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1 Introduction

Large-scale cohort studies collecting life style, environmental, physiological, clin-
ical and molecular level data, especially genetic information about the partici-
pants, provide unprecedented opportunity for a systems-based investigation of
genetic, personal, environmental and societal aspects of health, ageing and dis-
eases.

However, as the amount of data is still limited, it is vital to manage uncer-
tainty arising from the combination of knowledge and data in the area of molec-
ular biology, drug discovery, and healthcare. The Bayesian approach provides
a principled framework and modern Bayesian methods allow scalable solutions.
The completeness (omic-ness) of the data in multiple domains allows the ap-
plication of novel technologies, such as Bayesian networks (BNs), representing
systems of probabilistic dependencies and causal relations.

In earlier works, we investigated the use of BNs in artificial intelligence and
machine learning tasks: in knowledge engineering [1], in Bayesian transfer learn-
ing [2,3], in explanation generation [4,5], in text-mining [6], in Bayesian feature
subset analysis [7,8], in Bayesian effect strength characterization [9], in compar-
ison of general Probabilistic Graphical Models (PGMs) and BNs [OTKA1]. A
unique feature of the Bayesian network model class is its inherent ability for in-
ference and learning from a mixture of observations and interventions [10,11]. In
an earlier OKTA research (OTKAPD76348), I developed a Bayesian Network-
based Bayesian Multilevel Analysis of relevance, dependency, and causal re-
lations [8, 12], which methodology was applied in multiple analyses [13–16],
specifically in psychogenetics [17].

Our current OKTA research (K119866) focused on extension, development
and application of Bayesian methods to combine knowledge and data in a prin-
cipled framework. Our main results are as follows:

• Bayesian multimorbidity maps: We developed a workflow and adapted
our Bayesian inference methods to enhance the construction of Bayesian
multimorbidity maps. Using this, we constructed the first epidemilogical
multimorbidity map of common diseases [OTKA2], the Bayesian map of
the envirome [OTKA3], and maps of multimorbidities related to depres-
sion [OTKA1, OTKA4]. Based on our work on Bayesian multimorbidity
maps, we initiated and participate in an international research project on
depression related multimorbidities TRAJECTOME [OTKA5].

• Bayesian drug discovery : We developed a Bayesian drug-target interac-
tion (DTI) prediction method capable for the combination of experimental
data and heterogeneous drug and target side information [OTKA6]. We
also developed methods to estimate the complex, multivalent binding in
protein-protein interactions [OTKA7]. Based on our work on data and
knowledge fusion in DTI prediction and its extension towards deep learn-
ing methods, we successfully applied for a national grant on informed de
novo molecule generation DP4D [OTKA8]. Related to our Bayesian, mul-
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titask DTI prediction approach, we were invited and participate in an
international drug discovery research project MELLODDY [OTKA9].

• Systems-based fusion in genetics: We developed methods to investigate
multi-trait effects of non-linear gene-gene interactions and gene-environment
interactions, especially the effect of modifiable lifestyle factors on multi-
morbidity and health [OTKA10,OTKA11,OTKA12,OTKA13,OTKA14,
OTKA3,OTKA15,OTKA16,OTKA17,OTKA18,OTKA19,OTKA20]. To
explore the extension of systems-based fusion using distributed data, we
initiated and participated in an international research project HIDUC-
TION [OTKA21].

We also developed and applied Bayesian systems-based methods for the anal-
ysis of clinical laboratory data [OTKA22], and to prepare a multimodal integra-
tion, we explored the analysis of health data sets with various modalities, such
as from medical imaging and ambient assisted living [OTKA23,OTKA24].

In the final year of our project we also adapted and applied our methods to
support national research on SARS-CoV-2/COVID-19.

2 Bayesian multimorbidity maps

Given the rapidly rising prevalence of multimorbidity in modern societies [18–
20], its investigation is of primary importance, especially in countries with high
multimorbidity rates, such as in Hungary, which has the highest multimorbidity
rate in the European Union [21, 22]. Comorbidities, and clusters of multimor-
bidities became a vital source for the identification common molecular and phys-
iological causal mechanisms [23–29], which can help to identify promising drug
candidates targeting all the relevant multimorbidities at once, which is a must
to combat polypharmacy, the use instantaneous use of multiple medications for
chronic conditions [20]. Indeed, identification of common protective factors rel-
evant to all age-associated diseases is the broadest form of this approach, which
could alleviate the burden of aging in modern industrial societies by increasing
healthspan [30–36].

