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1 Multivariate incomplete polynomials on starlike domains

The now classical notion of incomplete polynomials was introduced by G. G. Lorentz: for a given
0 < θ < 1, the polynomials of the form

pn(x) =
∑

nθ≤k≤n

akx
k, x, ak ∈ R, n ∈ N

are called θ-incomplete. By a famous result due Saff and Varga [21] and Golitschek [7] a function
f ∈ C[−1, 1] can be uniformly approximated by a sequence of θ-incomplete polynomials if and only
if it vanishes on [−θ, θ].

Our goal was to study multivariate θ-incomplete polynomials given by

P d
n,θ := span{xk11 ...x

kd
d : θn < k1 + ...+ kd ≤ n}, 0 < θ < 1.

As in the univariate case, one is interested in characterizing those 0-symmetric compact starlike
domains Ω ∈ Rd, d > 1, which have the property that any f ∈ Cθ(Ω) := {f ∈ C(Ω) : f ≡ 0 on θΩ}
can be approximated uniformly on Ω by θ-incomplete polynomials. It was was verified by J. Siciak
[22] that θ-incomplete polynomials are dense in Cθ(Ω) whenever Ω is a 0-symmetric convex body.

We introduced in [14] a new class of 0-symmetric starlike domains which includes conic sections
of both convex and certain non-convex hyperbolic domains for which θ-incomplete polynomials are
dense in Cθ(Ω). In particular this family includes convex domains given earlier in [22], but it also
contains essentially non-convex bodies. On the other hand we also showed that if Ω is sufficiently
concave then the density fails. Thus the class of 0-symmetric stars Ω for which θ-incomplete
polynomials are dense in Cθ(Ω) turns out to be essentially wider than the family of convex bodies
(or their conic sections), but this class does not include all 0-symmetric stars.

Furthermore extending the multivariate Bernstein polynomial method from a simplex to a gen-
eral convex body we also obtained quantitative estimates for the approximation by θ-incomplete
polynomials on 0-symmetric convex bodies. In fact we verified that when Ω is a 0-symmetric
convex body, we can approximate all f ∈ Cθ1(Ω), 0 < θ < θ1 by pn ∈ P d

n,θ with the rate

O(ω2(f, n
−1/(d+3))Ω), where ω2 is the second order modulus of smoothness on Ω. When Ω is a

simplex (or a convex body which is an intersection of simplexes), a better rate O(ω2(f, n
−1/2)Ω)

independent of d can be deduced.
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2 Multivariate ”needle” and fast decreasing polynomials

In this section we give an overview of our new results on a certain class of multivariate polynomials
which attain value 1 at a given point and decrease exponentially as we move away from this point.
These so called ”needle” polynomials resemble the behavior of the Dirac delta function and they
are widely used in different areas of analysis, in particular the interpolation theory, or the study of
Christoffel functions. Denote by P d

n the set of polynomials in d variables of degree at most n.
Definition 1. Given a compact set K ⊂ Rd and α ≤ 1 we shall say that K possesses α-needle

polynomials at a point x0 ∈ K if for any 0 < h < 1 and n ∈ N there exist polynomials p ∈ P d
n such

that 0 ≤ p(x) ≤ 1,x ∈ K, p(x0) = 1 and

p(x) ≤ e−cnh
α

, x ∈ K \B(x0, h) (1)

with some constant c > 0 depending only on K and x0.
It is well known that when d = 1 and K is an interval there exist 1

2
-needle polynomials at the

endpoints and 1-needles for inner points of the interval. It can be shown that 1-needle polynomials
always exist at any point x0 ∈ K of a compact set K ⊂ Rd, d ≥ 1.

A complete characterization of those points in the convex body for which 1
2
-needle polynomials

exist is provided by the next theorem which can be found in [10].
Theorem 1. Let K ⊂ Rd, d ≥ 2 be a convex body and x0 ∈ ∂K. Then K possesses 1

2
-needle

polynomials at x0 if and only if x0 is a vertex, i.e. K possesses d linearly independent normals at
x0.

