority over popularity (e.g.,
public housing programs, or assignment of students to projects with diversity constraints).
Although the problem is formulated in terms of perfect matchings, easy reductions show
that we can also solve the popular maximum matching problem, and the popular matching
problem with lower and upper degree bounds (where the matching is popular if it is not
blocked by another matching that also satis�es the bounds). Our main result is that the
popular assignment problem can be solved for arbitrary partial orders. In contrast to the
popular branching problem, the minimum cost version is shown in [11] to be NP-hard even
for strict preferences. We also show that the existence of an assignment with unpopularity
margin at most k can be decided in O∗(|E|k) time, and this running time is essentially
optimal under reasonable complexity assumptions.
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