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Closing report: Rings, semigroups, categories

We did research in various topics of ring theory, semigroup theory, and category theory, such
as invariant theory, polynomial identities, matrices over noncommutative rings, Morita theory,
quantum groups, tropical algebra, cohomology theory of real flag manifolds, homotopical algebra.
35 of our papers dedicated to the present project have appeared or are accepted for publication,
most of them in international journals, and a couple in refereed book chapters. An overview of the
majority of these papers is given below (for a complete list of publications see the summary form).

Our research group consisted of 4 senior participants (including the principal investigator) and
6 other researchers (two of them joined us in the third year). Three of the non-senior participants
defended their PhD during the project (one of them under the supervision of the principal inves-
tigator). In the last 3 months of the project we included three university students to take part in
our research work in the form of a summer internship.

Invariant Theory. The Noether number of a finite group G is the minimal positive integer d
such that all rings of invariants of G are generated by elements of degree at most d. There are very
few groups for which the exact value of the Noether number is known. In [7] the Noether numbers
of all groups of order less than 32 were determined. It turned out that for these groups the Noether
number is attained on a multiplicity free representation, it is strictly monotone on subgroups and
factor groups, and it does not depend on the characteristic (provided that it does not divide the
group order). For an abelian group G, the Noether number coincides with the Davenport constant,
the maximal length of an irreducible zero-sum sequence over G. A non-abelian group has a small
and a large Davenport constant, and Geroldinger and Grynkiewicz asked if the Noether number is
always between the two. We developed and implemented an algorithm to compute these Davenport
constants. It turned out that for groups of order less than 32, the Noether number is always greater
than or equal to the small Davenport constant, and with the only exception of the Heisenberg group
of order 27, it is less than or equal to the large Davenport constant.

The best known method to give a lower bound for the Noether number of a given finite group is
to use the fact that it is greater than or equal to the Noether number of any of the subgroups or
factor groups. The observation from [7] that the Noether number is strictly monotone for subgroups
of groups of order less than 32 was extended in [8] to a general theorem, asserting that the above
mentioned inequalities are always strict for proper subgroups or factor groups. This is established
by studying the algebra of coinvariants of a representation induced from a representation of a
subgroup.

As mentioned above, results on zero-sum sequences over a finitely generated abelian group can
be translated to statements on generators of rings of invariants of the dual group. The direction of
the transfer of information between zero-sum theory and invariant theory was reversed in [9]. First
it was shown how a presentation by generators and relations of the ring of invariants of an abelian
group acting linearly on a finite-dimensional vector space can be obtained from a presentation of
the ring of invariants for the corresponding multiplicity free representation. This combined with a
known degree bound for syzygies of rings of invariants yields bounds on the presentation of a block
monoid associated to a finite sequence of elements in an abelian group.

A separating system of polynomial invariants of a finite group (with a given linear representation)
is a set of polynomial invariants that are sufficient to separate the orbits. A generating system is
always a separating system, and the study of this notion became popular in the past two decades.
In particular, the separating Noether number was introduced in [11] in analogy with the Noether
number. In view of the fact that for an abelian group, the Noether number coincides with the
Davenport constant, it was natural to look for a characterization of the separating Noether number
of an abelian group in terms of additive combinatorics. This was achieved in [10], and as an
application of the result, it was proved that the separating Noether number of a finite abelian
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group is almost always strictly smaller than its Noether number. The latter result shows that the
relaxation of the condition ”generating” to ”separating” is reflected even in degree bounds.

The main result of [6] is that for any non-cyclic p-group G and any base field of characteristic
greater than p the Noether number of G is at least |G|/p. The main intermediary result from
which this conclusion follows is the proof of the fact that for the extraspecial group of order p3 (the
Heisenberg group) the Noether number is less than p2, when p > 3 and it equals 9 for p = 3.

The algebra of invariants of the special orthogonal group acting on tuples of vectors is well
understood both from a combinatorial or representation theoretic point of view (at least in char-
acteristic zero). This information was used in [12] to compute the cocharacter sequence of the
weak polynomial identities of 3×3 skew-symmetric matrices. The cocharacter sequence is a central
quantitative invariant in the theory of polynomial identities, and as far as the polynomial identities
of representations of a Lie algebra are concerned, similar exact results were known before only for
the Lie algebra of 2× 2 traceless matrices with its defining 2-dimensional representation.