In addition, it is verified in [10] that the existence of α-needle polynomials with 1
2
< α < 1 yields

that the domain can not be of higher than C2α smoothness in any 2-dimensional cross section.
Theorem 2. Assume that the convex domain K ⊂ Rd possesses α-needle polynomials with

1
2
< α < 1 at some x0 ∈ ∂K. Then K can not be Cβ with 2α < β ≤ 2 in any 2-dimensional cross

section of K containing x0.
In the past 25 years there has been an increasing interest in the study of the so called fast de-

creasing polynomials introduced by Ivanov and Totik [8] which exhibit somewhat similar properties
to the needle polynomials.

As shown in [8] given a continuous increasing function ϕ on [0, 1], ϕ(0) = 0 there exist polynomials
of degree n satisfying |pn(x)| ≤ Ce−cnϕ(|x|), |x| ≤ 1, pn(0) = 1, n ∈ N if and only if∫ 1

0

ϕ(x)

x2
dx <∞. (2)

These are the fast decreasing polynomials with respect to inner points.
Similarly, for a continuous increasing function ψ on [0, 1], ψ(0) = 0 there exist polynomials of

degree n satisfying |pn(x)| ≤ Ce−cnψ(x), 0 ≤ x ≤ 1, pn(0) = 1, n ∈ N if and only if∫ 1

0

ψ(x)

x
3
2

dx <∞. (3)

In a recent paper [11] we initiated the study of themultivariate fast decreasing polynomials.
As can be seen above even in the univariate case there is an essential difference between the fast
decreasing polynomials at the inner and boundary points. This phenomenon becomes even more
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intricate in the multivariate case. It is shown in [11] that the rate of decrease of the multivariate fast
decreasing polynomials at the boundary of star like domains is closely related to the smoothness of
the boundary at the corresponding points. Namely, the smoother is the boundary the slower is the
rate of decrease of fast decreasing polynomials at the corresponding points. In particular, it turns
out that conditions (2) and (3) characterize fast decreasing polynomials at C2 and C1 points of the
boundary, respectively. Moreover, a new intermediate condition∫ 1

0

ϕ(x)

x1+
α
2

dx <∞ (4)

was shown to yield the existence of fast decreasing polynomials at Cα, 1 < α < 2 points on the
boundary of the domain.

3 Christoffel functions on convex and starlike domains

The n-th Christoffel function for a measure µ is given by

λn(µ,x) =
1

Kn(µ,x, x)
.

Its reciprocal admits the well known extremal property

Kn(µ,x, x) := Dn(w,K,x) := sup
p∈P d

n

p2(x)∫
K
p2(y)w(y)dy

. (5)

Christoffel functions and reproducing kernels play a fundamental role in the theory of orthogonal
polynomials and their study has been in the center of attention for many decades. In the univariate
case the asymptotics of the Christoffel function has been studied by numerous authors. The study
of the asymptotics of multivariate Christoffel functions poses a rather complex problem which has
been solved only for some model cases: cube, unit ball, simplex.

In [12] we initiated the study the magnitude of the multivariate Christoffel functions for general
starlike and convex domains. Of course getting precise asymptotics for Christoffel functions is
not a visible task in such generality. Nevertheless, we were able to obtain sharp pointwise upper
bounds which reveal the behavior of Christoffel functions near the boundary of the domain, and
their dependence on the geometry of the domain.

Let us formulate one of our main results in this direction.
Theorem 3. Let K ⊂ Rd be a Cα, 0 < α ≤ 2 domain which is starlike about the origin.

Consider the measure dµ = wdx, where w is continuous and positive in IntK. Then there exists a
constant A > 0 depending only on K and d such that

lim sup
n→∞

n−dDn(w,K,x) ≤
A

w(x)(1− φK(x))γ(α,d)
, x ∈ IntK, (6)

where

γ(α, d) :=
1

2
+

(d− 1)(2− α)

2α
.

and φK(x) := inf{α > 0 : x
α
∈ K} is the Minkowski functional of the domain.
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One can easily observe that when α = 1 we have γ(1, d) = d
2
for domains with Lip1 boundary,

which is consistent with the known estimate for the simplex or cube. Moreover, if α = 2 we get
γ(2, d) = 1

2
for C2 domains which is consistent with the well known estimate for the ball. It turns

out that γ(α, d) is in general, the correct exponent in the range 1 < α < 2, as well. In [12] this was
shown to be the case up to a log n factor. Subsequently in a recent paper Prymak [20] even this
extra log n factor was removed.