Modern large biobanks, such as the UK Biobank data set [37], FinnGen [38],
and BioBank Japan [39], provides a joint access to phenotypic and genotypic
patient-level data, which allows an unprecedented sample size to explore the
shared genetic components of multimorbidities [40–42]

In the project, we focused on the UK Biobank data set. We requested data
access in 2013, which were granted by the UK Biobank Application No.1602 for
the consortium of the Semmelweis University, Budapest University of Technol-
ogy and Economics, and The University of Manchester (title: Role of genetics,
diet, and comorbidities in depression, principal investigator: Gabriella Juhász).
We extended it for the period 2017-2021 and to increase it scope towards general
multimorbidities we also requested full access to all the half-million participants
to better in 2020. To increase the heterogeneity and sample size in our inves-
tigations, we initiated the TRAJECTOME project with the participation of
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Finnish, Catalan, and German partners [OTKA5], which allows access to the
FinnGen biobank [38] provisionally covering half-million participants and the
Health Surveillance System of the region of Catalonia (Spain) with 7.5 million
participants [43].

Firstly, the UK Biobank disease codes had to be converted to ICD-10 codes,
which ensure compatibility with gene-disease and molecular interactome database
levels. We developed and experimented with various approaches to automate
the use of the hierarchic descriptors of the absence and presence of the diseases,
which led to the construction of the first epidemilogical multimorbidity map
of common diseases [OTKA2]. Because of our confirmed interest in environ-
mental effects [OTKA13], we extended the scope of our analysis to include all
available environmental effects, including modifiable lifestyle factors, such as
diet [OTKA25]. The result of this work led to the construction of the Bayesian
map of the envirome [OTKA3]. We also experimented with the use of medi-
cation data, which is particularly relevant in causal Bayesian network analysis
as interventions [OTKA1, OTKA4]. This work is still in progress, because the
recovery of the timing information of the medications exceeded the scope of
the project. However, we could access information about disease onsets and
we adapted and have already applied our Bayesian Multilevel Analysis method
for this data set. The use of temporal information about medication use and
disease onset is a natural continuation of our work done in the current project,
so we plan to continue our research using these promising resources [24,41].

We also adapted and applied Bayesian network based methods for the anal-
ysis of clinical laboratory data [OTKA22].

3 Bayesian drug discovery

In multimorbidity research, we started to explore the applicability of informa-
tion about medication in the UK Biobank, but large-scale, comprehensive data
sets about real-world drug effects are also novel information sources in drug dis-
covery. Earlier we developed drug repositioning methods focusing on the fusion
of heterogeneous information sources, such as chemical, target, and side-effect
similarities [44–46]. In the current project, we extended our earlier scope to
drug candidates and developed methods for the early drug discovery phase uti-
lizing novel large-scale, cross-domain linked open data [47–49] and large-scale
drug-target interaction bioactivity data sets [50,51].

We developed a Bayesian drug-target interaction (DTI) prediction method
(VB-MK-LMF) capable for the combination of experimental data and hetero-
geneous side information about drug and target drugs and targets [OTKA6].
The developed Bayesian, multitask VB-MK-LMF method provides a principled
framework for the fusion of large-scale information about chemical compounds,
binding sites, drug targets, protein-protein interactions, and gene regulatory
networks, which is currently extended in an international drug discovery re-
search project MELLODDY [OTKA9]. The MELLODDY consortium contains
leading international pharmaceutical companies with significantly different pri-
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vate data sets from the public data set [52–55], which hopefully will lead to
novel theoretical extensions of our research, e.g., related to deep learning [56].

