
FINAL REPORT FOR NKFIH GRANT PROPOSAL NO. 118946:
BOUNDS FOR EIGENFORMS ON ARITHMETIC MANIFOLDS

GERGELY HARCOS

This report summarizes the results of a research group supported by an 18-month focused “ERC
Helper” grant of the NKFIH (National Research, Development and Innovation Office). The group con-
sisted of Gergely Harcos (PI), András Biró, Péter Maga, and Árpád Tóth. The work was carried out
at the Alfréd Rényi Institute of Mathematics and at Eötvös Loránd University. In the meantime, the PI
successfully applied for a 5-year “Lendület” grant of the Hungarian Academy of Sciences, which allows
the group to further grow professionally and physically (currently there are 7 members).

The new results appear in 9 papers spanning 5 topics: bounds for automorphic forms [BHMM,
BHM1, BHM2], modular invariants [DIT1, DIT2, HIPT], the hyperbolic circle problem [Bi4], hyperge-
ometric functions [Bi3], and random power series [MaMa]. A detailed account is given below.

1. BOUNDS FOR AUTOMORPHIC FORMS

1.1. Results for the group GL2. We proved a strong and natural upper bound for the global sup-norm
of an L2-normalized spherical Hecke–Maaß cuspidal newform φ on PGL2(F)\PGL2(A), where F is a
number field with adele ring A. It extends the state-of-the-art results for the rational field F = Q by
Templier [Te] and for the Gaussian field F =Q(i) by Blomer–Harcos–Milićević [BHM3]. To formulate
the result, we note that the level of φ is an ideal n in the ring of integers o of F , and we shall abbreviate
the norm [o : n] by |n|. We also associate to φ the tuple λ := (λ1, . . . ,λr,λr+1, . . . ,λr+s) of its Laplace
eigenvalues at the r real places and the s complex places of F , and we write |λ |

∞
:= ∏

r
j=1 λ j ∏

r+s
j=r+1 λ 2

j .

Theorem 1 ([BHMM]). Assume that the level n is square-free. Then ‖φ‖
∞
�F,ε |λ |5/24+ε

∞
|n|1/3+ε holds

for any ε > 0 when F is totally real, and ‖φ‖
∞
�F,ε |λ |5/24+ε

∞
|n|5/12+ε holds when F is a CM-field.

We note that the “trivial bound” would read ‖φ‖
∞
�F |λ |1/4

∞
|n|1/2, and in fact the above bounds are

special cases of more general nontrivial bounds valid for all number fields. To formulate these, we write
|λ |R := ∏

r
j=1 λ j and |λ |C := ∏

r+s
j=r+1 λ 2

j .

Theorem 2 ([BHMM]). Assume that the level n is square-free. Then for any ε > 0, we have

‖φ‖
∞
�F,ε |λ |5/24+ε

∞
|n|1/3+ε + |λ |1/8+ε

R |λ |1/4+ε

C |n|1/4+ε .

Furthermore, if F is not totally real and m > 2 denotes the degree of F over its maximal totally real
subfield, then for any ε > 0, we have

‖φ‖
∞
�F,ε |λ |(4m−3)/(16m−8)+ε

∞
|n|(4m−3)/(8m−4)+ε .

Very recently, Assing [As] generalized the above bounds to arbitrary level and arbitrary nebentypus,
by combining our ideas (which are of arithmetic, geometric, and combinatorial in nature) with the more
representation theoretic ideas of Saha [Sa].

1.2. Results for the group GLn. We proved an explicit upper bound for the global sup-norm of a Maaß
cusp form φ on the space Xn := GLn(Z)\Hn, where Hn := Zn(R)\GLn(R)/On(R) is the usual higher
rank generalization of the upper half-plane. It is the first result of this kind in the literature: the earlier
results were concerned with the local sup-norm restricted to a compact subset (see [BlMa, Mar]), or
with lower bounds for the global sup-norm (see [BrTe]).
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Theorem 3 ([BHM2]). Let φ be an L2-normalized Maaß cusp form on Xn with Laplace eigenvalue λφ .

Then for any ε > 0, we have ‖φ‖
∞
�n,ε λ

(n2−2)(n+1)/16+ε

φ
.