Vector invariants of the orthogonal group have a satisfactory description also in odd positive
characteristic by [13]. However, a minimal generating system is not known in characteristic 2,
when some exotic new invariants were found in [14]. Now we gave a characteristic free description
of semi-invariants of tuples of 2 × 2 matrices in [16]. As an application a minimal homogeneous
system of generators of the algebra of the vector invariants of the special orthogonal group is
obtained in characteristic 2 in the 4-dimensional case (the general case is still open). It turns out
that the classical invariants together with the new ones found in [14] do generate in this case.

Polynomial Identities. A theorem of Kaplansky [17] asserts that if a finitely generated asso-
ciative algebra satisfies the polynomial identity xn = 0, then it is nilpotent. From known results in
[18] and [19] we deduced in [16] that an m-generated nil algebra of bounded nil-index n is nilpotent
with nilpotency index at most (m + 1)n4. This is a drastic improvement of the bounds known
before for the nilpotency index. The lower bound from [20] was also extended to all characteristic
in [16].

A possibility to develop noncommutative invariant theory is to replace the commutative polyno-
mial algebra by a relatively free algebra (a factor of the tensor algebra modulo an ideal stable under
all algebra endomorphisms). This topic was popular for a few years in the 1980ies, but produced
mainly negative results in the sense that they indicated that algebras of invariants are typically
not finitely generated. Whenever a commutative graded subalgebra of the polynomial algebra is
finitely generated, it has a rational Hilbert series by the so-called Hilbert-Serre theorem. We showed
in [21] that despite the fact that the subalgebras of invariants in noncommutative relatively free
algebras are rarely finitely generated, they always have a rational Hilbert series for representations
of reductive groups or maximal unipotent subgroups of reductive groups (the most relevant groups
considered in invariant theory).

The class of relatively free algebras where reductive groups have finitely generated subalgebras
of invariants is the class of Lie nilpotent relatively free algebras. In [22] a constructive approach
was given to compute the generators in this case. More precisely, it is explained how one can
reduce the problem to a commutative invariant theory situation, where the methods of constructive
commutative invariant theory work. A key step in the process concerns a more general situation:
finding generators of the subalgebra of invariants a group of automorphisms of a Lie algebra acting
on the universal enveloping algebra.

Let R be a Lie nilpotent algebra of index k ≥ 1 over a field K of characteristic zero. If G is
an n-element subgroup G ⊆ AutK(R) of K-automorphisms. It is proved in [53] that R is right
integral over Fix(G) of degree nk. In the presence of a primitive n-th root of unity e ∈ K, for a
K-automorphism δ ∈ AutK(R) with δn = idR, we prove that the skew polynomial algebra R[w, δ]
is right integral of degree nk over Fix(δ)[wn].

In 1969, R. G. Swan gave a graph-theoretic proof of the Amitsur–Levitzki theorem which states
that the standard identity of degree 2n holds for the ring of n×n matrices over a commutative ring.
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In [40] we extended this theorem to the case where the commutative ring is replaced by a finite-
dimensional Grassmann algebra. The arguments are purely combinatorial, based on computing
sums of signs corresponding to Eulerian trails in directed graphs. Before the current result, the gap
between available lower and upper bounds was relatively wide: quadratic from above, linear from
below. The theorem fully settles the 2-generated and 3-generated cases, and provides an upper
bound for all finite-dimensional Grassman algebras, that is conjectured to be optimal in all cases.
Computer simulation supports the conjecture.

Quantum Groups. We have examined two related structures: the quantized coordinate ring
of the special linear group – which is a non-commutative algebra –, and the corresponding semi-
classical limit Poisson structure on the commutative coordinate ring of the special linear group.
The subalgebra of adjoint action invariants in the coordinate ring of the special linear group is
generated by the coefficients of the characteristic polynomial. It was proved earlier in [41] that
in the quantized case, the ring of invariants under the adjoint coaction is generated by quantum
analogues of these coefficients, and coincides with the subalgebra of the cocommutative elements.
Moreover, this subalgebra is commutative. Now we proved that this is a maximal commutative
subalgebra in the quantized case (see [42]), whereas In the classical commutative coordinate ring,
the subalgebra of adjoint action invariants is a a maximal Poisson-commutative subalgebra (see
[43]). In fact in both cases these subalgebras are centralizers (in the appropriate sense) of a single
element: the trace. Maximal Poisson-commutative subalgebras in Poisson-algebras are of interest
because of their relations to integrable systems, studied by physicists.