The multitask nature of the VB-MK-LMF method makes it an ideal can-
didate for multitarget drug discovery [57]. It also allows the incorporation of
information about drug targets, protein-protein interactions, gene regulatory
networks, which are essential in polypharmacology [58], and even information
about shared genetics in multimorbidities, which helps to cope with polyphar-
macy [20]. To extend our research towards synthetically accessible drug can-
didates without any empirical bioactivity data, we successfully applied for a
national grant on informed de novo molecule generation DP4D [OTKA8].

In addition to predicting interactions between small compounds and pro-
tein targets, we also developed methods to estimate the complex, multivalent
binding in protein-protein interactions [OTKA7]. Currently, we are extending
the model to capture the sequential, competitive nature of multivalent binding,
which requires efficient combination of combinatorial search and Markov Chain
Monte Carlo sampling.

4 Systems-based fusion in genetics

The increasing sample size in genome-wide association studies (GWASs) pro-
vides a lower and lower upper bound on main effects of common genetic variants,
confirming the long-anticipated genetic architecture of high-number of genetic
variants with infinitesimally small effects, but it also suggests the presence of
gene-gene, gene-environment interactions and conditional relevance of genetic
variants in common diseases, such as in depression [OTKA13,OTKA14]. Stan-
dard, set-based enrichment methods allows the aggregate analysis of the effects
of variants in a given set corresponding to any functional aspect, e.g., at gene
and pathway levels, which also takes into account the pairwise dependencies of
variants [59–61]. Standard enrichment methods using GWAS summary statis-
tics became very popular, but the availability of large-scale biobank data allows
multiple extensions: (1) testing directly the significance of a set of variants
using mixed models [62–72]; (2) propagating gene level evidences in context-
specific gene-gene networks [73–80]; and (3) combining evidences from multiple
structured traits and multimorbidities [23–29]. We developed a comprehensive
workflow to support these options: (1) we implemented a GPU-based general-
ized linear mixed model, which can directly evaluate tests for genes and path-
ways; (2) we investigated multiple protein-protein networks, gene regulatory
networks, and molecular networks related to depression and network propaga-
tion settings [OTKA16]; and (3) we evaluated efficient methods to estimate
genetic correlations [81–83]. To adjust for the confounding effects of shared ge-
netic background, we integrated their multivariate extensions into our Bayesian
multimorbidity learning method, which can also take into account environmen-
tal conditions [OTKA2,OTKA13,OTKA25,OTKA3]. Thus, in addition to the
confounding effects of environmental factors and medications, confounding ef-
fects of shared genetic factors can be also decomposed and filtered from the
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multimorbidity maps [84].
We applied these methods to explore the genetic background of allergy [OTKA10],

depression and its related multimorbidities research [OTKA15,OTKA26], edu-
cation and intelligence [OTKA18], and healthspan [OTKA17,OTKA19,OTKA20].
Currently, we are investigating these methods to explore the joint effects of
modifiable lifestyle factors, such as diet and exercise on depression related mul-
timorbidities [OTKA26].

To explore the extension of these network-based fusion methods using dis-
tributed data sets in personalized medicine, we initiated and participated in an
international research project HIDUCTION [OTKA21].

5 Multimorbidity analysis and repositioning in
COVID-19

In the final year of our project we also adapted and applied our methods to
support national research on SARS-CoV-2/COVID-19.

The VB-MK-LMF method can be also applied in drug discovery and reposi-
tioning against SARS-CoV-2/COVID-19 using phenotypic screening. Thus, we
adapted our drug discovery methods to support the drug repositioning efforts
of the Repositioning workgroup led by P. Mátyus in Hungary’s Coronavirus
research action group.

We also applied our Bayesian multimorbidity analysis of COVID-19 deceased
in 2020 in Hungary [OTKA27], which were extended using a representative
Hungarian biobank. Currently, we are synthesizing these results to construct
multimorbidity-based risk groups for the early detection of severe COVID-19
cases and to support the design of vaccination policy [OTKA28].
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[OTKA4] M. Vetró, G. Hullám, G. Juhász, and P. Antal. A depresszió
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[56] Noé Sturm, Andreas Mayr, Thanh Le Van, Vladimir Chupakhin, Hugo
Ceulemans, Joerg Wegner, Jose-Felipe Golib-Dzib, Nina Jeliazkova, Yves
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