This result should be compared with the lower bound ‖φ‖
∞
�n,ε λ

n(n−1)(n−2)/24−ε

φ
established under

some mild hypotheses by Brumley and Templier [BrTe, Thm. 1.1]. We note that for n of moderate size,
improvements are possible. In particular, for n = 2 and n = 3, the best known upper bounds for ‖φ‖

∞

appear in the seminal paper of Iwaniec and Sarnak [IwSa] and in our companion paper [BHM1].
Theorem 3 is a consequence of two more refined bounds that follow from the Fourier–Whittaker

expansion and the Selberg pre-trace formula combined with ideas from the geometry of numbers. To
formulate these, we recall that Xn has a fundamental domain lying in the standard Siegel set

(1) |xi j|6 1/2 for j > i and y1, . . . ,yn−1 >
√

3/2,

with coordinates on Hn as in [Go, Def. 1.2.3]. The first bound below is useful when the yi’s are large
on average, while the second bound below is useful in the opposite case.

Theorem 4 ([BHM2]). Let φ be an L2-normalized Maaß cusp form on Xn, and let z ∈Hn be a point in
the Siegel set (1). There exists a constant cn > 0 such that

φ(z)�n λ
n3

φ exp
(
−cn Y (z)/Tµ

)
,

where

Y (z) := max
16 j6n−1

max

(
j

∏
i=1

y j−i+1
i ,

j

∏
i=1

y j−i+1
n−i

) 2
j( j+1)

.

In addition, we have

φ(z)�n λ
(n2−n)/8
φ

+λ
(n2−n−1)/8
φ

n−1

∏
i=1

yi(n−i)/2
i .

In order to control the terms in the Fourier–Whittaker expansion of the cusp form φ , we derived
uniform upper bounds for the underlying Jacquet–Whittaker function Wµ , which are of independent
interest. For the sake of exposition, we restrict here to the tempered case (which by the generalized
Ramanujan–Selberg conjecture should always be the case). Then, the corresponding archimedean Lang-
lands parameters are purely imaginary:

(2) µ = (µ1, . . . ,µn) ∈ (iR)n, µ1 + · · ·+µn = 0, ℑµ1 > . . .> ℑµn.

With this notation, the Laplace eigenvalue equals

λφ =
n3−n

24
− µ2

1 + · · ·+µ2
n

2
,

and it is convenient to introduce

Tµ := max(2, |µ1|, . . . , |µn|)�n λ
1/2
φ

.

Theorem 5 ([BHM2]). Let t = diag(t1, . . . , tn) ∈GLn(R) with t1, . . . , tn > 0. Assume that the Langlands
parameters satisfy (2). Then for any ε > 0, we have

Wµ(t)�n,ε

(
n

∏
j=1

tn+1−2 j
j

)1/2−ε

exp

(
− 1

Tµ

n−1

∑
j=1

t j

t j+1

)
.

Our actual result is stronger and addresses the non-tempered case as well, but we preferred the above
clean formulation. In particular,

∥∥Wµ

∥∥
∞
�n T (n3−n)/12

µ , which complements the analogous lower bound∥∥Wµ

∥∥
∞
�n T n(n−1)(n−2)/12

µ established under some mild hypotheses by Brumley and Templier [BrTe,
Thm. 1.4]. Our companion paper [BHM1] contains some more refined bounds for the case n = 3.
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2. MODULAR INVARIANTS

2.1. Geometric invariants for real quadratic fields. In [DIT1] we introduced a new geometric invari-
ant associated to a narrow ideal class of a real quadratic field. This invariant is a finite area hyperbolic
surface with a boundary that maps naturally on the modular surface. The boundary is a simple closed
geodesic whose image in the modular surface is the usual modular closed geodesic associated to the
ideal class. Its length is well known to be expressible in terms of a fundamental unit of the field. The
area of the surface is determined by the length of an associated minus (or backward) continued fraction.
The surface contains more information than the closed geodesic alone. We obtained a result about the
distribution properties of the surface as it lies in the modular surface.

