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1 Introduction

Next-generation sequencing revolutionized medicine, however, its clinical ap-
plication is still hindered by multiple factors, such as measurement errors and
interpretation of the results. The contributions of our project are as follows:

• Novel sequencing error models and error correction methods applicable
for multiple single-molecule sequencing platforms, but tailored to Oxford
Nanopore Technologies.

• Novel precision sequencing methods using ensemble variant calling.

• Real-time, highly parallelized automation of the sequencing pipeline to
support high-throughput computing and adaptive sequencing.

• Automated workflow to support gene level and pathway level analysis.

• A novel adaptive sequencing method, which automatically, in real-time
focuses on clinically relevant variants.

The results of the study were applied on real medical data [OTKA1,OTKA2,
OTKA3, OTKA4] and were utilized on genetic data in cooperation with the
Molecular Genetics Department of the National Oncological Institute and the
Genomic Medicine and Rare Diseases Department of the Semmelweis Univer-
sity [OTKA5,OTKA6,OTKA7].

2 Novel sequencing error models, simulation en-
vironments and error correction methods

Electronic, nanopore based single molecule real-time DNA sequencing technol-
ogy offers very long, albeit lower accuracy reads in sharp contrast to existing
next-generation sequencing methods, which offer short, high-accuracy reads in
abundance. We provided a systematic review of the error characteristics of this
new sequencing platform, and demonstrated the most challenging aspects in
the field of whole gene sequencing through the human HLA-DQA2 gene using
long-range PCR products on multiplexed samples. We consider the limitations
of these errors for the applications of this technology, also indicating expected
improvements and expected thresholds with respect to these errors [OTKA8].

The initial capital cost of NGS starts above 50k USD, while the MinION
device promises capital costs under 1k USD, reagent and consumables costs
are similar for all sequencing technologies, but PCR-free library preparation
and simplified library preparation protocols allow laboratories with simplified
infrastructure – up to the point of using mobile field laboratories.

The ability to perform basecalling in real time on the first couple of hundred
bases traversing a pore opens up possibilities for in situ enrichment. Based on
the sequences present in the start of a read, the current across the membrane
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can be reversed, ejecting the molecule from the pore [1]. A rejected molecule
does not have a tether or a motor protein, so it cannot enter the pore again.

Direct RNA sequencing is possible by ligating a poly-T sequencing adapter
and annealing the tether molecule to RNA strands. This offers both quali-
tative and quantitative gene expression analysis and transcriptomic profiling.
Real-time species identification, along with PCR free quantitative and qual-
itative microbiomics are possible, opening up an array of possibilities in the
field of metagenomics and pathogen identification, particularly with the possi-
bility of portable sequencing [2,3]. PCR-free library preparation techniques offer
quantitative and qualitative cancer profiling, immunome profiling, and mtDNA
profiling. Rapid response to antibiotic resistant infections, with a turnaround
time under 6 hours is possible with simplified library preparation routines, as
well as accurate pathogen identification down to the exact genes responsible for
antibiotic resistance.

Long reads allow for the phased genotyping on polyploid samples, elimi-
nating the need for performing paired-end sequencing with large insert sizes
to resolve the gametic phase of distant genetic polymorphisms [4, 5]. The ex-
tremely long reads produced by the MinION sequencer make it a suitable tool
for generating scaffolds for de-novo genome sequencing. In a hybrid approach,
NGS reads supplemented by long Oxford Nanopore Technologies (ONT) reads
greatly reduce the number and increase the length of contigs a large genome
can be assembled into. Shorter genomes or plasmids can be assembled exclu-
sively from long reads [6]. Large scale chromosomal rearrangements and copy
number variations can also be resolved, and are only limited by the attainable
read lengths.

The error rate of the platform is higher than most mature next-generation
sequencing platforms, with many of the deletions accumulating in stretches of
identical bases (homopolymers, HPs). However, the mean time each 5-base long
subsequence (k-mer) of the molecule spends inside of the pore (dwell time) can
also be used to infer the length of the true sequence. We developed a method
called NanoTimer [OTKA9], which estimates the homopolymer length from the
dwell times. It relies on the redundancy of having multiple reads covering a
reference sequence, and the depth of coverage determines its accuracy.

