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The project, which ran from December, 2016 until October, 2022, consisted of research by
the PI, Márton Naszódi and by Zsolt Lángi, who joined essentially at the start, in April,
2017. It supported the publication of 38 papers that can be classified into the following
areas: Quantitative Helly-type problems (discussed in Section 2), Approximation questions
(see Section 3), Coverings (see Section 4), Arrangements of convex bodies (see Section 5),
Volumetric inequalities (see Section 6) and Planar configurations (see Section 7).

A common theme in these works is the search for combinatorial and analytic ideas that help
tackle questions that originate in discrete geometry or that have a flavor of, or analogy
in discrete geometry, and vica versa, studying how geometric concepts yield results in
algorithmic/computational and analytical questions.

We start with a detailed description of the results that are the most significant in our
view in Section 1. In the sections following it, we present one or two results that we have
achieved in the given topic. We finish our report with Section 8 detailing how the project
contributed to the training of new, talented researchers of the field.

1. The most notable results

1.1. The problem of efficient approximation of a convex body by a convex poly-
tope, a central question in convexity, is an instance of the general mathematical theme
of discretization. In this classical field, the questions vary according to the measure of
efficiency (few facets, or few vertices, etc.), the notion of distance with respect to which
the approximation is to take place (Hausdorff distance, Banach–Mazur distance, volume
of the difference, etc.), as well as the family of admissible convex polytopes (inscribed,
circumscribed, etc.).

First, consider fine approximation in the so called geometric distance (a close relative of
the Banach–Mazur distance), that is, we are looking for a convex polytope P contained
in a fixed convex body K, with as few vertices as possible, whose slightly magnified copy
(1+ε)P containsK. Dmitry Ryabogin, Fedor Nazarov and the PI [21] showed the following.

Theorem 1 (D. Ryabogin, F. Nazarov, MN [21]). For every convex body K in Rd with
the center of mass at the origin and every ε ∈

(
0, 1

2

)
, there exists a convex polytope P with

at most eO(d)ε−
d−1
2 vertices such that (1− ε)K ⊂ P ⊂ K.

This result improves the 2012 theorem of A. Barvinok [Bar14] by removing the assumption

thatK is centrally symmetric, and the extraneous
(
log 1

ε

)d
factor. The proof uses a mixture
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of geometric and probabilistic tools. By taking K to be the Euclidean ball, one sees quite
easily that the order of magnitude for the number of vertices is best possible.

Our paper [21] has received 4 independent citations according to Google Scholar.

The following rough approximation result (that is, fewer vertices, worse bound on the
distance), also in terms of the geometric distance, proved by the PI [27] relies on the
application of a combinatorial tool.

Theorem 2 (MN [27]). Roughly d
(1−ϑ)d ln

1
(1−ϑ)d points chosen uniformly and independently

from a convex body K in Rd, whose center of mass is o, yield a polytope P for which
ϑK ⊆ P ⊆ K holds with large probability.

Note that here, we are not free to choose how we construct the polytope P , it is the convex
hull of a uniform sample of points from K of a certain size. This gives a joint generalization
of results of Brazitikos, Chasapis and Hioni [BCH16] and of Giannopoulos and Milman
[GM00]. The power of this result is the simplicity of its proof, and the method equally
applies to studying half-space depth with respect to arbitrary measures. Our paper [27] is
the basis of Chapter 9 in N. Mustafa’s textbook Sampling in combinatorial and geometric
set systems [Mus22].

1.2. F. John’s foundational result on the characterization of the largest volume ellip-
soid contained in a convex body by an ellipsoid [Joh14] has seen several applications
and extensions since its publication in 1948. Recently, generalizations of classical results in
convexity to the realm of logarithmically concave functions, that is, functions of the
form f = e−ψ, where ψ : Rd −→ (−∞,∞] is a convex function, have received attention.
It is natural to ask if John’s result can be extended. The first steps were made by D.
Alonso-Gutiérrez, B. Merino, J. Jiménez and R. Villa in [Alo+18], where a functional ana-
logue is proposed: Given a log-concave function f , we are looking for a function g which
comes from a certain family E of log-concave functions (call them functional ellipsoids),
is pointwise smaller than f and has the largest integral among functions satisfying these
constraints. In [Alo+18], E is defined as the family of positive multiples of characteristic
functions of ellipsoids in Rd, and several properties of the solution of the above extremum
problem are shown.

