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B. Csikós and M. Horváth studied geometric invariants of tubes about curves in a Rie-
mannian manifold. H. Hotelling proved that in the n-dimensional Euclidean or spherical space,
the volume of a tube of small radius about a curve depends only on the length of the curve and
the radius. A. Gray and L. Vanhecke extended Hotelling’s theorem to rank one symmetric spaces
computing the volumes of the tubes explicitly in these spaces. B. Csikós and M. Horváth [1]
generalized these results by showing that every harmonic manifold has the above tube property.
They computed the volume of tubes in the Damek–Ricci spaces. They showed that if a Rieman-
nian manifold has the tube property, then it is a 2-stein D’Atri space. They also proved that
a symmetric space has the tube property if and only if it is harmonic. These results answered
some questions posed by L. Vanhecke, T. J. Willmore, and G. Thorbergsson, and supported the
conjecture that manifolds with the tube property are exactly the harmonic manifolds.

It was known that the total scalar curvature of a tubular surface of small radius about a curve
in a space of constant curvature also depends only on the length of the curve and the radius.
As a continuation of the above research, B. Csikós and M. Horváth [2] proved that in a
harmonic manifold, the surface volume, the total mean curvature, and the total scalar curvature
of a tubular hypersurface of small radius about a curve also depend only on the length of the
curve and the radius. They proved the following much stronger form of the above conjecture:
If in a Riemannian manifold (with some natural small lower bounds on the dimension), one of
the before mentioned geometric invariants of a tube of small radius about a geodesic segment
depends only on the length of the segment and the radius of the tube, then the space is harmonic.
For harmonic spaces, all four geometric invariants of tubes were computed explicitly in terms of
the volume density function.

B. Csikós [3] studied the volume of Boolean expressions of large congruent balls in the
n-dimensional Euclidean space. It was known that if the centers of the balls are fixed, then the
volume is the sum of a Laurent series

∑n
i=−∞ air

i for large r. An explicit way was found to
express the coefficients an, an−1 and an−2 in terms of the system of the centers and the Boolean
expression. The main coefficient an depends only on the Boolean expression and can take only
two different values. For the union of the balls, an−1 is known to be proportional to the mean
width of the system of the centers. Thus, we can think of the the coefficient an−1 for an arbitrary
Boolean expression as a generalization of the mean width. Some known properties of the mean
width were extended to these “Boolean generalizations” of the mean width.

Recently I. Gorbovickis has published a paper on some applications of the “central set”
to Kneser–Poulsen type problems. With suitable modifications of the ideas of Gorbovickis,
B. Csikós and M. Horváth [4] proved that if some disks in the hyperbolic, or Euclidean
plane, or in a hemisphere are rearranged so that the distances between the centers of the disks
do not increase, then the perimeter of the convex hull of the disks does not increase, and the
area of the intersection of the disks does not decrease. These results extend earlier results of
R. Alexander, V.N. Sudakov, V. Capoyleas–J. Pach, I. Gorbovickis, and K. Bezdek–R. Connelly.

B. Csikós wrote a paper [5] “On the volume of Boolean expressions of balls – A review
of the Kneser Poulsen conjecture”, which is essentially a review of known results around the
Kneser-Poulsen conjecture, but it also contains miscellaneous results of the author that have
not been published earlier.



In 2014 B. Csikós, L. Pyber and E. Szabó [6] found a counterexample to a conjecture of
E. Ghys. The conjecture said that for any compact smooth manifold M , there is a constant cM
such that every finite subgroup of the diffeomorphism group of M contains an abelian subgroup
of index at most cM . Learning about the counterexample, E. Ghys modified his conjecture by
replacing the word “abelian” with the word “nilpotent”. It seems that B. Csikós, L. Pyber
and E. Szabó have found a proof of the modified Ghys conjecture. At present the 60 page long
proof is under rigorous verification and it is planned to be submitted when the authors double
check its correctness.

L. Fehér and R. Rimányi [7] calculated the equivariant Chern-Schwartz-MacPherson (csm)
classes of matrix Schubert varieties. These classes are generalizations of both the classical Segre
classes and characteristic classes. They contain information on several enumerative geometric
problems. Previously only one example was calculated. It is hoped that these classes will provide
the “atoms” of the theory, analogously to the Schur polynomials in studying the Grassmanni-
ans. The technical difficulty was that these objects are formal infinite sums, so L. Fehér and
R. Rimányi needed a description using generating functions and the theory of iterated residues.

L. Fehér, R. Rimányi, and A. Weber [8] generalized the csm calculations of matrix
Schubert varieties to motivic Chern classes. They also proved that these classes are related
(equal in some sense) to Mihalkin’s K-theoretic stable envelopes.