The investigation of the duration and level of signal currents (events) reg-
istered by MinKNOW is an active research topic, due to the possibility of im-
proved variant call rate and accuracy. The amplification and barcoding of 2
x 12 5.8kb targets in the human MHC-II region were performed according to
ONT protocols, using the Amplicon Sequencing Kit (SQK-006) and the PCR
Barcoding Kit. This region was selected for its high degree of variability, as
it contains more than 50 polymorphisms per sample, and for the examination
of homopolymer indels. Current variant callers have difficulty with such ONT
reads, so we have developed an application for visualizing current levels and
translocation times on reference-aligned ONT reads. Due to the stochastic na-
ture of single-stranded DNA ratcheting through each sequencing pore by the
motor protein, we hypothesized that raw event durations and current levels
can be used to improve the inference of the length of homopolymer stretches.

4



OTKA K112915 Intelligent NGS

Specifically, in variant calling, the average normalized translocation times al-
low for the characterization of false positive homopolymer deletions, as well as
providing supporting evidence for true positives [OTKA10].

Per base translocation times were calculated by normalizing each event dura-
tion by the translocation time of the entire read, to correct for any pore-specific
translocation rate bias, as well as correcting for any flow cell level effect. The
normalized per base translocation times are independent of the base psition in a
read and the kmer context (including GC content). Correspondingly, event du-
rations are not specified in the fast5 model files. The basecalling model does not
allow steps between identical homopolymer states (no current changes are de-
tected in homopolymer sequences, thus they do not produce events). However,
this stable, independent average translocation rate allows us to infer homopoly-
mer lengths. Additionally, the high variance of per-base translocation times
average out when looking at longer homopolymer stretches. The increasing pre-
cision of this fundamental parameter for homopolymer length estimations is in
sharp contrast with the increasing uncertainty for longer homopolymer lengths
present in currently prevailing NGS technologies [7]. The coverage requirements
to utilize translocation times depend on the level of accuracy required, higher
coverage increases precision.

We examined the dwell time of each subsequence length, by collecting the
elapsed time between the events corresponding to the first and last bases of
a subsequence (Figure 2.). We found that the relative dwell time (RRTT)
distribution of k length sequences can be closely approximated with an Erlang
distribution with the shape = 2·k and rate = 0.5 parameters [OTKA9].

The current basecalling performed by ONT is limited to calling HP lengths of
a maximum of 5. Considering the uniform distribution of substitution, insertion
and non-HP deletions within 1D Nanopore reads, HP deletions present one of the
last obstacles for the widespread usage of ONT in genomic DNA sequencing,
as they have major (and often deleterious) effects on protein products when
found in protein coding regions. Our methods significantly extends the scope of
applicability: the accurate resolution of homopolymer stretches is only limited
by the depth of coverage available for the target sequence.

The standard method of identifying the individual bases passing through
each pore relies on a Hidden Markov Model (HMM), mapping raw current levels
to individual bases in a nonlinear, multi-staged fashion. Recent advancements in
artificial neural networks (ANN) and related natural language processing (NLP)
techniques allow novel neural architectures that may improve the accuracy of
the basecalling. We developed and examined a novel deep neural network based
method to perform basecalling on raw current level measurements, as well as an
efficient method of selecting and curating a training database from a set of real
measurements [OTKA11].

We examined the most promising academic approaches, and compared them
to the reference solution provided by the platform vendor, using the NA12878
whole genome shotgun sequencing dataset. Multiple types of systematic errors
offer challenges to each individual solution, thus we proposed a framework to
unify the strengths of each basecaller, and to aggregate their output in order to
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Figure 1: The complete adaptive sequencing and simulation pipeline.

increase their accuracy over any single solution [OTKA12].
One promising feature of the single-molecule real-time (SMRT) DNA se-

quencer developed by Oxford Nanopore Technologies is that it enables the ter-
mination of the sequencing of a read while traversing the pore (called read-
until). We demonstrate that this enables efficient and optimal use of sequenc-
ing throughput and flow cell yield in the reinforcement learning framework.
To explore the possibilities of such in-silico enrichment methods we have cre-
ated a complete, end-to-end simulation framework, which spans from target
regions to variant calling. To perform a detailed evaluation, we implemented a
pipeline [OTKA13] consisting of a (1) raw current level simulator capable of cre-
ating signals callable by any nanopore basecaller, (2) a rapid, high-throughput
HMM-based basecaller, with customizable early rejection parameters, (3) an in-
memory aligner, and (4) a soft real-time incremental variant caller, as shown on
Figure 1. This simulation environment is used in development and evaluation
of the adaptive sequencing method [OTKA14].