Grigory Ivanov and the PI [8] replaced the family E with a one-parameter sequence of
familes Es (with s ∈ (0,∞]), and obtained a more complete picture: First, we can treat
the normal distribution as a functional ellipsoid (the s = ∞ case), second we recover the
results of [Alo+18] (the s → 0 case), and most importantly, we now have a condition of
optimality similar to John’s theorem, which was missing from [Alo+18].

As an application of our John-type condition of optimality, we proved the following quan-
titative Helly-type result for log-concave functions, a functional analogue of the Volume
Helly Theorem, see page 3.

Theorem 3 (G. Ivanov, MN [8]). Let f1, . . . , fn be upper semi-continuous log-concave
functions on Rd. For every σ ⊆ [n] = {1, 2, . . . , n}, let fσ denote the pointwise minimum

fσ(x) = min{fi(x) : i ∈ σ}. Then there is a set σ ∈
(

[n]
≤2d+1

)
of at most 2d+1 indices such
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that ∫
Rd

fσ ≤ cd

∫
Rd

f[n],

holds with a universal consant cd > 0.

Our recently published paper [8] has received 4 independent citations according to Google
Scholar.

1.3. For a compact set A ⊂ Rd and an integer k ≥ 1, let us denote by A[k] = {a1+· · ·+ak :
a1, . . . , ak ∈ A} the Minkowski sum of k copies of A. A theorem of Shapley, Folkmann
and Starr (1969) states that 1

k
A[k] converges to the convex hull of A in the Hausdorff

distance as k tends to infinity. Bobkov, Madiman and Wang (2011) conjectured that the
volume of 1

k
A[k] is non-decreasing in k, or in other words, in terms of the volume deficit

between the convex hull of A and 1
k
A[k], this convergence is monotone. It was proved by

Fradelizi, Madiman, Marsiglietti and Zvavitch (2016) that this conjecture holds if d = 1
but fails for any d ≥ 12. Together with Matthieu Fradelizi and Artem Zvavitch, Zsolt
Lángi [5] showed that the conjecture by Bobkov, Madiman and Wang is true for
any star-shaped set A ⊂ Rd for d = 2 and d = 3, and also for arbitrary dimensions d ≥ 4
under the condition k ≥ (d − 1)(d − 2). In addition, they investigated the conjecture for
connected sets and presented a counterexample to a generalization of the conjecture to the
Minkowski sum of possibly distinct sets in Rd, for any d ≥ 7.

1.4. A classical theorem of Alon and Milman [AM83] states that any d dimensional cen-

trally symmetric convex body has a projection of dimension m ≥ ec
√
ln d which is either

close to the m-dimensional Euclidean ball or to the m-dimensional cross-polytope.

Unlike several other fundamental results on symmetric convex bodies, this result had not
been extended to non-symmetric convex bodies, until it was carried out by the PI in [20],
a paper that appeared in GAFA Lecture Notes.

1.5. Volume of geometric objects plays an fundamental role in applied and theoretical
mathematics, and in particular in discrete geometry. The book titled Volumetric Dis-
crete Geometry [25] written by Károly Bezdek and Zsolt Lángi introduces problems
related to recently found aspects of the volume, and discusses a variety of modern meth-
ods relying on the application of volume in geometric problems.

2. Quantitative Helly-type problems

Helly’s classical theorem states that a finite family of convex sets in Euclidean d-space has
non–empty intersection if, and only if, so does any subfamily of d + 1 members. Bárány,
Katchalski and Pach [BKP82; BKP84] proved a quantitative version, the Volume Helly
Theorem: If any 2d members of a finite family of convex sets in Euclidean d-space have
intersection of volume at least one, then the intersection of the whole family is of volume
at least cd > 0, a universal constant depending only on d.
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In [BKP82], the bound cd ≥ d−2d2 is proved, and d−cd is conjectured, which was confirmed
in [Nas16].

