Model systems for sheet-rich amyloid oligomer assembly

Closing report

Abstract

Amyloid diseases are all related to the change of the natural conformation of their particular proteins into a sheet-rich fibrillar form. By now it is apparent that the most toxic amyloid agents are transient oligomeric assemblies which precede the formation of the non-soluble fibrils. A recent study has shown that a small toxic amyloid oligomer forms a water-soluble sheet rich barrel structure, where hydrophobic side chains are clustered in the inner core. The potential toxicity of membrane associated b-sheet rich structures is well-known as small b-sheet peptides are a major class of antimicrobial compounds, though their acting mechanism is unclear. Further on, the sheet-rich b-barrel scaffold is well-known for membrane proteins where the inner part contains mainly polar side chains. From a structure-function point of view it is particularly interesting and relevant how the high toxicity may relate to the barrel molecular scaffold. Understanding this relationship would not only provide mechanistic insight into key stages of neurodegenerative diseases, but would also aid the improved design of novel antimicrobial compounds. b-peptides, which have high enzymatic resistance and claim biomedical potential as novel antibiotics, show high structural similarity to natural peptides. Therefore, to address the structure-function relationship of oligomer toxicity from a more general perspective, bpeptides are ideal model systems.

The main objective of this proposal is to computationally design and investigate oligomeric bpeptide assemblies that are capable of forming the same sheet-derived barrel scaffolds both in water and in lipid bilayers.

Initial steps taken in the project period 2015.02.01-2015.07.31.:

The β -peptide constructs that were planned to be constructed were including mostly β -amino acids, which are particularly suitable for the project as these can have hydrophobic and hydrophilic side chains at the β^2 -, β^3 - or, both at the same time, on $\beta^{2,3}$ -positions (**Fig. 1**). Most of these amino acids are commercially available making synthetic tasks much easier.

Fig. 1 LEFT: The general constitution of β -amino acids. Side chains can be appended at both β^2 and β^3 positions. RIGHT: Our designed triazole amino acid unit, "5Tzl", with potential to prevent helix

formation and to have a diverse side chain chemistry.

However, acyclic β -peptides have a strong tendency to form helical structures in their monomer form. To prevent helix formation, we have recently designed 5Tzl, a cyclic peptidomimetic triazole unit (Fig. 1).¹

To evaluate, which **5Tzl** units would be best suitable for our aims, I have initiated the theoretical investigation of the chiral derivatives of triazole amino acids, starting at the simplest level, with methyl substitutions on the side chain positions. Our initial collaborative efforts have shown that **5Tzl** units are capable to form several conformations which is a requirement to mimic conformational transitions taking place in peptides with hydrophobic regions during formation of amyloid oligomers. In this work period I have performed the detailed structural investigation of 8 chiral trizole amino acid compounds using quantum chemical methods. In parallel, my swedish collaborators have managed to synthesize 6 compounds with high yields.

The 8 possible configuration is given either by mono, or disubstitution on the methylene groups of the backbone of the amino acid monomer that are potential side positions. We did not consider disubstitution on the same methylene group as these compounds would be scientifically challenging.

In the following figures (Figure 2-9.) and tables (Table 1-8.) The calculation results and the located conformers for the dipeptide models of the 8 monomers are presented.

.

(1)

Johansson, J. R. et al. Eur J Org Chem 2014, 2014, 2703.

Figure 2. The 5Tzl o_R monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 1. Structural and energetic properties of **5Tzl** o_R conformers obtained at thet B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