The pipeline automates the tuning of read rejection parameters to achieve
uniform error rates over target regions and variants. We performed synthetic
evaluation using the NA12878 human sample.
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3 Novel precision sequencing methods using en-
semble variant calling

The low concordance between different variant calling methods still poses a
challenge for the wide-spread application of next-generation sequencing in re-
search and clinical practice. A wide range of variant annotations can be used
for filtering call sets in order to improve the precision of the variant calls, but
the choice of the appropriate filtering thresholds is not straightforward. Variant
quality score recalibration provides an alternative solution to hard filtering, but
it requires large-scale, genomic data.

We evaluated germline variant calling pipelines based on BWA and Bowtie 2
aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller,
FreeBayes and SAMtools variant callers, using simulated and real benchmark
sequencing data (NA12878 with Illumina Platinum Genomes). We argue that
these pipelines are not merely discordant, but they extract complementary use-
ful information. [OTKA15] 2

We created VariantMetaCaller to test the hypothesis that the automated
fusion of measurement related information allows better performance than the
recommended hard-filtering settings or recalibration and the fusion of the in-
dividual call sets without using annotations. VariantMetaCaller uses Support
Vector Machines to combine multiple information sources generated by variant
calling pipelines and estimates probabilities of variants.

This novel method has significantly higher sensitivity and precision than
the individual variant callers in all target region sizes, ranging from a few hun-
dred kilobases to whole exomes. We also demonstrated that VariantMetaCaller
supports a quantitative, precision based filtering of variants under wider con-
ditions. Specifically, the computed probabilities of the variants can be used to
order the variants, and for a given threshold, probabilities can be used to esti-
mate precision. Precision then can be directly translated to the number of true
called variants, or equivalently, to the number of false calls, which allows finding
problem-specific balance between sensitivity and precision.

The level of uncertainty in next-generation sequencing (NGS) measurements
is still higher than what is required for routine clinical use, even for germline
variants in targeted gene panels and exome sequencing [8]. The measurement
process includes a complex computational variant calling pipeline, which con-
tains many alternative elements with various parameters, heavily influencing the
unique characteristics and performance of the whole procedure. Several studies
showed that (1) currently there is no single best general individual variant calling
method with both superior sensitivity and precision at all circumstances [8, 9],
and (2) there are significant discrepancies between commonly used variant call-
ing pipelines, even when applied to the same set of sequence data [8,10–12] . An
ad hoc approach is the fine-tuning of the pipeline for the actual measurement,
which requires substantial expertise and time, also hindering standardization
and benchmarking.

Generally, variant callers aim to be sensitive, call variants “aggressively” and
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Figure 2: Earlier approaches, current study design including data sets and eval-
uations, and the conceptual overview of VariantMetaCaller. Study design: Sim-
ulated sequences of various target region sizes, and real sequence data covering
the whole exome of NA12878 were aligned by BWA and Bowtie 2 to the human
genome. Variants were called by GATK HaplotypeCaller, GATK UnifiedGeno-
typer, FreeBayes and SAMtools. Evaluation: Variant calling pipelines were
compared by calculating concordance rates. Precision-recall curves were plotted
and the area under the precision-recall curves was calculated for each method.
Earlier approaches: Hard filters can be applied to filter variants by specifying
annotation cutoffs. VQSR can be applied to recalibrate variant qualities based
on gold standard reference data and variant annotations. BAYSIC combines
the unfiltered variant calls by late integration. Overview of VariantMetaCaller:
VariantMetaCaller (1) combines the unfiltered call sets by SVMs that use vari-
ant annotations as features and (2) estimates the probability of each variants
being real. The probabilistic output of VQSR and VariantMetaCaller can be
used to estimate FDR at each probability cutoff and to optimally select the
filtered variants with respect to the cost function of the researchers. AUPRC
= Area under the precision-recall curve, FDR = false discovery rate, NGS =
Next-generation sequencing, SVM = Support Vector Machine
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provide annotations to the user that can help distinguish true variants from
false calls originating from sequencing, alignment or data processing artefacts.
To further improve the sensitivity of the pipeline, one can use multiple variant
calling methods, as it is a well-known fact that different callers produce different
results [8, 10–14]. The rationale behind this practice is that the consequence of
a false negative variant call (i.e. not discovering a true variant) is usually more
serious than the consequence of a false positive (i.e. unreal variant claimed to
be real), especially in clinical settings. The union of different call sets (called by
different variant callers) could be taken for maximum sensitivity. However, this
would result in higher false positive rate, i.e. a decrease in precision. Variants
could, in principle, be validated experimentally using complementary measure-
ment methods, but only at the cost of losing the high-throughput efficiency of
NGS. Therefore, an application-specific balance between sensitivity and preci-
sion is needed.

