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Given a finite n-element set X, a family of subsets F ⊂ 2X is said to separate X if any two elements of
X are separated by at least one member of F . It is shown that if |F| > 2n−1, then one can select ⌈log n⌉+1
members of F that separate X. If |F| ≥ α2n for some 0 < α < 1/2, then log n + O(log 1

α log log 1
α )

members of F are always sufficient to separate all pairs of elements of X that are separated by some
member of F . This result is generalized to simultaneous separation in several sets. Analogous questions
on separation by families of bounded Vapnik-Chervonenkis dimension and separation of point sets in R

d

by convex sets are also considered [7].

The disjointness graph G = G(S) of a set of segments S in Rd, d ≥ 2, is a graph whose vertex set
is S and two vertices are connected by an edge if and only if the corresponding segments are disjoint.
We prove that the chromatic number of G satisfies χ(G) ≤ (ω(G))4 + (ω(G))3, where ω(G) denotes the
clique number of G. It follows, that S has Ω(n1/5) pairwise intersecting or pairwise disjoint elements.
Stronger bounds are established for lines in space, instead of segments [15].

We also show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard
tasks. However, we can design efficient algorithms to compute proper colorings of G in which the number
of colors satisfies the above upper bounds. One cannot expect similar results for sets of continuous
arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are
triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.

A combinatorial geometric question is considered in [32]. Let h(n) denote the maximum number of
triangles with angles between 59◦ and 61◦ in any n-element planar set. We also prove h(n) = n3/24 +
O(n log n) as n → ∞. However, there are triangles T and n-point sets P showing that the number of
ε-similar copies of T in P can exceed n3/15 for any ε > 0.

Let G be a fixed graph. Two paths of length n− 1 on n vertices (Hamiltonian paths) are G-different
if there is a subgraph isomorphic to G in their union. In this paper we prove that the maximal number
of pairwise triangle-different Hamiltonian paths is equal to the number of balanced bipartitions of the
ground set, answering a question of Körner, Messuti and Simonyi [23].

Assume that no hyperplane intersects the curve C in R
d more than d+1 times. Then C can be split

into M = M(d) convex curves (where M(d) depends only on d). This is the main result in [4]. It implies
that a certain geometric Ramsey number is a d-fold tower of n, a breakthrough result in Ramsey theory.

We show in [20] that, as a consequence of a new result of Pór on universal Tverberg partitions,
any large-enough set P of points in ℜd has a (d + 2)-sized subset whose Radon point has half-space
depth at least cd · |P |, where cd ∈ (0, 1) depends only on d. We then give an application of this result
to computing weak ε-nets by random sampling. In particular, we show that given any set P of points

in ℜd and a parameter ε > 0, there exists a set of O
(

1

ε⌊
d
2
⌋+1

)

⌊d
2
⌋ + 1-dimensional simplices (ignoring

polylogarithmic factors) spanned by points of P such that they form a transversal for all convex objects
containing at least ε · |P | points of P .

[14] is a thorough survey presenting an overview of the advances around Tverberg’s theorem, focusing
mainly on the last two decades. We discuss the topological, linear-algebraic, and combinatorial aspects
of Tverberg’s theorem and its applications. The survey contains several open problems and conjectures.

The paper [28] gives a no-dimensional version of Carathédory’s theorem: given an n-element set
P ⊂ ℜd, a point a ∈ convP , and an integer r ≤ d, r ≤ n, there is a subset Q ⊂ P of r elements such that
the distance between a and convQ is less than diamP/

√
2r. The similar no-dimension Helly theorem says

that, given k ≤ d and a finite family F of convex bodies, all contained in the Euclidean unit ball of ℜd,
there is a point q ∈ ℜd which is closer than 1/

√
k to every set in F . This result has several colourful and

fractional consequences. Similar versions of Tverberg’s theorem and some of their extensions are also
established.
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A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once.
A graph, together with a 1-planar drawing is called 1-plane. A graph is maximal 1-planar (1-plane), if
we can not add any missing edge so that the resulting graph is still 1-planar (1-plane). Brandenburg et
al. showed that there are maximal 1-planar graphs with only 45

17
n + O(1) ≈ 2.647n edges and maximal

1-plane graphs with only 7
3
n+O(1) ≈ 2.33n edges. On the other hand, they showed that 19] a maximal

1-planar graph has at least 28
13
n−O(1) ≈ 2.15n−O(1) edges, and a maximal 1-plane graph has at least

2.1n−O(1) edges. We improve both lower bounds to 20n
9

≈ 2.22n in [25].