В	Sec. struct.	Method	φ (θ ζ	ρ	Ų	/	Rel. En. (kcal.mol ^{–1})
		B3LYP	-139,2	61,7	-5,2	-78,3	-41,8	3,11
1	H14	M06-2X	-141,7	57,0	-4,5	-74,8	-31,7	1,17
		ωB97X-D	-138,8	57,6	-4,6	-74,2	-31,5	1,20
-		B3LYP	109,0	74,1	-5,8	-75,8	-81,7	0,98
2	C8	M06-2X	71,8	51,9	-8,4	-67,2	-37,4	0,56
		ωB97X-D	77,6	59,8	-7,0	-69,3	-49,0	0,51
		B3LYP	-92,1	94,1	5,4	104,7	33,7	1,25
3	Turn	M06-2X	-72,7	102,0	7,0	82,5	119,5	4,29
		ωB97X-D	-77,6	99,9	6,6	99,7	40,3	2,65
		B3LYP	117,4	-62,2	5,1	103,1	46,8	0,25
4	2-Helix	M06-2X	117,9	-57,9	7,0	84,3	28,5	0,12
		ωB97X-D	117,6	-60,7	6,3	94,2	35,8	0,19
		B3LYP	116,7	167,5	2,0	108,5	29,8	2,52
6	H8	M06-2X	70,1	-154,7	1,0	74,6	-1,1	2,85
		ωB97X-D	69,9	-147,2	0,3	94,0	-30,3	3,33
		B3LYP	-92,1	94,1	5,4	104,7	33,7	1,25
7	Spiral	M06-2X	-69,5	102,2	5,3	102,0	34,2	2,86
	H16	ωB97X-D	-76,4	100,4	6,5	99,5	40,4	2,65
8		B3LYP	-113,1	76,8	3,0	75,0	-116,9	1,47
	H10	M06-2X	-114,2	75,7	5,6	72,4	-122,8	2,19

		ωB97X-D	-112,7	76,1	5,1	72,3	-120,3	2,14
	H10	B3LYP	109,1	74,1	-5,8	-75,7	-81,7	0,98
10	Turn2	M06-2X	80,3	84,9	-1,2	-55,6	-64,8	2,22
	Turn3	ωB97X-D	77,6	59,8	-7,0	-69,4	-49,0	0,51
		B3LYP	-71,4	146,9	5,2	-73,7	2,5	2,99
11	H14	M06-2X	-69,3	151,1	3,2	-68,2	-7,1	2,33
		ωB97X-D	-68,6	148,5	5,3	-70,8	-2,2	2,38
_		B3LYP	-92,1	94,1	5,5	104,7	33,8	1,25
13		M06-2X	-131,0	39,5	-10,0	57,5	27,6	3,44
		ωB97X-D	-132,1	40,7	-10,4	60,8	25,5	4,18
14		B3LYP	-71,4	146,8	5,2	-73,7	2,5	2,99
14		M06-2X	-69,3	151,1	3,1	-69,2	-4,3	2,33
		ωB97X-D	-68,6	148,5	5,3	-70,9	-2,2	2,38
		B3LYP	88,9	83,9	2,0	109,7	33,4	2,29
20		M06-2X	78,1	75,2	4,1	74,7	33,5	4,66
		ωB97X-D	78,9	75,3	2,6	106,6	36,3	4,20
		B3LYP	111,9	164,3	-4,7	-70,9	-78,8	3,57
21		M06-2X	88,5	164,8	-6,6	-69,8	-62,3	5,39
		ωB97X-D	95,2	161,3	-6,1	-68,1	-64,3	4,93
		B3LYP	-71,3	146,9	5,2	-73,7	2,5	2,99
		M06-2X	-69,3	151,2	3,1	-69,2	-4,4	2,33
		ωB97X-D	-68,6	148,5	5,3	-70,9	-2,2	2,38
		B3LYP	116,6	167,7	2,0	108,6	29,8	2,52
		M06-2X	69,8	-154,7	0,9	74,9	-1,6	2,86
		ωB97X-D	69,9	-147,2	0,3	93,9	-30,2	3,33
Non-								
identifie	d	B3LYP	-107,1	-/3,5	6,1	86,8	65,4	0,00
		M06-2X	-67,5	-56,4	9,5	74,9	31,1	0,00
		ωB97X-D	-72,6	-63,5	6,7	/8,1	42,9	0,00
		B3LYP	-113,9	-170,9	0,9	110,1	34,2	2,16
		M06-2X	-87,9	-175,7	6,0	87,6	31,1	4,98
		ωB97X-D	-95,6	-175,2	4,5	95,7	38,7	4,54
		B3I VP	161.0	155 /	0.2	61.2	-150 5	7 5 /
		M06-2X	174 6	153.4	_1 २	51.6	-147 9	2,54 2,25
		ω R 97X-D	175.9	151.2	-1 0	56.8	-149.2	0,85 0,85
			1, 3, 3		±,0	55,5		5,55