Matrix Theory. In [54] we proved that if F is any field and R is any F -subalgebra of the
algebra Mn(F ) of n× n matrices over F with Lie nilpotence index m, then

dimFR 6M(m+ 1, n)

where M(m+1, n) is the maximum of 1
2

(
n2 −

∑m+1
i=1 k2i

)
+1 subject to the constraint

∑m+1
i=1 ki = n

and k1, k2, . . . , km+1 nonnegative integers. The case m = 1 reduces to a classical theorem of
Schur (1905), later generalized by Jacobson (1944) to all fields, which asserts that if F is an
algebraically closed field of characteristic zero, and R is any commutative F -subalgebra of Mn(F ),

then dimFR 6
⌊
n2
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⌋
+ 1. Examples constructed from block upper triangular matrices show that

the upper bound of M(m+ 1, n) cannot be lowered for any choice of m and n. An explicit formula
for M(m+ 1, n) is also derived.

For an n× n matrix A over a Lie nilpotent ring R of index k, with k ≥ 2, we prove in [55] that
an invariant ”power” Cayley-Hamilton identity(

Inλ
(2)
0 +Aλ

(2)
1 + · · ·+An

2−1λ
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n2−1
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2
λ
(2)
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)2k−2

= 0

of degree n22k−2 holds. The right coefficients λ
(2)
i ∈ R, 0 ≤ i ≤ n2 are not uniquely determined by

A, and the cosets λ
(2)
i +D, with D the double commutator ideal R[[R,R], R]R of R, appear in the

so-called second right characteristic polynomial pA,2(x) of the natural image A of A in the n × n
matrix ring Mn(R/D) over the factor ring R/D:

pA,2(x) = (λ
(2)
0 +D) + (λ

(2)
1 +D)x+ · · ·+ (λ

(2)
n2−1

+D)xn
2−1 + (λ

(2)
n2 +D)xn

2
.

First we exhibit in [56] two n×n matrices generating the full n×n matrix algebra as a Lie algebra
(it is much stronger than associative generation). There is a chance to use these two matrices to
provide an explicit description of the Lie automorphisms of the full matrix algebra. The notion of
the Lie centralizer of a subset in an associative algebra is introduced. Some results are obtained
about the so called Lie centralizers in general associative algebras. If K is any field of characteristic
different from 2 and 3, then every Lie automorphism ψ of Mn(K) can be presented as a sum

ψ = σ + τ,
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where σ is either an automorphism of Mn(K) (as aK-algebra) or the negative of an anti-automorphism
of Mn(K), and τ is an additive mapping from Mn(K) to K which maps commutators into zero. In
the light of this significant result due to Martindale, we present a unifying approach to construc-
tively describe automorphisms and anti-automorphisms of Mn(K).

General Ring Theory. It is a nice, simple result of Kaplansky that a commutative ring is von
Neumann regular if and only if all its simple modules are injective. However, the corresponding
statement is no longer true for noncommutative associative rings. This leads to the study of V-
rings which are not von Neumann regular but still have simple injective modules. One old guiding
problem in the study of V-rings is a question of C. Faith. We answered in [1] positively this
conjecture by constructing V-domains with arbitrarily prescribed finite numbers of isomorphism
classes of simple modules. The solution is a tricky application of Gabriel’s flat localizations.

It is well-known that results from field theory are useful in linear algebra for a structural de-
scription of linear transformations. In [4] we show that the converse process is also fruitful with
applications in the foundations of field theory. Namely, the basic Cayley-Hamilton theorem that
the companion matrix is a solution of its defining equation, can be used to construct simple alge-
braic extensions. This approach makes the discussion of uniqueness of simple algebraic extensions
transparent. In this way one can ”identify” easily algebraic closures of a field inside endomorphism
rings of possibly infinite dimensional vector spaces, making a common umbrella for both linear
algebra and commutative-associative ring theory.