A possible solution for selecting the appropriate list of variants is the use
of hard filters. Variant callers produce a rich set of annotations that provide
abundant information about mapping quality and various biases. For example,
the evidence for a mutation is usually stronger at higher read depths [12]. A
bias in the position of the variant in the read or a bias in the number of reads or
base quality scores supporting an alternate allele may denote mapping problems
and can be used to identify false variants. However, annotations have complex
interrelationships [10,12], they depend on the experimental settings, and in most
cases, are difficult to interpret [9]. It is often unclear what an adequate hard
filter is; beyond general guidelines each specific study requires experimenting
and empirical testing. Besides, most annotation classes depend on the actual
read depth, and a filter setting which works for low coverage may not perform
equally well for high coverage. The non-uniform coverage often seen in NGS
studies [15] makes hard filtering a challenging task. Furthermore, it is also
difficult to assess the resulting precision of the hard-filtered variant set.

An automated approach to improve precision of variant calling, applicable
at a larger scale, is the use of variant quality score recalibration (VQSR) [16],
which can be used to reclassify variant qualities. However, it requires a large
amount of data: it can be used only for whole genomes or for at least 30 whole
exomes according to GATK Best Practices. If a smaller region is sequenced, one
can rely only on manual hard filters. Besides, VQSR uses gold standard, “error-
free” variant sets as reference. In case of organisms for which these resources
are unavailable, VQSR cannot be used in a straightforward manner.

In fact, automated recalibration can be also applied using abundant an-
notations of multiple pipelines instead of large amount of data: in this case
the heterogeneous, intermediate annotations from multiple methods can be ex-
ploited for automated “recalibration”. Indeed, this forms our central hypothesis
that popular variant calling pipelines are not merely discordant, but the gener-
ated intermediate annotations contain complementary high-dimensional infor-
mation, which can be combined into a better performing overall model. Our
further hypothesis is that fusion of the intermediate annotation information al-
lows the prediction of probabilities of variants in areas not accessible by current
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approaches.
Based on these assumptions, we constructed VariantMetaCaller, which com-

bines information from various variant callers using Support Vector Machines
(SVM) (for an earlier related method, see [17]). Figure 2 shows the earlier
approaches, the current study design including data sets and evaluations, and
the conceptual overview of VariantMetaCaller. This novel method predicts the
probability that a variant is a true genetic variant and not a sequencing artefact,
which provides a principled solution for quantitative support for variant filter-
ing. Specifically, probabilities can be used to order the variants, and for a given
threshold, probabilities can be used to estimate precision. Precision then can
be directly translated to the number of true called variants, or equivalently to
the number of false calls, which allows finding problem-specific balance between
sensitivity and precision, i.e. it allows a quantitative, precision-based filtering.

Automated fusion of multiple variant callers has been seen as a promising
direction to exploit hidden information with more advanced statistical models.
Until now, the arising problem of high-dimensionality and heterogeneity has
remained unsolved in earlier fusion approaches, for example BAYSIC [18], used
only the predicted calls, implementing late information fusion. To cope with
high-dimensionality, a few SVM-based methods have already been introduced,
such as the unpublished Ensemble method and the one used for the Exome Se-
quencing Project [19]. The method of the Exome Sequencing Project was not
developed to utilize the combination of multiple variant-callers, and it deter-
mines annotation value cutoffs for defining negative training examples and gold
standard data sets for defining positive training examples. VariantMetaCaller
is conceptually similar to Ensemble, but the latter is limited to single-sample
variant sets, and as to our knowledge, does not produce a quantitative score
and therefore cannot be used to balance between sensitivity and precision.