Figure 3. The **5Tzl** o_R monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 2. Structural and energetic properties of **5Tzl** R_o conformers obtained at thet B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

Conf.	Sec. struct.	Method	φ 6) ζ	ρ	Ψ		Rel. En. (kcal.mol ^{–1})	
		B3LYP	-101,2	51,8	-10,8	-95,8	-46,4		4,83
1	H14	M06-2X	-108,3	51,4	-11,5	-81,8	-29,0		4,75
		ωB97X-D	-104,5	52,0	-11,7	-87,6	-29,4		5,10
		B3LYP	122,7	64,4	-8,5	-83,4	-72,1		0,00
2	C8	M06-2X	70,9	49,3	-10,9	-73,7	-26,7		0,00
		ωB97X-D	73,7	51,5	-9,0	-75,0	-32,6		0,00
		B3LYP	-92,2	64,1	-7,8	-99,0	-132,7		5,58
3	Turn	M06-2X	-90,7	66,8	-7,9	-79,5	-174,5		5,48
		ωB97X-D	-92,2	64,5	-7,7	-82,6	-173,1		5,82
		B3LYP	-75,0	87,1	5,5	90,0	155,4		5,92
4	2-Helix	M06-2X	-67,5	94,4	4,9	76,3	-172,0		7,78
		ωB97X-D	-72,7	90,3	5,3	79,6	-176,7		7,47
		B3LYP	154,6	-56,5	8,2	94,8	126,9		0,15
6	H8	M06-2X	154,6	-57,6	5,7	97,3	129,8		1,85
		ωB97X-D	150,8	-56,3	6,9	95,3	132,2		1,58
		B3LYP	115,6	23,5	-3,2	73,4	78,4		1,34
7	Spiral	M06-2X	75 <i>,</i> 8	32,3	-2,8	64,4	56,4		2,87
	H16	ωB97X-D	86,0	31,5	-3,5	66,8	60,8		2,08
8		B3LYP	-69,1	92,7	3,8	91,9	33,5		4,40
	H10	M06-2X	-62,4	97,3	4,7	80,4	27,8		5,36

5

		ωB97X-D	-65,4	95,4	4,0	83,6	26,1	5,23
	H10	B3LYP	122,8	64,4	-8,5	-83,4	-72,2	0,00
10	Turn2	M06-2X	71,0	49,3	-11,0	-73,6	-26,7	0,00
	Turn3	ωB97X-D	73,8	51,5	-9,0	-75,0	-32,6	0,00
		B3LYP	-59,6	134,3	0,7	-86,5	8,8	5,85
11	H14	M06-2X	-61,5	144,8	-4,0	-70,0	-14,4	5,75
		ωB97X-D	-59,8	139,5	-1,2	-79,6	1,6	5,70
		B3LYP	151,6	66,0	3,0	100,4	33,7	2,98
13		M06-2X	158,2	64,3	5,8	88,2	26,3	5,00
		ωB97X-D	156,5	65,2	5,3	90,4	27,8	4,78
		B3LYP	-61,1	99,2	4,3	-135,7	58,6	6,84
14		M06-2X	-58,6	100,1	3,5	-139,5	58,5	8,14
		ωB97X-D	-59,6	100,7	4,1	-136,5	54,9	8,09
		B3LYP	84,4	55,7	0,3	94,2	42,3	2,15
20		M06-2X	77,0	60,3	3,2	87,5	30,8	4,48
		ωB97X-D						
		B3LYP	92,6	-157,4	-1,0	-100,7	-40,4	1,43
21		M06-2X	79,7	-165,1	-3,0	-92,7	-33,5	4,20
		ωB97X-D						
		B3LYP	-65,0	-64,0	-2,4	-87,8	-40,9	3,67
		M06-2X	-71,4	-160,0	-6,0	-89,0	-28,3	6,16
		ωB97X-D	-73,7	-155,9	-6,1	-89,0	-30,2	6,08
		B3LYP	69,3	-144,0	0,3	85,9	-17,2	0,48
		M06-2X	67,3	-151,5	2,9	75,7	-7,9	1,58
		ωB97X-D	66,0	-147,8	0,0	77,2	-7,2	1,22
		B3LYP	151,6	65,9	3,0	100,5	33,7	2,98
		M06-2X	158,6	64,3	5,7	88,2	26,2	5,00
Non- identified	1	ωB97X-D	155,7	65,3	5,5	90,5	28,4	4,76
1401100								
		B3LYP	-68,7	-78,3	4,4	81,2	66,0	1,98
		M06-2X	-61,5	-55,0	8,6	77,8	28,9	0,33
		ωB97X-D	-60,9	-58,0	6,8	78,7	34,1	0,74
		B3LYP	-68.7	-78.3	4.4	81.2	66.0	1.98
		M06-2X	-61,5	-54,9	8,5	77,8	28,8	0.33
		ωB97X-D	-60,9	-58,0	6,8	78,7	34,1	0,74
			·					
		B3LYP	69,3	-144,0	0,4	85,9	-17,3	0,48
		M06-2X	158,3	160,7	1,5	59,4	176,2	8,56
		ωB97X-D	66,2	-147,9	0,3	77,4	-4,7	1,46