2.1. Together with Gábor Damásdi and Viktória Földvári, MSc and PhD students at the
time of the research, the PI showed a colorful version of the Volume Helly Theorem [14], a
result with 8 independent citations on Google Scholar. As a continuation, with Attila Jung,
an MSc student at the time of the research, the PI [9] found a fractional version of the
Volume Helly Theorem, and they deduced a quantitative version of a number of classical
Helly-type results, most notably, the (p, q)-theorem of Alon and Kleitman [AK92].

2.2. G. Ivanov and the PI [7] studied a problem that we may call the Diameter Helly
Theorem, which reads as follows.

Theorem 4 (G. Ivanov, MN [7]). Let {K1, . . . , Kn} be a family of closed convex sets in Rd

such that their intersection K = K1 ∩ · · · ∩Kn is a convex body. Then there is a selection
σ ∈

(
[n]
≤2d

)
of at most 2d indices such that

vol(Kσ) ≤ (2d)3dvol(K) and diam(Kσ) ≤ (2d)3diam(K),

where Kσ = ∩i∈σKi.

After a non-polynomial upper bound on diam(Kσ)/diam(K) (where Kσ is the choice
with the smallest diameter) was shown in [BKP82], Brazitikos [Bra18] (see also [Bra16])
established the first polynomial bound: Using a sparsification result from [BSS14] (see

also [Bar14, Lemma 3.1]) related to contact points of John’s ellipsoid, he showed diam(Kσ)
diam(K)

≤ cd11/2 with an absolute constant c > 0. We improved this result with a completely
different, elementary argument, which was applied and improved by Almendra-Hernández,
Ambrus and Kendall [AAK22]. We proved also a lower bound on diam(Kµ)/diam(K) of
order d−1/2, which is the order of magnitude conjectured by Bárány, Katchalski and Pach
[BKP82]. Our paper [7], despite its very recent publication, has received 4 independent
citations on Google Scholar.

3. Approximation

We describe a joint work [18] of Grigory Ivanov, Alexandr Polyanskii and the PI.

Rudelson’s theorem [Rud99] states that if for a set of unit vectors ui in Rd and positive
weights ci, we have that

∑
ciui ⊗ ui is the identity operator I on Rd, then the properly

scaled average of a random sample of Cd ln d of these diadic products is close to I. The ln d
term cannot be removed. The problem of approximating the average of a set of matrices as
a weighted sum of a subset of the matrices is a very general and fundamental question in
computational linear algebra, and is related to not only convex geometry, where Rudelson’s
motivation came from, but also quantum mechanics, see the celebrated paper [MSS15].

The recent result of Batson, Spielman and Srivastava [BSS14] and its improvement by
Marcus, Spielman and Srivasta [MSS15] (see also [Sri12] and [FY17]) show that the ln d
term can be removed, if one wants to show the existence of a good approximation of I
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as the average of a few diadic products. It is known that essentially the same proof as
Rudelson’s yields a more general statement about the average of positive semi-definite
matrices.

In [18] first, we give an example of an average of positive semi-definite matrices
where there is no approximation of this average by Cd elements. Thus, the result of
Batson, Spielman and Srivastava cannot be extended to this wider class of matrices.

Next, we present a stability version of Rudelson’s result on positive semi-definite matrices,
and thus, extend it to certain non-symmetric matrices. This yields applications to the
study of the Banach–Mazur distance of convex bodies.

Finally, we show that in some cases, one needs to take a subset of the vectors of at least
order d2 to approximate the identity, which is a lower bound matching the obvious general
upper bound d2 + 1 that follows immediately from Carathéodory’s theorem applied in the
vector space of d× d matrices.