A new direction concerning Tverberg’s theorem is initiated in [21]: Given a set A ⊂ R
d in general

position with |A| = (r − 1)(d + 1) + 1 and k ∈ {0, 1, . . . , r − 1}, there is a partition of A into r sets
A1, . . . , Ar (where |Aj | ≤ d+1 for each j) with the following property. There is a unique z ∈ ⋂r

j=1 affAj

and it can be written as an affine combination of the element in Aj : z =
∑

x∈Aj
α(x)x for every j and

exactly k of the coefficients α(x) are negative. The case k = 0 is Tverberg’s classical theorem.

An integral zonotope in R
d is the Minkowski sum of finitely many segments [0, zi] i ∈ [n] where

zi ∈ R
d is an integer vector. Its endpoint is

∑n
1 zi. Given a pointed convex cone C with nonempty

interior and an integer vector z ∈ C let F(C, z) denote the set of all integral zonotopes whose endpoint is
z. The set F(C, z) is clearly finite; in [19] we give an asymptotic formula for the size of F(C, λz) when z
is fixed and λ → ∞. More importantly we show that, again when z is fixed and λ islarge, the zonotopes
in F(C, λz) have a limit shape, that is, the overwhelming majority of the zonotopes in F(C, λz) are
very close to λ times a fix convex zonoid, whic is called the limit shape. The proofs combine probablity
theory, convex geometry, and the geometry of numbers.

Let U1, . . . , Ud+1 be n-element sets in R
d and let 〈u1, . . . , ud+1〉 denote the convex hull of points ui ∈ Ui

(for all i) which is a simplex. Pach’s selection theorem is about such simplices. It says that there are sets
Z1 ⊂ U1, . . . , Zd+1 ⊂ Ud+1 and a point u ∈ R

d such that each |Zi| ≥ c1(d)n and u ∈ 〈z1, . . . , zd+1〉 for
every choice of z1 ∈ Z1, . . . , zd+1 ∈ Zd+1. In [22] we show that this theorem does not admit a topological
extension with linear size sets Zi. Further we prove a topological extension where each |Zi| is of order
(log n)1/d.

We describe in [6] how a powerful new
”
constraint method” yields many different extensions of the

topological version of Tverberg’s 1966 Theorem in the prime power case. The same method also was
instrumental in the recent spectacular construction of counterexamples for the general case.

The intrinsic volumes of Gaussian polytopes are considered in [11]. A lower variance bound for
these quantities is proved, showing that, under suitable normalization, the variances converge to strictly
positive limits. The implications of this missing piece of the jigsaw in the theory of Gaussian polytopes
are discussed.

Gershgorin’s famous circle theorem states that all eigenvalues of a square matrix lie in disks (called
Gershgorin disks) around the diagonal elements. We show in [13] that if the matrix entries are non-
negative and an eigenvalue has geometric multiplicity at least two, then this eigenvalue lies in a smaller
disk. The proof uses geometric rearrangement inequalities on sums of higher dimensional real vectors
which is another new result.

Let b(M) denote the maximal number of disjoint bases in a matroid M . It is shown that if M is a
matroid of rank d+1, then for any continuous map f from the matroidal complex M into R

d there exist
t ≥

√

b(M)/4 disjoint independent sets σ1, . . . , σt ∈ M such that
⋂t

i=1 f(σi) 6= ∅. This is an extension
of Tverberg’s famous thoerem to matroids, and is the main content of [12].

In the article [8] we define an algebraic vertex of a generalized polyhedron and show that the set
of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the
indicator function of a generalized polytope P is a linear combination of indicator functions of simplices
whose vertices are algebraic vertices of P . We also show that the indicator function of any generalized
polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices
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at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–
Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and
only if the tangent cone of P , at v, has non-zero Fourier–Laplace transform.

Let P be a star-shaped polygon in the plane, with rational vertices, containing the origin. The number
of primitive lattice points in the dilate tP is asymptotically 6

π2Area(tP ) as t → ∞. The results in the

paper [18] show that the error term is both Ω±
(

t
√
log log t

)

and O(t(log t)2/3(log log t)4/3). Both bounds
extend (to the above class of polygons) known results for the isosceles right triangle, which appear in
the literature as bounds for the error term in the summatory function for Euler’s φ(n).