Theorem 6 ([DIT1]). Suppose that for each positive fundamental discriminant D> 1 we choose a genus
GD ∈Gen(K). Let Ω be an open disc contained in the fundamental domain F for Γ = PSL2(Z) and let
ΓΩ be its orbit under the action of Γ. We have

(3) π

3 ∑
A∈GD

area(FA∩ΓΩ)∼ area(Ω) ∑
A∈GD

area(FA),

as D→ ∞ through fundamental discriminants.

This problem is closely allied with (and in fact completes in a natural way) the problem of the uniform
distribution of the closed geodesics on the modular surface when ordered by their associated discrimi-
nant [Du]. The analytic approach to the closed geodesic problem leads to estimating the Fourier coeffi-
cients of Maaß cusp forms of weight 1/2. For the surface problem, this approach also leads to estimating
these Fourier coefficients (for different indices), but it requires interesting and nontrivial extensions of
formulas of Hecke and Katok–Sarnak [KaSa]:

Theorem 7 ([DIT1]). Let
ϕ(z) = 2y1/2

∑
n6=0

a(n)Kir(2π|n|y)e(nx)

be a fixed even Hecke–Maaß cusp form for Γ. Then there exists a unique nonzero F(z) with weight 1/2
for Γ0(4) with Fourier expansion

F(z) = ∑
n≡0,1(mod 4)

n6=0

b(n)W1
4 sgnn, ir

2
(4π|n|y)e(nx),

such that for any pair of coprime fundamental discriminants d′ and d we have

12
√

π|D|
3
4 b(d′)b(d) = 〈ϕ,ϕ〉−1

∑
A∈Cl+(K)

χ(A)


λ

2
∫
FA

ϕ(z)dµ if d′,d < 0∫
∂FA

ϕ(z)y−1 |dz| if d′,d > 0
2
√

π ω
−1
D ϕ(zA) if d′d < 0,

where χ is the genus character associated to D = d′d. Here 〈F,F〉=
∫

Γ0(4)\H |F |
2 dµ = 1, and the value

of b(n) for a general discriminant n = dm2 for m ∈ Z+ is determined by means of the Shimura relation

m ∑
n|m
n>0

n−
3
2
(d

n

)
b
(m2d

n2

)
= a(m)b(d).

2.2. Modular cocycles and linking numbers. The 3-manifold SL2(Z)\SL2(R) is diffeomorphic to the
complement of the trefoil knot in S3. Ghys [Gh] showed that the linking number of this trefoil knot with a
modular knot is given by the Rademacher symbol, which is a homogenization of the classical Dedekind
symbol. The Dedekind symbol arose historically in the transformation formula of the logarithm of
Dedekind’s eta function under SL2(Z). In [DIT2] we gave a generalization of the Dedekind symbol
associated to a fixed modular knot.
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Let C be a conjugacy class of a hyperbolic element σ ∈ Γ. Define the weight two 1-cocycle for c 6= 0
and γ =

(
a b
c d

)
∈ Γ by

(4) rC (γ,z) := εC ∑

(
1

z−w
− 1

z−w′

)
,

where the sum is over the fixed points w′,w of σ ∈ C , satisfying w′ <−d/c < w and

(5) εC :=

{
1 if σ 6∼ σ−1

2 if σ ∼ σ−1 .

If c = 0 we let rC (γ,z) = 0. We then have

Theorem 8 ([DIT2]). Let rC (γ,z) be defined as in (4). Then rC (γ,z) is a weight 2 cocycle for Γ.

Let RC (γ,z) be the unique primitive of rC (γ,z). Define the Dedekind symbol for C and γ ∈ Γ by

(6) ΦC (γ) := 2
π

lim
y→∞

ℑRC (γ, iy).

Theorem 9 ([DIT2]). ΦC (γ) exists and is an integer.

This symbol also arises in the transformation formula of a certain modular function. The homoge-
nization of this symbol, which generalizes the Rademacher symbol, gives the linking number between
two distinct symmetric links formed from modular knots.

Theorem 10 ([DIT2]). Let Cσ and Cγ denote the links associated to two different primitive conjugacy
classes, and let ΨCσ

(γ) := limn→∞ ΦCσ
(γn)/n. Then Lk(Cσ ,Cγ) = ΨCσ

(γ).