L. Fehér and J. Nagy [9] solved Erdős-Heilbronn type problems. It turned out that equiv-
ariant cohomology, especially the Atiyah-Bott-Berline-Vergne integration formula is an efficient
tool to study additive combinatorics. They showed that basic tools of the field, like the com-
binatorial Nullstellensatz, or the coefficient lemma are special cases of it. They reproved the
Erdős-Heilbronn da Silva-Hamidoune theorem, improved results of Sun, and solved a simulta-
neous version of the Erdős-Heilbronn problem (the “grasshopper problem”). Using symplectic
Grassmannians and flag manifolds, they gave signed versions of these theorems. E.g., given a set
of integers (or mod p residue classes) of cardinality n, they give a lower bound of the numbers
which are k term sums of different elements or their negatives.

Beyond the above results, substantial progress was made in the following directions, which
are close to completion.

Jointly with Á. Matszangosz, L. Fehér developed a theory which is analogous to the
theory of conjugacy spaces. In particular they showed that the cohomology ring of an even
dimesional partial flag manifold is isomorphic to the corresponding complex flag manifold (the
isomorphism halves the degree), and the Schubert calculus is also isomorphic, which can be used
to study enumerative algebraic geometry over the field of reals.

A closely related result is giving an algorithm to calculate the cohomology ring of not nec-
essarily even flag manifolds. This result was also obtained by Rabelo and San Martin in an
unpublished work, but their method is essentially different.

In an old project with A. Némethi on showing that holomorphic maps of projective spaces
are maximally singular, the last piece of the puzzle was obtained.

D. Szeghy [10] investigated differentiability of horizons. Let (M, g) be a Lorentz manifold.
A topological hypersurface H ⊂ M is called a horizon if it is (locally) achronal and for every
point p ∈ H, there is a past inextendable, past directed, light-like geodesic γ in H. If γ is
inextendable, then it is called a generator. D. Szeghy proved the following theorem.



For every generator γ : [(α, β)→ H, a unique parameter t0 ∈ [α, β] exists, such that there is
a k ≥ 1 for which
(1) H is exactly of class Ck at every γ (t), for which t > t0;
(2) H is differentiable, but not of class C1 at every γ (t), for which t ∈ (α, t0].

He could sharpen case (1) of this theorem as follows.
If the differentiability jumping point exists on γ, i.e. t0 ∈ (α, β), then k = 1.
Thus the differentiability can change only from C1 to “simple” differentiability. This result

can be applied to lightlike hypersurfaces, where only differentiability is assumed, since these will
be locally horizons. Usually smoothness is assumed for the causal boundary of asymptotically
simple spacetimes which is a lightlike hypersurface. Since the proofs use only C1 differentiability
properties of the causal boundary, we could weaken the original definition and apply the above
result also in this case.

A geometric characterization of differentiability jumping points was also given:
Let γ : [(α, β)→ H be a generator and assume that the differentiability jumping point γ (t0)

of γ exists, i.e. t0 6= α, β. Moreover, let s > t0 and Rγ(s) ⊂ H be an (m− 2)-dimensional space-
like submanifold through γ (s) which is at least of class C1. Then, every point γ (t) , t ∈ [α, t0] is
an image of a non-injectivity point under the mapping exp |NRγ(s), where NRγ(s) is the normal
bundle of Rγ(s).

It is known that at a point p ∈ H, the horizon is differentiable if and only if p is the endpoint
of only one generator. The endpoint property of the generator in this case can be described also
by a geometric property:

Let γ : [0, β) → H be a generator of the globally achronal horizon H and assume that its
differentiability jumping point γ (t0) , t0 ∈ (0, β) exists, and N (γ (0)) = 1, i.e. H is differen-
tiable at γ (0). Moreover, let s ∈ [t0, β) and Rγ(s) ⊂ H be an (m− 2)-dimensional space-like
submanifold through γ (s) which is at least of class C1. Then γ (0) is an image of a cut vector
of Rγ(s), i.e. it is the cut point of γ with respect to Rγ(s).

D. Szeghy also studied smooth isometric actions of a non-compact Lie group on a Lorentzian
manifold. His previous results indicated an analogue of the principal orbit type theorem for
infinitesimal orbit types. Though the boundary between the normalizable and non-normalizable
orbits is still not fully understood to prove the conjectured analogue, the following theorem was
proved in this direction:

Let G ×M → M be a smooth affine action of a Lie-group G on a smooth manifold with
an connection (M,∇). Let k be the co-dimension of the maximal dimensional orbits. Consider
the union N ⊂ M of normalizable orbits, where N 6= ∅. If the boundary of the closure of N is
non-empty, then there is a k-dimesional totally geodesic submanifold through every point of this
boundary.