4. Coverings

4.1. The closest vector problem (CVP), an important algorithmic question in the
geometry of numbers is the following. Given a rational lattice Λ = {Ax : x ∈ Zn}, with
A ∈ Qn×n and a target vector t ∈ Qn, the task is to find a vector in Λ close to t with
respect to a given norm. Specifically, given some norm ∥ · ∥K , a (1 + ϵ)-approximation to
the closest vector problem, (1 + ϵ)-CVPK , is to find a lattice vector whose distance to the
target vector is at most (1 + ϵ) times the minimal distance of the target to the lattice.
Whenever K is the unit ball of the space ℓnp for some 1 ≤ p ≤ ∞, we denote the problem
by (1 + ϵ)-CVPp. It was shown that CVP is NP-hard for any ℓp norm [Emd81] and even
NP-hard to approximate up to almost polynomial factors, [Aro95], [Din+03].

In [13], Moritz Venzin and the PI presented an algorithms for the (1 + ϵ)-approximate
version of the closest vector problem for certain norms. The previously fastest algo-
rithm (Dadush and Kun [DK16]) for general norms in dimension n has running time
of 2O(n)(1/ϵ)n, which we improved substantially in the following two cases.

First, for ℓp-norms with p > 2 (resp. p ∈ [1, 2]) fixed, we present an algorithm with
a running time of 2O(n)(1 + 1/ϵ)n/2 (resp. 2O(n)(1 + 1/ϵ)n/p). This result is based on a
geometric covering problem, that was introduced in the context of CVP by Eisenbrand
et al. [EHN11]: How many convex bodies are needed to cover the ball of the norm such
that, if scaled by factor 2 around their centroids, each one is contained in the (1+ ϵ)-scaled
homothet of the norm ball? In [13], we provide upper bounds for this (2, ε)-covering number
by exploiting the modulus of smoothness of the ℓp-balls. Applying a covering scheme, we
can boost any 2-approximation algorithm for CVP to a (1 + ϵ)-approximation algorithm
with the improved running time, either using a straightforward sampling routine or using
the deterministic algorithm of Dadush for the construction of an epsilon net. Furthermore,
we establish a connection between the modulus of smoothness of the unit ball of the norm
and lattice sparsification. As a consequence, using the enumeration and sparsification
tools developped by Dadush, Kun, Peikert and Vempala [DPV11], we present a simple
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alternative to the boosting procedure with the same time and space requirement for ℓp
norms.

4.2. Together with Jana Cslovjecsek, Romanos Diogenes Malikiosis and Matthias Schy-
mura, the PI [4] considered the problem of computing the exact value of the cover-
ing radiius of a convex polytope P in Rd, a parameter defined with respect to a lat-
tice Λ as the smallest non-negative real number µ such that the lattice arrangement
µK + Λ =

⋃
z∈Λ(µK + z) of µK is a covering of Rd, that is, µK + Λ = Rd. As our

main result, we described a new algorithm for this problem, which is simpler, more effi-
cient and easier to implement than the only prior algorithm of Kannan [Kan92].

Motivated by a variant of the famous Lonely Runner Conjecture, a problem originally
stated by Wills [Wil68] in the 1960’s as a problem in Diophantine Approximation, we
used its geometric interpretation in terms of covering radii of zonotopes, and applied our
algorithm to prove the first open case of three runners with individual starting points.

5. Arrangements of convex bodies

5.1. In [12], Konrad Swanepoel and the PI studied the contact structure of totally sep-
arable packings of translates of a convex body K in Rd, that is, packings where any two
translates of the packing have a separating hyperplane that does not intersect the interior
of any translate in the packing. The separable Hadwiger number Hsep(K) of K is defined
to be the maximum number of translates touched by a single translate, with the maximum
taken over all totally separable packings of translates of K. We showed that for each d ≥ 8,
there exists a smooth and strictly convex K in Rd with Hsep(K) > 2d, and asymptotically,

Hsep(K) = Ω
(
(3/

√
8)d

)
.

We showed also that Alon’s packing of Euclidean unit balls [Alo97], where each translate

touches at least 2
√
d others whenever d is a power of 4, can be adapted to give a totally

separable packing of translates of the ℓ1-unit ball with the same touching property.