A random spherical polytope Pn in a spherically convex set K ⊂ Sd as considered here is the
spherical convex hull of n independent, uniformly distributed random points in K. The behaviour of
Pn for a spherically convex set K contained in an open halfsphere is quite similar to that of a similarly
generated random convex polytope in a Euclidean space, but the case when K is a halfsphere is different.
This is what we investigate in [9], establishing the asymptotic behaviour, as n tends to infinity, of the
expectation of several characteristics of Pn, such as facet and vertex number, volume and surface area.
For the Hausdorff distance from the halfsphere, we obtain also some almost sure asymptotic estimates.

It is a recent result that given a finitely many points on R
2, it is possible to arrange them on a

polygonal path so that every angle on the polygonal path is at least π/9. In [2] we extend this result to
finite sets contained in the 2-dimensional sphere.

Let ‖.‖ be a norm in R
d whose unit ball is B. Assume that V ⊂ B is a finite set of cardinality n,

with
∑

v∈V v = 0. We show in [1] that for every integer k with 0 ≤ k ≤ n, there exists a subset U of V
consisting of k elements such that ‖∑v∈U v‖ ≤ ⌈d/2⌉. We also prove that this bound is sharp in general.

We improve the estimate to O(
√
d) for the Euclidean and the max norms. An application on vector sums

in the plane is also given.

Given n continuous open curves in the plane, we say that a pair is touching if they have finitely many
interior points in common and at these points the first curve does not get from one side of the second
curve to its other side. Otherwise, if the two curves intersect, they are said to form a crossing pair. Let

t and c denote the number of touching pairs and crossing pairs, respectively. We prove that c ≥ 1
105

t2

n2 ,
provided that t ≥ 10n. Apart from the values of the constants, this result is best possible [26].

Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent edges cross
and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of

Ajtai, Chvátal, Newborn, Szemerédi and Leighton, the number of crossings in G is at least c e3

n2 , for a
suitable constant c > 0. In a seminal paper, Székely generalized this result to multigraphs, establishing

the lower bound c e3

mn2 , where m denotes the maximum multiplicity of an edge in G. In [27] we get rid of
the dependence on m by showing that, as in the original Crossing Lemma, the number of crossings is at

least c′ e
3

n2 for some c′ > 0, provided that the
”
lens” enclosed by every pair of parallel edges in G contains

at least one vertex. This settles a conjecture of Bekos, Kaufmann, and Raftopoulou.
The situation turns out to be quite different if nonparallel edges are allowed to cross any number of

times. It is proved in [31] that in this case the number of crossings in G is at least c′′e2.5/n1.5. The order
of magnitude of this bound cannot be improved.

The crossing number cr(G) of a graph G = (V,E) is the smallest number of edge crossings over all
drawings of G in the plane. For any k ≥ 1, the k-planar crossing number of G, crk(G), is defined as the
minimum of cr(G0) + cr(G1) + . . . + cr(Gk−1) over all graphs G0, G1, . . . , Gk−1 with ∪k−1

i=0 Gi = G. It is
shown in [29] that for every k ≥ 1, we have crk(G) ≤

(

2
k2 − 1

k3

)

cr(G). This bound does not remain true
if we replace the constant 2

k2 − 1
k3 by any number smaller than 1

k2 . Some of the results extend to the
rectilinear variants of the k-planar crossing number.

A convex polygon Q is circumscribed about a convex polygon P if every vertex of P lies on at least
one side of Q. We present an algorithm for finding a maximum area convex polygon circumscribed about
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any given convex polygon in O(n3) time [30]. As an application, we disprove a conjecture of Farris.
Moreover, for the special case of regular n-gons we find an explicit solution. Our results can be used to
bound the integral of a convex function. This is has an important application related to the Gini index
in statistics.

A planar point set of n points is called γ-dense if the ratio of the largest and smallest distances among

the points is at most γ
√
n. In [24] we construct a dense point set of n points in the plane with neΩ(

√
logn)

halving lines. This improves the bound O(n log n) of Edelsbrunner, Valtr and Welzl from 1997.
Our construction can be generalized to higher dimensions, for any d we construct a dense point set of

n points in Rd with nd−1eΩ(
√
logn) halving hyperplanes. Our lower bounds are asymptotically the same

as the best known lower bounds for general point sets.
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[17] I. Bárány, E. Csóka, Gy. Károlyi, G. Tóth: Block partitions: an extended view, Acta Mathematica

Hungarica 155, 36-46, Discrete Geometry Fest, Bisztriczky-Fejes Tóth-Makai birthday volume,, 2018
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