4 Marcinkiewicz-Zygmund type inequalities and optimal

meshes on multivariate domains

The classical Marcinkiewicz-Zygmund inequality states that for any univariate trigonometric poly-
nomial of degree at most n and 1 ≤ p <∞∫

|Tn|p ∼
1

n

2n∑
s=0

∣∣∣∣Tn( 2πs

2n+ 1

)∣∣∣∣p (7)

where the constants involved depend only on p. This inequality is a basic tool for the discretization
of the Lp norms of trigonometric polynomials. In the past 30 years Marcinkiewicz-Zygmund type
inequalities for trigonometric and algebraic polynomials with various weights were widely used in the
study of the convergence of Fourier series, Lagrange and Hermite interpolation, positive quadrature
formulas, scattered data interpolation. In univariate case a far reaching generalization of (7) for the
so called doubling weights was given by Mastroianni and Totik [18].

Typically a Marcinkiewicz-Zygmund type result on a general compact set K consists in finding
a discrete point sets YN = {y1, ..., yN} ⊂ K of cardinality N ∼ nd, and proper positive numbers
aj > 0, 1 ≤ j ≤ N,

∑
1≤j≤N aj ∼ 1 so that for every g ∈ P d

n we have

∥g∥pLp(w) ∼
∑

1≤j≤N

aj|g(yj)|p, (8)

where ∥g∥Lp(w) stands for the weighted Lp norm with a weight w. We will call discrete point sets
YN = {y1, ..., yN} ⊂ K with the above property MZ meshes.

The requirement that the cardinality of the discrete set YN satisfies N ∼ nd leads to an asymp-
totically smallest possible discrete mesh, because dimP d

n ∼ nd and (8) can not hold with fewer
points than the dimension of P d

n .
Recently, certain Marcinkiewicz-Zygmund type results for doubling weights on the sphere and

ball were given by Feng Dai [6] using the somewhat technical notion of maximal separability. In
a recent paper [5] we established simple explicit MZ meshes which do not require the technical
condition of maximal separability. In addition we extended the above Marcinkiewicz-Zygmund type
results to much more general multivariate domains, which in particular include polytopes, cones,
spherical sectors, tori, etc. Our approach relied on application of various polynomial inequalities
including Bernstein-Markov, Schur and Videnskii type estimates, and also on using symmetry and
rotation to generate results on new domains.

The above notion of MZ meshes is closely related to the notion of admissible meshes or
norming sets introduced in [4]. Admissible meshes YN ⊂ K have the property

max
x∈K

|g(x)| ∼ max
x∈YN

|g(x)|, ∀g ∈ P d
n .
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Evidently, the MZ meshes can be considered as the Lp analogues of the optimal meshes. If in
addition, N ∼ nd then the admissible mesh is called optimal. It has been conjectured some
time ago (see [9]) that every convex body in Rd possesses an optimal mesh. In [9] a special case
was resolved: it was shown that star like C2-domains and convex polytopes in Rd possess optimal
meshes. In an upcoming paper [13] we derived some new multivariate tangential Markov type
inequalities and used them in order to provide a complete positive answer to the above conjecture
for d = 2.

Theorem 4. ([13]) Every convex body in R2 possesses an optimal mesh.

5 Bernstein-Markov type inequalities for asymmetric weights

Let K ⊂ R be any compact set and ∥p∥K := supx∈K |p(x)| the usual supremum norm on K. The
classical Bernstein problem consists in estimating the derivative of the polynomial p′(x) for a given
p ∈ Pn, ∥p∥K = 1 and x ∈ Int K. Typically, this estimate is given in terms of the degree n of the
polynomials and the distance of point x ∈ Int K to the boundary ∂K of the compact K. This
problem goes back to Bernstein and Markov who showed respectively, that