Copy number variations (CNV’s) are considered a subclass of structural
variants in which regions of the genome have varying number of repeats, and
the number of these repeats can differ among individuals of a species. The most
common CNV’s are duplications and deletions of copies of entire coding regions
or genes. The heterozygous loss of a copy of a gene is also considered a CNV.
Chip-based genome-wide association studies have shown good results [20] in
detecting CNV’s, where deletions can be inferred from loss of heterozygosity, and
additional copies detected from increased heterozigosity of contiguous regions.
Whole-exome sequencing (WES) offers new methods of detecting CNV’s, where
the main approaches involve:

• Identifying areas of outlying coverage along target regions, though some
methods of exome capture (e.g. array capture) naturally reduce the spread
of individual target coverage.

• Identifying inequal allelic fractions on polymorphisms, where excess ho-
mozigosity and imbalanced allelic fractions respectively indicate deletions
and copy gains.

• Identification via paired-ends, where discordance among the insert dis-
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tances of read pairs aid in the identification of CNV’s

• Identification by assembly, via the remapping of soft-clipped reads, which
indicate larger breaks from the reference sequence, and are commonly used
to identify large structural variations [21].

Detection of copy number variation can also follow different approaches
based on the type of dataset used:

• Single sample CNV detection, where the tools call CNVs on a per-sample
basis, without the use of data from other samples.

• Multiple sample parallel CNV detection, where tools calls CNVs jointly,
using the coverage or allelic fraction data from all samples simultaneously.

• Matched sample CNV detection, most commonly between a normal tissue
and tumor sample, where the goal is to identify changes from the normal
tissue present in the tumor sample.

A multitude of copy number variation (CNV) callers have been published in
the last few of years, yet they show significant disparities in both their sensitivity,
and their specificity, as well as their methods and data requirements, as shown
on Figure 3.

We tested 4 whole-exome CNV callers, and investigated their performance
on 40 whole exome sequencing samples, and created a framework for the uni-
fication of their results [OTKA16]. Of the different tools, XHMM [22] found
a total of 946 CNVs, CoNIFER [23] indicated 645, while CONTRA [24] noted
32481, and finally CNVnator [25] with 48330 calls. This indicates that XHMM
and CoNIFER are highly specific, as their counts are slightly under the ex-
pected number of CNVs in 40 samples, while both CONTRA and CNVnator
are highly sensitive, with counts far exceeding those that should naturally oc-
cur in the samples. The methods show highly discordant calls, despite their
being non-empty subset of 73 calls verified by all 4 tools, as show in Figure 4.
This discordance is significantly higher than that demonstrated by short variant
callers [OTKA15], owing to the enourmous differences between individual call
methods.

4 High-throughput automation of NGS sequenc-
ing pipelines

In order to support both high-throughput computing and adaptive sequenc-
ing, we created an NGS data processing pipeline [OTKA17] which allows the
incremental addition of newly sequenced samples while preserving the results
of earlier computational steps, while still achieving the ability to jointly call
genotypes in a large sample set. Adhering to the best practices of NGS data
analysis [16] requires the use of over a dozen different tools sequentially in the
data processing pipeline. The computational cost of these tools is highly variable
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Name Release 
date

Authors Datatype Matched? WES 
/WGS

Method State Distribution

XHMM 2014 Fromer et. al. Read depths Normal WES/WGS Hidden Markov 
Model

Maintained  R package 

CoNIFER 2012 Krumm et. al. Read depths Normal WES/WGS Singular Value 
Decomposition

Maintained Python package

CNVnator 2011 Abyzov et. al. Read depths Normal WES Mean-shift Maintained C package
ADTEx 2014 Amarasinghe et. 

al. 
B-allele 
frequencies

Matched 
normal-tumor

WES Hidden Markov 
Model

Maintained Python/R package

CONTRA 2012 Li et. al. Read depths Both WES Log-ratios Maintained Python package
cn.MOPS 2012 Klambauer et. 

al.
Read depths Normal WES Mixture of 

Poissons
Documentation 
missing

R package

ExomeCNV 2011 Sathirapong-
sasuti et. al.