Figure 4. The 5Tzl o_S monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 3. Structural and energetic properties of **5Tzl** o_S conformers obtained at thet B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

Conf.	Sec. struct.	Method	φ	θζ	, ρ	Ŷ	y .	Rel. En. (kcal.mol ^{–1})	
		B3LYP	-117,5	62,1	-5,2	-102,8	-46,2		0,26
1	H14	M06-2X	-117,9	57,9	-7,2	-84,4	-30,3		0,11
		ωB97X-D	-117,6	60,7	-6,3	-94,2	-35,8		0,19
_		B3LYP	107,1	73,5	-6,1	-86,8	-65,4		0,00
2	C8	M06-2X	67,6	56,4	-9,5	-74,9	-31,1		0,00
		ωB97X-D	72,6	63,5	-6,7	-78,1	-42,9		0,00
		B3LYP	-87,9	138,6	-2,4	62,5	86,6		4,92
3	Turn	M06-2X	-78,0	139,3	-6,3	61,8	159,9		6,63
		ωB97X-D	-84,4	136,6	-5,8	63,0	157,9		6,46
_		B3LYP	-109,1	-74,1	5,8	75,7	81,7		0,98
4	2-Helix	M06-2X	-71,8	-51,9	8,4	67,2	37,4		0,56
		ωB97X-D	-77,6	-59,8	7,0	69,3	49,0		0,51
_		B3LYP	100,6	61,7	-12,0	49,3	80,3		3,05
6	H8	M06-2X	79,4	63,5	-9,7	44,7	65,3		3,29
		ωB97X-D	84,8	60,7	-10,3	47,4	66,2		3,19
		B3LYP	-87,9	138,6	-2,4	62,5	86,6		4,92
7	Spiral	M06-2X	-76,2	144,9	-7,4	56,5	37,5		5,49
	H16	ωB97X-D	-80,2	143,9	-6,5	58,4	37,6		5,33
8		B3LYP	-118,0	91,2	0,2	56,2	-110,0		4,65
	H10	M06-2X	-122,0	89,5	1,2	51,8	-127,5		4,71