In [2] we investigate commutative rings whose principal ideals have unique generators. This
treatment led to several interesting quasi-varieties of commutative rings where Mersenne primes
appear naturally. This approach provides therefore useful, elementary examples for quasi-varieties
missing in the study of equational classes in universal algebra.

Every idempotent e in an algebra A induces a Peirce decomposition A = eAe ⊕ eA(1 − e) ⊕
(1 − e)Ae ⊕ (1 − e)A(1 − e) which is equivalent to say that A is a formal generalized matrix ring

A =

(
eAe eA(1− e)

(1− e)Ae (1− e)A(1− e)

)
which leads naturally to a notion of n-Peirce rings. In [3]

we describe the structure of n-Peirce rings and show that the Peirce dimension n is an important
invariant in the study of rings. We compute the automorphism group of n-Peirce rings in terms of
their ingredients.

In [5] we describe certain irreducible representations of Leavitt path algebras which are recently
a subject of intensive study, by using appropriate bases as well as their defining relations. By
this way it is easy to determine when they are finitely presented as well as to compute associated
invariants like their endomophism rings and annihilator primitive ideals.

In [52] we provide an elementary proof of the Skolem-Noether theorem, which is entirely construc-
tive and gives the conjugating matrix explicitly, using the images of only two generating matrices,
a nonzero vector in a certain kernel, and matrix multiplication.

Semigroup Theory. The notion of firm semigroups has been introduced and the theory of
Morita equivalence for such semigroups has been developed in [45]. It was shown that the categories
of acts used by earlier authors in various classes of semigroups for developing Morita equivalence
are all equivalent to each other for firm semigroups (whose class contains all the other classes of
semigroups in which Morita equivalence has been considered so far), hence they yield the same
Morita equivalence. This connects several earlier results whose relation to each other has not been
clear so far. It has also been proved that Morita equivalence between any two firm semigroups can
be obtained from a Morita context connecting the two semigroups - till now this was known only
for semigroups with local units, which is a much narrower class. These results show that the class
of firm semigroups is the natural framework for investigating Morita equivalence of semigroups.

Properties of the lattice of unitary ideals of a semigroup have been studied in [46]. In particular,
it has been shown that this lattice forms a quantale. It has been proved that if two semigroups are
connected by an acceptable Morita context then there is an isomorphism between the quantales of



5

unitary ideals of these semigroups. Moreover, factorisable ideals corresponding to each other under
this isomorphism are strongly Morita equivalent.

A general notion of quotient ring based on inverses along an element has been introduced in
[47]. This notion encompasses quotient rings constructed using various generalized inverses. On
the other hand, such quotient rings can be viewed as Fountain-Gould quotient rings with respect
to appropriate subsets, hence the variant of the Fountain-Gould construct introduced in an earlier
paper by Ánh and Márki yields the key notion for quotient rings of various kinds. The connection
between partial order relations on a ring and on its ring of quotients has also been investigated.

Radical Theory. Combinatorial exactness structures of several levels have been introduced
earlier for an abstract presentation of Kurosh-Amitsur radical theory. Each of these structures
contains a distinguished point, which corresponds to the zero element. Now the one- and the two-
dimensional exactness structures have been extended in [44] to the case with no distinguished point.
This new two-dimensional combinatorial exactness structure allows to define a radical-semisimple
triple in such a way that if (R,r,S) is a radical-semisimple triple, then (R,S) is a radical-semisimple
pair with respect to its underlying one-dimensional exactness structure. Using this, it has been
shown among others that topological closure is a special case of the radical function in our sense.