Read depths, B-
allele frequency

Matched 
normal-tumor

WES Log-ratios Unmaintained R package

VarScan 2 2012 Koboldt et. al. Read depths,  B 
allele frequency

Matched 
normal-tumor

WES Heuristic and 
statistical test 
based 
classification

Maintained Java Executable

ExomeDepth 2012 Plagnol et. al. Read depths Both WES Optimized 
Classifier

Maintained R package

EXCAVATOR 2017 Magi et. al. Read depths Both WES/WGS Read depth log2 
ratio

Maintained Bash, R, Perl 
scripts

Figure 3: Overview of CNV calling methods applicable to whole exome sequenc-
ing datasets (WES)

Figure 4: Venn diagram displaying the number of CNVs detected by each tool
and the sizes of their overlapping sets
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Figure 5: The automated next-generation sequencing pipeline, using optimal
resource allocation to allow optimal throughput and incremental genotyping of
large whole-genome sequencing datasets. Starting from raw FASTQ data, data
preparation is done via PicardTools [26] and GATK [27], with final genotype
calls being produced by FreeBayes [28], Samtools [29], UnifiedGenotyper and
HaplotypeCaller [27] with variant quality score recalibration (VQSR).

both with respect to CPU time, memory usage, disk usage and parallelizability.
We created a system that optimally distributes resources in the computational
graph to provide the highest possible processing throughput in a homogenous
computing cluster 5.

The system allows for the thorough exploration of the parameter space for
each tool, and manages toolchain errors gracefully. We investigated the applica-
tion of resampling techniques to generate novel, robust quality scores for NGS
variant calling [OTKA18].

5 Automated workflow to support gene level and
pathway level analysis

The tertiary analysis in the NGS workflow aims the interpretation of the of
the variants, which requires large-scale data and knowledge fusion from mulit-
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ple levels and domains. Integration of cross-domain information has been tar-
geted at different levels: at the level of data, such as in the joint statistical
analysis of cross-domain omic datasets [30], at the level of knowledge, such
as in the pharmaceutical integration approaches using semantic web technolo-
gies [31–33], and even at the level of computational services, such as in the
scientific workflows [34, 35]. However, significant part of scientific knowledge is
uncertain, weakly significant, poorly represented and remains inaccessible for
cross-domain integration, although the importance of the analysis and inter-
pretation of such weak signs have already been recognized in many standalone
high-dimensional omic domains. This is illustrated by data fusion in molecu-
lar similarity [36], kernel-based data and knowledge fusion [37], cross-species
gene prioritization [38], Bayesian fusion [39] and network boosted analysis of
genome-wide polymorphism data [40].

Semantic technologies, relying heavily on the Resource Description Frame-
work (RDF), provide an unprecedented basis for cross-domain data and knowl-
edge fusion, as demonstrated by the emergence of large-scale, unified knowledge
space in life sciences (the Life Sciences Linked Open Data Space, LSLODS,
see e.g. BIO2RDF [41], CHEM2BIO2RDF [42], Open PHACTS [32], inte-
grated WikiPathways [43], biochem4j [44], DisGeNET-RDF [45,46]). However,
there are serious limitations concerning its computational complexity of infer-
ence [47] and practical IT accessibility [48], its inaccessibility for non-technical
users [32,49,50]. Furthermore, most importantly, its ability to cope with uncer-
tain facts, evidences, and inference is still an open challenge (for representing
uncertain scientific knowledge, see e.g. HELO [51]; for combination of uncertain
evidences, see e.g. [39, 52–54] ).

To tackle these challenges, we developed a methodology utilizing the inter-
mediate, quantitative knowledge level of structured similarities and created a
corresponding system to demonstrate its advantages, the Quantitative Semantic
Fusion (QSF) system (Fig. 6) [OTKA19]. This approach is related to multiple
earlier approaches in fusion, such as (1) Linked Open Data (LOD) cubes to sup-
port computationally efficient SPARQL queries [55], (2) knowledge graphs [56],
(3) probabilistic logic, Markov logic for semantic web integration inference and
approximation of inference in large-scale probabilistic graphical models [57], and
(4) relational generalization of kernel-based fusion [37,58].

The main elements of the proposed framework are as follows.

• Structure: Types of entities and their structural dependencies (entities are
represented with discrete values, e.g. genes, drugs, diseases).

• Parameters: Quantitative pairwise relations, e.g. bioactivities of drug-
target interactions, sequence similarity between targets, orthology between
genes in different species, genetic variant-disease associations.

• Inference rules: Canonical methods for the combination of similarities and
relevances, as propagation of evidences.