		ωB97X-D	-119,6	90,9	1,5	53,5	-118,1	4,10
	H10	B3LYP	-76,0	111,2	4,4	-130,7	67,8	2,44
10	Turn2	M06-2X	-70,1	154,7	-1,0	-74,6	1,1	2,85
	Turn3	ωB97X-D	-68,9	147,6	0,1	-92,7	28,3	3,35
		B3LYP	-139,7	53,8	-16,2	51,4	40,8	5,93
11	H14	M06-2X	-136,8	48,6	-13,3	47,7	38,6	3,34
		ωB97X-D	-136,2	49,3	-15,1	51,0	37,3	3,81
		B3LYP	-76,0	111,2	4,4	-130,7	67,8	2,44
13		M06-2X	-66,3	108,1	6,3	-139,8	63,0	3,37
		ωB97X-D	-70,0	110,3	4,9	-135,0	62,3	3,46
		B3LYP	86,4	97,8	4,6	66,1	68,7	3,74
14		M06-2X	75,3	93,5	6,2	65,9	54,5	4,74
		ωB97X-D	79,2	92,4	6,2	66,1	61,4	4,39
		B3LYP	114,0	170,9	-0,9	-110,1	-34,2	2,16
20		M06-2X						
		ωB97X-D	95,6	175,2	-4,5	-95,7	-38,7	4,54
		B3LYP	-116,7	-167,6	-2,0	-108,5	-29,8	2,52
21		M06-2X	-70,1	154,7	-1,0	-74,6	1,1	2,85
		ωB97X-D						
		B3LYP	71,4	-146,9	-5,2	73,7	-2,5	2,99
		M06-2X	69,3	-151,1	-3,2	68,2	7,1	2,33
		ωB97X-D	68,6	-148,5	-5,2	70,8	2,2	2,38
		B3I VD	-109.0	-74 1	58	75.8	81 7	0 08
		M06-2X	-71.8	-51 9	8.4	67.2	37.4	0.56
Non-		0B97X-D	-77.7	-59.7	0,4 7 0	69.3	49 0	0,50
identified	ł		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00,1	7,0	00,0	10,0	0,01
		B3LYP	-111,9	-164,3	4,6	70,9	78,7	3,57
		M06-2X	-88,5	-164,8	6,6	69,8	62,3	5,39
		ωB97X-D	-95,0	-160,8	6,3	68,3	68,0	4,88
			71 /	-146.0	_5 2	73 7	.25	2 00
		M06-2X	60.2	-151 1	-3,2	68 3	- <u>-</u> 2,3 7 0	∠,99 2 33
			69,2 68 6	-148 5	-5,2 _5 2	70 P	ט, <i>ז</i> סיס	2,00 2,22
		WD3/X-D	00,0	-140,0	-5,2	10,0	2,2	2,50

Figure 5. The 5Tzl S_o monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 4. Structural and energetic properties of **5Tzl** S_o conformers obtained at thet B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

Conf.	Sec. struct.	Method	$\varphi \qquad heta$	ζ	ρ	ψ		Rel. En. (kcal.mol ⁻¹)	
		B3LYP	-122,4	60,0	-5,8	-99,5	-38,6		0,00
1	H14	M06-2X ωB97X-D	-119,4	55,6	-7,6	-84,7	-27,3		0,00
		B3LYP	68,7	78,3	-4,4	-81,2	-66,0		2,50
2	C8	M06-2X	61,5	54,9	-8,6	-77,8	-28,8		0,52
		ωB97X-D	60,9	58,0	-6,8	-78,7	-34,1		0,74
		B3LYP	-108,7	70,5	-2,9	-104,4	-130,6		1,45
3	Turn	M06-2X	-112,8	59,6	-4,0	-84,5	177,3		1,09
		ωB97X-D	-114,9	60,3	-4,0	-84,5	178,5		1,29
		B3LYP	-85,6	99,4	3,7	77,2	142,1		0,70
4	2-Helix	M06-2X	-73,1	107,7	2,6	71,1	153,4		3,00
		ωB97X-D	-80,5	102,0	3,4	74,2	149,2		2,46
		B3LYP	-122,6	-64,4	8,5	83,4	72,0		0,52
6	H8	M06-2X	-154,3	-58,5	13,1	87,9	71,6		2,66
		ωB97X-D	-73,8	-51,5	9,0	75,0	32,6		0,00
		B3LYP	67,8	47,5	-6,1	65,1	73,9		3,99
7	Spiral	M06-2X	58,4	46,4	-3,4	56,9	55,3		3,95
	H16	ωB97X-D	60,9	45,9	-4,0	60,6	60,6		3,75
8		B3LYP	-84,3	101,5	5,8	93,1	36,7		0,92