∥
√

(x− a)(b− x)p′n(x)∥[a,b] ≤ n∥pn∥[a,b] (9)

and

∥p′n∥[a,b] ≤
2n2

b− a
∥pn∥[a,b], pn ∈ Pn (10)

with both inequalities being sharp.
Various extensions of the Bernstein and Markov type inequalities for more general domains

and norms have been widely investigated in the past decades. In [18] the case of rather general
weighted uniform norms on the interval was studied. Let A⋆ denote the set of integrable weights
w(x) ≥ 0 (x ∈ [a, b]) satisfying the inequality

∥w∥E ≤ C

|E|

∫
E

w(t) dt (11)

for every interval E ⊂ [a, b] with some constant C ≥ 1. Then as shown in [18] for any w ∈ A⋆ and
pn ∈ Pn

∥
√
(x− a)(b− x)wp′n∥[a,b] ≤ cn∥wpn∥[a,b], ∥wp′n∥[a,b] ≤ cn2∥wpn∥[a,b], (12)

where the constants above depend only on w, a, b. Thus the n-th order Bernstein and n2 order
Markov upper bounds extend for A⋆ weights, as well.

The condition A⋆ imposed on the weights is rather general, in particular it includes all Jacobi
type weights

∏
j |x − xj|γj which allow the weight to vanish as a power of x. In a very recent

paper (12) was extended to a wider class of weights which may vanish exponentially. However, all
of the above classes of weights require that the weight has certain symmetry, that is it vanishes
to the left and to the right of the given point with equal speed. We initiated in [16] the study of
the Bernstein–Markov type inequalities for the so called asymmetric weights which may vanish at
a given point with different rates. A typical asymmetric weight is given by the following function
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which has a power discrepancy at the origin:

wα,β(x) =

{
|x|α, if x ≤ 0,

xβ, if x > 0,
0 ≤ α ≤ β . (13)

This weight does not belong to A⋆ if α < β.
We gave in [16] some new Bernstein type inequalities for such asymmetric Jacobi type weights.

In contrast to the estimates provided previously for the symmetric weights in the asymmetric case
the resulting bounds for the derivatives of n-th degree polynomials are typically of order nγ, γ > 1.
We also provided certain converse estimates showing that the increase of the rate of derivatives in
the asymmetric case is in general unavoidable. In particular, even a logarithmic asymmetry of the
weight may cause the Bernstein factor to be of order greater than O(n). The converse estimates
for the asymmetric weights rely heavily on the needle and fast decreasing polynomials discussed in
Section 2.

6 Polynomial and rational operators

(A) In [23] we considered the modified Lagrange interpolatory operator introduced by Bernstein.
Compared to Lagrange interpolation, these operators interpolate at less points, but they converge
for all continuous functions.

For an f ∈ C[−1, 1] consider the Lagrange interpolatory operator

Ln(f, x) :=
n∑
i=1

f(xi)ℓi(x),

where

xi := xin = cos ti, ti :=
2i− 1

2n
π, i = 1, 2, . . . , n (14)

are the roots of the Chebyshev polynomial Tn(x) := cosnt, x = cos t, and ℓi(x) are the fundamental
polynomials of Lagrange interpolation. It is well-known that Lagrange interpolation cannot be
uniformly convergent for all continuous functions, no matter what are the nodes of interpolation. In
order to achieve better convergence properties, S. N. Bernstein introduced the following modification
of Lagrange interpolation. Let l be a fixed positive integer, n ≥ 2l, and consider the linear operator

Bn,l(f, x) :=
m∑
i=1

2l−1∑
k=1

f(x2(i−1)l+k)
{
ℓ2(i−1)l+k(x) + (−1)k+1ℓ2il(x)

}
+

n−2lm∑
k=1

f(x2lm+k)ℓ2lm+k(x), m :=
[ n
2l

]
,

(15)

where the last sum (call it the “tail part”) contains at most 2l− 1 terms, and when n is a multiple
of 2l it does not appear at all. In fact, this is a slightly modified form of the original operator of
Bernstein (established by L. Szili and P. Vértesi). This operator represents a polynomial of degree
at most n− 1, reproduces constants, and has the interpolatory property

Bn,l(f, x2(i−1)l+k) = f(x2(i−1)l+k), i = 1, 2, . . . ,m; k = 1, 2, . . . , 2l − 1
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and
Bn,l(f, x2lm+k) = f(x2lm+k), k = 1, 2, . . . , n− 2lm .