• Evidences: Quantitative, vectorial representation of relevances of entities
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Gene Disease

Target

Pheno-
type

Sub-
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Assay
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Disease
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Class
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Source SNP

GenePathway
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TargetGene

Target Substance

Assay

Assay Cell Line

II. a) Define inference rules of computation graph
II. b) Add evidences of entitites
II. c) Optionally set filters on entities and links

III. Results
III. a) Quantitative relevance scores for prioritization target entity
III. b) Explanations

FILTER

I. Define entities and derive links from RDF datasources

Figure 6: Quantitative Semantic Fusion (QSF) System (I.) The QSF
System incorporates distinct annotated semantic types (i.e. entities) and their
quantitative pairwise relations (i.e. links) by integrating different data sources
from the Linked Open Data world. Predefined entities and links from Dis-
GeNET [45], Ensembl [59], ChEMBL [60] and WikiPathways [43] are shown in
the top. Together entities and links form the structure and parameters of the
QSF System. (II.) The user can freely construct so-called computation graphs
using the available entities and links and can select any entity as the target
of the prioritization. An example computation graph is shown in the middle.
Then, the user defines the (II.a.) inference rules, sets (II.b.) evidences of pos-
sibly multiple entities and (II.c.) optionally sets filters on specific entities and
links. The main results of the prioritization are (III.a) the quantitative rele-
vance scores for the target entity and (III.b.) the most dominant explanations
of the prioritization results.
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in a certain query, such as summary statistics from earlier omic data anal-
ysis (i.e. data analytic query) and semantical controls and weights for the
inference process.

• Results: Quantitative relevance scores are inferred, ranked lists (prioriti-
zations) are constructed, e.g. for subsequent enrichment analysis.

• Explanations: Dominant chains of reasoning are retrieved and visualized
from the inference process in Cytoscape.

We applied this metholodogy and system in multiple domains [61].
As a more constrained approach, we also investigated the use of network

propagation methods [62]. We introduced a full-fledged network-based workflow
for the analysis of genetic variants, both covering polymorphisms and rare vari-
ants using specific gene aggregation tools. We overviewed critical steps, possible
solutions, and publicly available resources for this workflow; especially effect
of (1) gene definitions and aggregation methods, (2) context-specific molecu-
lar networks, and (3) network propagation methods [OTKA20]. The workflow
also supports the analysis of multiple traits and diseases, especially from mul-
timorbidity networks [OTKA21,OTKA22,OTKA23,OTKA24]. The developed
workflow is shown in Fig. 7.

Figure 7: Key steps of the network-based variant post-processing workflow: the
variant, gene and gene-set based multimorbidity analysis.

6 A novel adaptive sequencing method

The MinION single-molecule DNA sequencer developed by Oxford Nanopore
Technologies (ONT) offers many, diverse novel functionalities compared to main-
stream second-generation sequencing technologies [63–68]. Focusing on the
scientific aspects beyond its low investment, infrastructural and maintainance
requirements, its input/sample preparation is greatly simplified, and can be
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PCR-free. Nanopore sequencing produces ultra-long reads enabling novel appli-
cations, such as detecting complex structural variants, phasing, and supporting
genome assembly [4, 69–73]. Its sequencing technology is based on the mea-
surement of ionic current blockage through the nanopores as single-molecule
fragments traverse them. This inference process, called basecalling, is still faces
challenges from wide-range of technology specific errors [5, 74–76] [OTKA8].
Besides of the official protocols and methods, this flexible and open sequencing
process gave rise to multiple experiments [77, 78], novel computational meth-
ods (see e.g., [79–83]), and led to the development of multitudes of simulation
environments [84–87]. Despite of its limitations with total sequencing capacity
advertised as 4-8 GBs and an accuracy (read identity) only recently surpassing
90% [88], this technology is very promising for many applications/niches, such
as surveying repertoire of bacterial communities [89,90], the microbiome [73,91],
the immune repertoire [92,93] or mitochondrial landscape [94,95]. Furthermore,
the technology is extendable towards mapping DNA methylation [96], RNA [97],
and proteins [98].