D. Szeghy also has a joint work in progress with J. Szenthe. A space-time is spherically
symmetric if there is an isometric action Φ: SO (3) ×M → M on it, where the maximal di-
mensional orbits are of dimension 2. It is known from earlier works of J. Szenthe, that under
some fairly general conditions, the union of the maximal dimensional orbits yield a dense set in
M which is a warped product L ×% S2, where L is a leaf transversal to the orbits. Leaves can
be defined as the maximal integral submanifolds of the normal distribution. A totally geodesic



submanifold P is called a transverse submanifold, if any leaf that intersects P is contained in P
and such a leaf is open in P . It is known that through every point of M , there is a transverse
submanifold of M and any two such transverse submanifolds are isometric.

A Birkhoff field onM is a Killing vector field, which is transversal to the maximal dimensional
orbits. The goal is to describe spherically symmetric spacetimes which admit a Birkhoff field.
The following partial result was obtained in this direction:

Assume that M has a non-trivial Birkhoff field X and that there is a point p on a maximal
dimensional orbit and the integral curve γ of X through p such that the induced action of X on
γ has a fixed-point. Then every transverse submanifold is isomorphic to one of the fixed point
models.

Fixed point models are a family of 2-dimensional Lorentz manifolds we can give explicitly,
where the action of X on the models is also given. This result with some previous ones can
describe M and the action of X on it precisely. The case when γ does not have a fixed point is
under examination.

One of the main topics R. Szőke was working on is the question of uniqueness in geometric
quantization, i.e. showing the independence of the quantum Hilbert space on the chosen polar-
ization. For this to make sense one needs to look at this problem only in a reasonable family
of polarizations dictated by the symmetries of the system. The family he was concerned with
consists of the adapted complex structures (acs) associated to the Riemannian metric of the
configuration space.

The notion of acs grew out of the investigations of certain global solutions of the complex ho-
mogeneous Monge-Ampére equation on Stein manifolds [11]. Later L. Lempert and R. Szőke
[12] pointed out that the acs comes as an element in a natural family of Kähler structures,
parametrized by the upper half plane and one can put this family of complex structures to form
a big complex manifold, an analogue of a twistor space. Using this twistor space, L. Lempert
and R. Szőke [13], applied the procedure of geometric quantization, to quantize TM = T ∗M .
This yields for each choice of a Kähler structure in the family, a Hilbert space Hcorr

s , of L2-
holomorphic sections of a certain hermitian holomorphic line bundle. The family Hcorr is an
example, what was called in [13], a field of Hilbert spaces. These objects are more general than
Hilbert bundles, but it is still possible to define smooth and real-analytic structure on such a
field and talk about its curvature. As was shown by L. Lempert and R. Szőke [13], flatness
(or projective flatness) implies that this field is an honest (in fact trivial) Hilbert bundle and
the parallel translation naturally identifies the different fibers, i.e., quantization is unique.

In [13] it was shown that for any compact Lie group, the field Hcorr is flat hence in this case
quantization is unique. In [14] this investigation was extended further to look at the cases when
the configuration space is a compact rank-1 Riemannian symmetric space and it was shown that
in these cases quantization is unique only for the 3-sphere.

In this project, the methods of [14] were extended to study the cases when the configuration
space is a compact Riemannian symmetric space of any rank.

This case is much harder, since the integrals expressing the curvature of the field of quantum
Hilbert spaces, are multiple integrals unlike the rank 1 case. The integral depends on a positive
real parameter τ . We were able to prove a version of multivariable Watson’s lemma with the
help of which we obtained an asymptotic expansion of the curvature integral as τ → 0. The



other main ingredient was to determine the asymptotic of the curvature integral when τ →∞.
This used the methods of spherical representations and Harish-Chandra’s c function.

Comparing the results obtained by these two asymptotic methods R. Szőke [15] could prove
the following theorem: when the configuration space is a compact Riemannian symmetric space,
the field Hcorr is projectively flat iff M is a compact Lie group equipped with a biinvariant
metric, i.e. quantization is unique (among compact Riemannian symmetric spaces) only for
group manifolds.

Another related question we studied is that of the possible smooth structures on the field of
prequantum Hilbert spaces.

R. Szőke [16] proved the following general result: let A+ be the group of orientation
preserving invertible affine transformations of R. Let M be a compact Riemannian manifold
and T ∗M its cotangent bundle equipped with the Liouville volume form. Let H be the Hilbert
space of L2 functions defined on T ∗M . Then there exists a natural continuous (but not smooth)
unitary representation ρ : A+ → U(H) of A+. With the help of this, the following theorem was
proved: if the adapted complex structure of M is defined on the entire tangent bundle, then
on the Hilbert field of prequantum Hilbert spaces, produced by geometric quantization, there
exists two natural but inequivalent smooth Hilbert bundle structure.
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