It can be computed in terms of a special value of a certain Dirichlet series

(7) LC (s,α) = ∑
n>1

aC (n)e(nα)n−s,

where the coefficient aC (n) is given by the cycle integral of a certain Γ-invariant function along the
closed geodesic associated to C .

Theorem 11 ([DIT2]). Let LC (s,a/c) be the Dirichlet series as in (7). Then LC (s,a/c) converges for
ℜ(s)> 9/4, has a meromorphic continuation to s > 0 and is holomorphic at s = 1. Moreover,

(8) ΦC (γ) =− 1
π2 ℜLC (1,a/c).

This symbol also satisfies the following reciprocity law.

Theorem 12 ([DIT2]). Assume that (a,c) = 1 and ac 6= 0. Then

(9)
1
iπ

[LC (1,a/c)−LC (1,−c/a)] =−2
(

a2+c2+1
ac

)
logλ −νC (a/c),

where

νC (x) := εC ∑
w′<0<w

[
log
(

x−w
x−w′

)
− log

(
1+ xw
1+ xw′

)]
.

Here we interpret the imaginary part of the logarithm of a negative real number to be π. This result is
analogous to the reciprocity law of the Dedekind symbol, and it enables a fast calculation of LC (1,a/c)
and hence also of ΦC (γ).
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2.3. A Jensen–Rohrlich type formula for the hyperbolic 3-space. In [HIPT] we gave a Jensen–
Rohrlich type formula for a certain class of automorphic functions on the hyperbolic 3-space H 3 for
the group PSL2(oK). The classical Jensen formula is a well-known theorem of complex analysis which
characterizes, for a meromorphic function f on the unit disc, the value of the integral of log | f (z)| on the
unit circle in terms of the zeros and poles of f inside the unit disc. An important theorem of Rohrlich
[Ro] establishes a version of Jensen’s formula for modular functions f with respect to the full modular
group PSL2(Z) and expresses the integral of log | f (z)| over a fundamental domain in terms of special
values of Dedekind’s eta function.

Consider the class A of functions F : Γ\H 3 → R∪{∞} that are square integrable and harmonic

except for finitely many points Q1, . . . ,Qm ∈ X . The behavior at these points is F(P) = c`
ν(Q`)r`
‖P−Q`‖

+

O(1), where the constants c1, . . . ,cm ∈ R satisfy ∑
m
`=1 c` = 0.

The main theorem is the following analogue of Rohrlich’s formula in this case.

Theorem 13 ([HIPT]). Let F : H 3 → R∪ {∞} be in the class A described above. Then F(∞) :=
limr→∞ F(P) exists, and we have the equality

1
vol(X)

∫
X

F(P)dµ(P) = F(∞)+
2π

vol(X)

m

∑
`=1

c` log
(
η∞(Q`)r`

)
.

3. THE HYPERBOLIC CIRCLE PROBLEM

We regard the upper half-plane H as a model of the hyperbolic plane, and we identify its group of
orientation preserving isometries with PSL2(R) via the usual action z 7→ az+b

cz+d of
(

a b
c d

)
∈ PSL2(R). For

a discrete subgroup Γ 6 PSL2(R), the hyperbolic circle problem concerns the cardinality of the finite
intersection of an orbit Γz with a hyperbolic disk. Taking z as the center of the disk, in familiar notation
the problem concerns

N(z,X) := #
{

γ ∈ Γ :
|γz− z|2

ℑ(γz)ℑ(z)
+2 6 X

}
.

Selberg understood the spectral nature of the problem, and in this way he proved (see [Iw, Theo-
rem 12.1]) the approximation N(z,X) = M(z,X)+Oz,Γ(X2/3), where

M(z,X) :=
√

π ∑
1
2<s j61

λ j=s j(1−s j)

Γ
(
s j− 1

2

)
Γ(s j +1)

∣∣φ j(z)
∣∣2 X s j .

Here, (φ j) is a complete orthogonal system of Maaß forms on Γ\H with corresponding Laplace eigen-
values (λ j). In particular, for Γ = PSL2(Z), we have N(z,X) = 3X +Oz(X2/3). The exponent 2/3 has
never been improved for any group Γ, although it is conjectured that 1/2+ε is admissible (which would
be close to optimal). Recently, we managed to improve the exponent on average.