A notable, but currently underutilized feature of this technology is its real-
time nature with the read rejection option, i.e. that it enables the termination
of the sequencing of a read while traversing the pore (called read-until, and the
measured part of the sequence will be referred to as the prefix in this paper) [1].
There are a total of 2048 nanopores, and 512 A/D converters manufactured on
each MinION flow cell, with 4 pores multiplexed on to each A/D converter.
Since the and the manufacturing of each pore is not perfect, an initial qual-
ity control step examines each pore, and selects 4 sets of pores, with the first
and each subsequent set selected to maximize the number of usable pores. As
sequencing progresses, the pores can become blocked or otherwise unusable.
At fixed intervals, defined by default at 12 hours, the multiplexers select the
next set of sequencing pores. The A/D converters sample the current values
at 4kHz with 10bit ADC resultion. The useful signal range is approximately 8
bits [83]. The system can theoretically provide nearly real-time measurements,
but current API limitations introduce an approximately 700 msec delay on the
availability of the raw data [1]. This delay corresponds to approximately 300-
400 bases for a processing back-end computer, but in principle the sequencing
data can be processed in real-time and sequencing can be controlled in nearly
real-time (the total delay from the measurement of a base till the rejection of
this read is 1 sec (470 bases). This delay is further increased in practice by the
processing time of sequencing data, which process may include measurement
related calculations, such as basecalling and read alignment, biomedical calcu-
lations, such as variant calling and estimation of the functional effects of variants
in a given sample, and statistical calculations, such as the expected value of a
given read in an adaptive experimental design. Additionally, basecalling and
read alignment also pose further requirements on stopping and read length, but
in practice read length can be varied from 200 bases up to the capacity of ONT
(N50 ¿ 100kb) [72]. Note that the starting position of reads approximately fol-
lows a uniform distribution independent of the genome fragmentation technique
(for deviations, see e.g., [99]).
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Utilizing this feature of the ONT, we developed a novel adaptive sequencing
with rejection method, assuming that reads arrive randomly according to a
distribution over starting position and length, and virtually at any base the
sequencing of the read can be stopped, i.e. the rest of the read is rejected.

A central question in this approach is the question of stopping: should we
stop at sequencing the read (by ejecting it) or continue? This question can
be formalized in multiple theoretical approaches, such as in adaptive study
design, sequential decision, multi-armed bandit problems, online learning, active
learning, budgeted learning, reinforcement learning. Within this framework,
three families of methods can be distinguished based on the supportive methods
applied in real-time.

1. Real-time quality control: using only standard basecallers on the al-
ready read prefix, if quality parameters drop below certain thresholds (e.g.
on low complexity regions, or on sequence specific basecalling errors) then
the read can be rejected.

2. In silico targeted sequencing with prespecified coverage: real-
time alignment of reads allows the rejection of off-target reads or reads in
regions with fulfilled coverage specification.

3. Precision sequencing with uniform errors: real-time variant call-
ing allows focusing sequencing on problematic or highly relevant vari-
ants/regions.

The application areas of real-time, adaptive sequencing are broad and open-
ended, as it offers both general performance improvements and leaves the real-
time back-end calculations over raw current measurements, reads or variants
open. Better performance may mean more sequencing capacity on regions of
interest or less errors, which are critical in many domains, such as in metage-
nomics, targeted sequencing in cancer research, ultra-deep sequencing for sur-
veying repertoires. Complex loss functions based on the real-time post-processing
of the called sequence and discovered variants may arise in personalized medicine,
such as in variant effect prediction, haplotyping, phasing or assembling a critical
genomial region or genome, and the phylogenic analysis of bacterial communities
or tumor cells.

Currently, we are applying this method in targeted sequencing experiments
via in silico target enrichment [OTKA13,OTKA14].
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In Hannu Eskola, Outi Väisänen, Jari Viik, and Jari Hyttinen, ed-

18



OTKA K112915 Intelligent NGS

itors, EMBEC & NBC 2017, pages 9–12, Singapore, 2018. Springer
Singapore.
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[OTKA11] Máte Borkó, Bence Bolgár, and Peter Sarkozy. Basecalling raw
nanopore dna sequencing reads using neural networks. Proceedings of
the 25th Minisymposium of BME MINISY@DMIS2018, 25(1), 2018.

[OTKA12] Erik Jagyugya and Peter Sarkozy. Comparison of nanopore dna
sequencing basecallers on whole human data. Proceedings of the 25th
Minisymposium of BME MINISY@DMIS2018, 25(1), 2018.

[OTKA13] Peter Sarkozy, András Antos, and Péter Antal. Online variant call-
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