This means that the interpolation holds at

m(2l − 1) + n− 2lm = n−m ≥ n

(
1− 1

2l

)
points, i.e. by increasing l we increase the number of interpolations.

The main idea in this definition is that the sum or difference of the two fundamental functions
of interpolation in the formula (15), in most subintervals determined by adjacent nodes, is always
smaller than the fundamental functions themselves. This is how Bernstein was able to prove that

lim
n→∞

∥f −Bn,l(f)∥ = 0 (16)

for all f ∈ C[−1, 1].
Our main goal in [23] was to give direct and converse error estimates for the above modified

interpolatory operator in order to quantify Bernstein’s original results .

(B) Let f(x) ∈ C[−1, 1], −1 = x0n < x1n < · · · < xnn = 1 a set of nodes, and consider the
linear operator

Bn(f, x) :=

n∑
k=0

(−1)k

x− xkn
f(xkn)

n∑
k=0

(−1)k

x− xkn

. (17)

This is a rational function of degree at most n, called barycentric interpolation, since it interpolates
the function at n+ 1 points:

Bn(f, xkn) = f(xkn), k = 0, . . . , n .

While Bn is not a positive operator, its degree is just 1 less than the number of interpolation
points. We gave in [19] sharp upper bounds for the rate of approximation of the operator Bn. In
fact we proved that for every continuous functions

∥f(x)−Bn(f, x)∥ ≤ cω

(
f,

1

n

)
log n (18)

with an absolute constant c > 1, where ω(f, ·) is the modulus of continuity of f and ∥ · ∥ is the
supremum norm over the interval [−1, 1]. Here the log-factor, in general, cannot be dropped.

7 Approximation on several intervals

(A) We considered in [17] Lagrange interpolation on a union of finitely many disjoint intervals and
obtained lower and upper estimates for the corresponding Lebesgue constant. In fact, we proved
that the classic Faber theorem which states that for any system of nodes the order of Lebesgue
constants is at least c log n, remains true in this setting as well. This looks like a trivial consequence
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of the original Faber theorem, but in fact we need a deep result of Erdős and Vértesi [3] which says
that not only the Lebesgue constant, but also the Lebesgue function is at least c log n on a ”large”
set. We also constructed systems of nodes which show that the mentioned lower estimate can be
attained. The special case of two intervals of equal lengths is simpler, and an explicit construction
for two non-symmetric intervals was also given.

(B) A polynomial pm ∈ Πm is called the Chebyshev polynomial on Js if ∥pm∥Js = 1 and its
leading coefficient is maximal among all polynomials of degree at most m having norm 1 on Js.
This polynomial is known to be unique. Clearly, Js ⊂ p−1

m ([−1, 1]) where

p−1
m (K) := {x ∈ R : pm(x) ∈ K}

denotes the inverse polynomial image of the setK ⊂ R. The characteristic property of the Chebyshev
polynomial pm is the fact that it attains values 1,−1 with alternating signs at m + 1 distinct
consecutive points in Js.

We say that the Chebyshev polynomial pm is the T-polynomial on Js if |pm(x)| = 1 at m + s
points of Js. (This notion was introduced by F. Peherstorfer.) Whenever pm is the T-polynomial
on Js it follows that Js = p−1

m ([−1, 1]) and for each |y| < 1 the equation pm(x) = y has exactly m
solutions inside Js. In addition, it is also known that pm has m− s extremal points inside Js where
|pm(x)| = 1 and all 2s boundary points of Js are also extremal. Clearly, this yields that s ≤ m.

While Chebyshev polynomials exist for every compact set in R, the existence of T-polynomials
of given degree m depends on the structure of Js and m. For example, in the simplest case s =
m = 2, T-polynomial exists only if the pair of intervals is symmetric. When s = 2,m = 3, the

set J2 = [−1, a] ∪ [b, 1] possesses a T-polynomial if and only if a + b = 1 − (b−a)2
4

. There is also an
alternative way of describing those systems of disjoint intervals which possess T-polynomials. One
can choose an arbitrary polynomial pm ∈ Πm with m distinct real zeros and such that all its local
extremal values are ≥ 1 in absolute value. Then setting Js := p−1

m ([−1, 1]) we shall obtain a system
of s(≤ m) disjoint intervals for which (after rescaling to [−1, 1]), pm will be the corresponding
T-polynomial.