Tropical Algebra. The tropical semifield T is the set {R ∪ {−∞}} with two operations:
maximum playing the role of addition and addition acting as multiplication. In tropical geometry
certain polyhedral complexes in Tn, called tropical varieties are assigned to algebraic varieties via
valuation maps. These provide a wealth of combinatorial tools to approach classical problems.
Some applications include computing Gromov-Witten invariants due to Mikhalkin in [34], tropical
proof of the Brill-Noether Theorem [24], Brill-Noether theory for curves of a fixed gonality [29],
developing a strategy to attack the Riemann hypothesis [25], the Gross-Siebert program in mirror
symmetry [27], and studying toric degenerations [32]. Tropical varieties can be described as a
set where certain polynomial equations of the tropical polynomial semiring T[x1, . . . , xn] hold.
Hence there has been a natural interest in studying the algebraic properties of T[x1, . . . , xn] (see
for example [23], [26]. [28], [33]) and in particular in finding an appropriate notion of algebraic
dimension (see for example [35]). Our work consisted of two parts. First in [30] we established a
notion of primeness for congruences of arbitrary semirings, gave a full description of these primes
for polynomial semirings over the tropical and the Boolean semifields and finally applied these
results to establish a Nullstellensatz which is a strong generalization of the results in [23]. Secondly
in [31] we introduced a notion of Krull-dimension and showed that it carries some natural algebraic
properties as well as that it can be used to recover the usual dimension of tropical varieties.

Enumerative algebraic geometry over the reals. There is a class of linear enumerative ge-
ometry problems called Schubert calculus: enumerative problems that can be formulated in terms
of linear subspaces intersecting each other in given dimensions. In the complex case Schubert
problems are completely described by taking the product of some Schubert cycles [σi] in the coho-
mology ring of a complex flag manifold; this is classical and several combinatorial characterizations
are known [38]. In contrast, the solution to a real Schubert problem is not a single number, as it
depends on the generic configuration. The number of possible solutions is not well-understood and
is an active topic of research [50], [39], [36], [48], [51].

In the real case, the cohomological computation also makes sense and gives a lower bound
to the number of possible solutions. In our work, we determined the cohomology rings of flag
manifolds: first, we determined the incidence coefficients in the Vassiliev complex which can be
used to determine the additive structure [49], and we also determined the multiplicative structure
using equivariant cohomology in [37]. In particular, we obtained the following theorem: There is a
degree-halving isomorphism of rings, which maps [σRDλ] to [σCλ ]:

H∗(Gr2k(R2n);Q) ∼= H∗(Grk(Cn);Q)

A similar degree-halving ring isomorphism [σRDI ] 7→ [σCI ] exists for even flag manifolds, i.e. when all
subspaces have even dimension. In terms of enumerative problems, we obtain a lower bound to any
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even dimensional real Schubert problem. For instance, we obtain that the number of 8-planes in
R16 intersecting four given 8-planes in 4 dimensions is at least 6 and at most 70, where the latter
is the number of complex solutions.

Another related result in [49] concerning the integer coefficient cohomology of real even flag
manifolds is that every torsion element has order exactly 2. This is shown using the incidence
coefficients, which are related to the first Steenrod square of Schubert varieties. The first Steenrod
square in turn was used to show degeneration of the Bockstein Spectral Sequence of even real flag
manifolds, which proves the result.

Homotopical Algebra. Let X be a scheme and n a positive integer. We can view vector
bundles of rank n as forms of the free OX -module of rank n. That is, an OX -module E is a vector
bundle of rank n, if there exists a Zariski covering U → X and an isomorphism of OU -modules
E|U ∼= O⊕n

U . The Hilbert 90 Theorem [58] shows that it is equivalent to require a trivializing
fppf-covering. If we have a family of vector bundles, we can always describe its limit as a perfect
complex. The following generalization for perfect complexes of the above result was shown in [57]:

Let X
f−→ S be a proper morphism of quasi-compact and quasi-separated schemes, and E,F perfect

complexes on X. Then the stack of families of morphisms HomX/S(E,F ) is algebraic.
In particular, one can use deformation theory in the automorphism group stack AutX/S(E).

With one such deformation theory argument, a Hilbert 90-type result in this setting was also
proved in [57]: Let X be a Noetherian scheme with infinite residue fields, and E a perfect complex
on X. Suppose that F is an fppf-form of E, that is there exists an fppf covering U → X and
a quasi-isomorphism E|U ' F |U . Then F is a Zariski form of E, that is there exists a Zariski
covering V → X and a quasi-isomorphism E|V ' F |V .
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