Theorem 14 ([Bi4]). For any f ∈C∞
c (H ) we have, writing z = x+ iy,∫

Γ\H
f (z)

(
N(z,X)−M(z,X)

) dxdy
y2 = O f ,Γ,ε(X5/8+ε).

The main tool in the proof is our generalization of the Selberg trace formula proved earlier in [Bi1].
We note that for the special case of Γ = PSL2(Z), Petridis–Risager [PeRi] independently achieved this
result with exponent 7/12+ ε on the right hand side.
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4. HYPERGEOMETRIC FUNCTIONS

We considered a certain definite integral involving the product of two classical hypergeometric func-
tions having complicated arguments. We showed the surprising fact that this integral does not depend
on the parameters of the hypergeometric functions.

Let us write F(a,b;c;z) for the Gauss hypergeometric function.

Theorem 15 ([Bi3]). Let 0 < T < S < 1, and let t be any complex number. Then

∫ S

T

F
(

2it,−2it; 1
2 ;

(1+
√

z)(
√

z−
√

T)
2(1−

√
T)
√

z

)
F
(

it,−it; 1
2 ;− (S−z)(1−z)

(1−
√

S)
2
z

)
(1− z)

√
z−T

√
S− z

dz =
π√

1−T
√

1−S
.

This identity is interesting on its own right, but we stress that we discovered it while studying the spe-
cial functions occurring in [Bi2], where we proved a Poisson-type summation formula with automorphic
weights. We note also that the integral operator

g(S) :=
∫ S

0

F
(

it,−it; 1
2 ;− (S−z)(1−z)

(1−
√

S)
2
z

)
√

S− z
f (z) dz,

where f and g are functions on (0,1), can be inverted using Theorem 15.

5. RANDOM POWER SERIES

In our paper [MaMa], we considered the boundary behavior of the real power series ∑
∞
n=1 anxn, where

the coefficients an are chosen independently at random from a finite set D (of cardinality at least 2)
with uniform distribution. The complex variant of the question was thoroughly examined, and it was
shown that random power series in the complex plane tend to behave rather chaotically near the radius
of convergence (see [St, BrSi]). We verified that the real case has similar properties, namely we proved
that if the expected value of the coefficients is positive (resp. negative), then

lim
x→1−

∞

∑
n=1

anxn = ∞ (resp. lim
x→1−

∞

∑
n=1

anxn =−∞)

with probability 1. Also, if the expected value of the coefficients is 0, then

limsup
x→1−

∞

∑
n=1

anxn = ∞, liminf
x→1−

∞

∑
n=1

anxn =−∞

with probability 1.
We investigated the analogous question in terms of Baire categories: we have shown that if the con-

figuration space consists of all the possible choices of coefficients from D equipped with the product
topology, then if each element of D is nonnegative (resp. nonpositive), then

lim
x→1−

∞

∑
n=1

anxn = ∞ (resp. lim
x→1−

∞

∑
n=1

anxn =−∞)

in a residual set. Otherwise we have

limsup
x→1−

∞

∑
n=1

anxn = ∞, liminf
x→1−

∞

∑
n=1

anxn =−∞

in a residual set.
A motivation for this project was answering a question in [KPP]. Namely, it is a simple consequence

via Bolzano’s theorem that if ∑d∈D d = 0, then for almost all and residually many sequences of coef-
ficients (an) the following holds. For any real number y, there are infinitely many numbers 0 < x < 1
satisfying y = ∑

∞
n=1 anxn.
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[HIPT] S. HERRERO, Ö. IMAMOḠLU, A. M. VON PIPPICH, Á. TÓTH, A Jensen–Rohrlich type formula for the hyperbolic

3-space, Trans. Amer. Math. Soc., 23 pages, to appear
[Iw] H. IWANIEC, Spectral methods of automorphic forms, 2nd edition, Graduate Studies in Mathematics, Vol. 53,

Amer. Math. Soc., Providence, RI, 2002.
[IwSa] H. IWANIEC, P. SARNAK, L∞ norms of eigenfunctions of arithmetic surfaces, Ann. of Math. 141 (1995), 301–320.
[KaSa] S. KATOK, P. SARNAK, Heegner points, cycles and Maass forms, Israel J. Math. 84 (1993), 193–227.
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