One should also note that even though not all systems of disjoint intervals possess T-polynomials
it was shown by Peherstorfer and Totik that any system of intervals can be approximated up to any
degree of precision by systems of intervals having T-polynomials. We explored in [15] this fact in
order to show that for any system of disjoint intervals there exist convergent interpolatory processes
of order (1 + ϵ)n based on n points. This extends an earlier result by Erdős, Kroó and Szabados
from a single interval to several intervals.

We also provided an estimate for the Lebesgue function of any system of nodes derived by
the inverse polynomial image in the presence of T-polynomials. It led to a nice estimate for the
Lebesgue constant in case when the system of nodes is admissible in the sense that

∥ωn∥[−1,1]

|ωn(±1)|
= O(1), n ∈ N. (19)

The admissibility condition (19) essentially means that at the endpoints ±1 the fundamental poly-
nomial ωn(y) attains values of order ∥ωn∥[−1,1]. We examined the necessity of condition (19) by
showing that the Lebesgue constant goes to infinity as the smallest and largest nodes tend to the
end points of [−1, 1].
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Summarizing, we can see that the inverse polynomial images of systems of nodes may preserve
the order of the Lebesgue functions and Lebesgue constants when the systems of intervals Js possess
T-polynomials. This leads to the following natural question: is the T-property necessary for the
inverse polynomial image to work? We gave an affirmative answer to this question by showing that
without the T condition the order of the Lebesgue constants for the inverse polynomial images of
all systems of nodes is substantially larger than the optimal order log n.

It is plausible that without the T condition the order of the Lebesgue constants for the inverse
polynomial images of all systems of nodes have exponential increase, i.e., the lower estimate can be
essentially improved. We verified that this is indeed the case for two disjoint intervals, that is when
s = 2.

Even though the norm of Lagrange operator of degree n is of order log n, it is well known that the
situation changes dramatically when the strict condition on the number of nodes of interpolation
is loosened. Namely, for any ε > 0 with a proper choice of nodes in [−1, 1] one can construct
polynomials of degree n which interpolate at [n(1 − ε)] points and approximate all f ∈ C[−1, 1]
with the optimal order of best approximation.

Erdős, Kroó and Szabados gave a complete characterization of systems of nodes with the above
properties on the interval [−1, 1]. It turns out that the inverse polynomial image method allows to
construct such interpolating processes on any systems of disjoint intervals, as well.

(C) Assume that Js has a T-polynomial p(x) ∈ Πm, m ≥ s, normalized such that p(0) = 0. For
n ∈ N, let xk1 < · · · < xkmk

be defined by

p(xki) =
k

n
, i = 1, . . . ,mk; k = 0, . . . , n

where

mk =


m+ s−

[
m+s
2

]
, if k = 0,

m, if k = 1, . . . , n− 1,[
m+s
2

]
, if k = n.

The existence of such xki’s follows from the properties of T-polynomials.
For an arbitrary f(x) ∈ C(Js), let

Lk(f, x) =

mk∑
i=1

f(xki)ℓki(x) ∈ Πmk−1, k = 0, 1, . . . , n ,

be the Lagrange interpolation polynomial with respect to the nodes xki. Here ℓki(x) ∈ Πmk−1 are
the fundamental polynomials.

We considered the discrete linear operator

Bn(f, x) :=
n∑
k=0

Lk(f, x)bnk(p(x)), x ∈ Js , (20)

where

bnk(x) =

(
n

k

)
xk(1− x)n−k, k = 0, . . . , n ,
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are the fundamental functions of the Bernstein polynomials. Evidently, Bn(f, x) ∈ Πmn+m−1, and
there are mn + s function values used in the construction of the operator. This means that the
difference between the number of function values and the degree of the operator is m − s + 1,
i.e. independent of n, just like in case of the classic Bernstein polynomials.

Although this is not a positive operator, it still has a bounded norm. We proved a pointwise
convergence estimate for this operator (see [24]).
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