We also considered the maximum number of touching pairs in a totally separable packing of
n translates of any planar convex bodyK, and proved that the maximum equals ⌊2n−2

√
n⌋

if and only if K is a quasi hexagon, thus completing the determination of this value for all
planar convex bodies.

5.2. Let X be a finite subset of Rd whose diameter with respect to a fixed norm is one.
Then X is called k-diametral , if among any k elements, there is a pair at unit distance.
On the other hand, independently of the norm, the setX is called k-antipodal, if among any
k elements there is a pair whose elements lie on two distinct parallel supporting hyperplanes
of X.

In [3], Károly Bezdek and Zsolt Lángi showed that the structure of k-diametral point
configurations is closely related to the properties of k-antipodal point configurations in
Rd. In particular, the maximum size of k-diametral point configurations of Minkowski
d-spaces is obtained for given k ≥ 2 and d ≥ 2 generalizing Petty’s results [Pet71a] on
equilateral sets in Minkowski spaces. Furthermore, bounds are derived for the maximum
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size of k-diametral point configurations in certain Minkowski spaces (eg., in Euclidean
d-space).

6. Volumetric inequalities

In [6], Ákos G. Horváth and Zsolt Lángi investigate the properties of the convex hull
and the λ-homothetic convex hull functions (x 7→ vol(K ∩ (x + K)), and x 7→
vol(K ∩ (x+ λK)), respectively) of a convex body K in Rd-space.

A famous result of Meyer, Reisner and Schmuckenschläger [MRS93] states the following. If
K ⊂ Rd is an o-symmetric convex body with the property that the volume vol(K ∩ (x+K))
depends only on the Minkowski norm ∥x∥K, then K is an ellipsoid.

In [6], it is shown that the above statement does not hold for any convex body that
in not o-symmetric. Furthermore, the equivalence of the polar projection body problem
raised by Petty [Pet71b], and a conjecture of G. Horváth and Lángi about translative
constant volume property of convex bodies is proved, and a short proof of some theorems of
Jerónimo-Castro [Jer15] about the homothetic convex hull function is given. A homothetic
variant of the translative constant volume property conjecture for 3-dimensional convex
polyhedra is also considered, and the results are applied to describe properties of the
illumination bodies of convex bodies.

7. Planar configurations

A convex polygon Q is circumscribed about a convex polygon P if every vertex of P
lies on at least one side of Q . In [23], Markus Ausserhofer, Susanna Dann, Zsolt Lángi
and Géza Tóth present an algorithm for finding a maximum area convex polygon
circumscribed about any given convex n-gon in O(n3) time. As an application to a
problem in statistics, they disprove a conjecture of Farris [Far10].

8. Students

Both Zsolt Lángi and the PI worked with MSc. and Ph.D. students during the project,
who got engaged in it. Sami Almohammad is a Ph.D student at ELTE supervised by the
PI and co-supervised by Lángi. He is about to defend his thesis, part of which is based on
a joint work [2] of three of us. Bushra Basit is a Ph.D. student and Budapest University
of Technology and Economics (BUTE) with Lángi’s supervision, they co-authored [11].
Nóra Frankl, Viktória Földvári, Gábor Damásdi and Attila Jung wrote their MSc. theses
at ELTE with the PI’s supervision, part of their research is presented in [30; 14; 9]. Lili
Ködön wrote her BSc. thesis at BUTE under Lángi’s supervision, and [10] is their joint
work. Máté Kadlicskó is about to defend his MSc. thesis at BUTE, also with Lángi’s
supervision, their joint work [1] is the most recent output of the project.

Nóra Frankl and Viktória Földvári have since defended their Ph.D. theses at LSE, London
and at ELTE, respectively, while Gábor Damásdi is about to defend his at ELTE. Attila
Jung has just started his Ph.D. program at ELTE.
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[24] Károly Bezdek and Zsolt Lángi. “Minimizing the mean projections of finite ρ-separable
packings”. In: Monatsh. Math. 188.4 (2019), pp. 611–620. issn: 0026-9255. doi: 10.1007/
s00605-018-1166-y.
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