	H10	M06-2X						
		ωB97X-D	-72,5	107,8	4,1	79,1	26,6	2,53
	H10	B3LYP	-110,7	80,6	3,1	69,5	-125,3	0,87
10	Turn2	M06-2X	-111,8	76,5	6,9	66,9	-134,1	2,50
	Turn3	ωB97X-D	-113,0	78,2	5,6	67,7	-125,3	1,90
		B3LYP	68,7	78,4	-4,4	-81,1	-66,1	2,50
11	H14	M06-2X	61,4	55,0	-8,6	-77,8	-28,8	0,52
		ωB97X-D	60,9	58,0	-6,8	-78,7	-34,1	0,74
10		B3LYP	-69,3	144,0	-0,3	-85,8	17,2	1,00
13		M06-2X	-66,9	151,4	-2,7	-75,5	7,5	1,77
		ωB97X-D	-66,6	147,9	-0,3	-77,0	7,1	1,45
14		B3LYP	-143,2	73,3	4,6	108,7	25,7	1,43
14		M06-2X	-136,2	40,8	-10,6	57,0	27,0	2,38
		ωB97X-D	-136,0	40,7	-11,1	60,6	24,7	2,53
		B3LYP						
20		M06-2X	-64,9	109,8	3,6	-135,6	54,7	4,71
		ωB97X-D	-67,2	147,9	-0,7	-78,0	5,5	1,44
		B3LYP	65,0	64,0	2,4	87,9	40,9	4,19
21		M06-2X	58,4	46,5	-3,4	56,9	55,4	3,95
		ωB97X-D	69,4	129,4	3,9	72,9	35,7	5,96
		B3LYP	-69,2	144,0	-0,3	-85,8	17,3	1,00
		M06-2X	-66,9	151,3	-2,7	-75,5	7,5	1,77
		ωB97X-D	-66,6	147,9	-0,3	-77,0	7,1	1,45
		B3LYP	65.0	63,9	2,4	87,7	41,3	4,19
		M06-2X	,	,	,	,		
Non- identifie	d	ωB97X-D	73,7	155,9	6,1	89,0	30,2	6,08
		B3LYP	-84,3	101,5	5,8	93,1	36,7	0,92
		M06-2X	-160,3	66,3	7,8	89,0	16,6	4,14
		ωB97X-D	-154,7	65,9	5,4	82,9	12,2	3,45
		B3LYP	-122.7	-64 4	85	83.4	72.1	0.52
		M06-2X	-70.9	-49.3	10.9	73.7	26.8	0.19
		ωB97X-D	-73.8	-51.5	9.0	75.0	32.6	0.00
)0	- ,,,	- , '		- ,•	•,••

Figure 6. The 5Tzl R_R monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 5. Structural and energetic properties of **5Tzl** R_R conformers obtained at thet B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

Conf.	Sec. struct.	Method	φ 6) ζ	ρ	ψ		Rel. En. (kcal.mol ⁻¹)	
		B3LYP	143,8	56,6	-14,5	-74,6	-83,5		3,57
1	H14	M06-2X ωB97X-D	-139,6	47,4	-8,9	-70,9	-28,5		7,70
		B3LYP	143,8	56,6	-14,5	-74,6	-83,5		3,57
2	C8	M06-2X	78,8	40,9	-7,8	-66,1	-34,3		2,10
		ωB97X-D	81,6	42,1	-7,0	-66,1	-37,1		2,13
3		B3LYP	143,9	56,6	-14,5	-74,6	-83,5		3,57
C	Turn	ωB97X-D	143,7	54,3	-14,8	-72,4	-69,6		3,89
		B3LYP	-100,4	64,3	-1,1	85,7	-130,7		7,77
4	2-Helix	M06-2X	-70,8	92,9	5,4	74,8	-162,7		9,40
		ωB97X-D	-101,9	63,8	1,0	81,5	-134,9		7,71
		B3LYP	124,3	-62,3	3,8	104,0	43,1		0,00
6	H8	M06-2X	122,1	-58,0	6,4	86,6	29,5		0,00
		ωB97X-D	124,0	-60,3	6,2	92,9	31,1		0,00
		B3LYP	112,7	25,5	-3,1	73,3	65,6		3,46
7	Spiral	M06-2X	76,4	32,5	-2,7	63,8	53,6		3,84
	H16	B97X-D	86,4	32,7	-3,6	65,9	55,3		3,27
8		B3LYP	-68,1	92,2	3,3	99,9	35,6		5,25
	H10	M06-2X	-60,5	96,9	5,0	88,6	29,3		5,82

		ωB97X-D	-63,8	94,6	4,8	91,6	33,3	5,77
	H10	B3LYP	-100,4	64,3	-1,1	85,6	-130,7	7,77
10	Turn2	M06-2X	-105,0	63,4	1,7	80,6	-140,5	7,86
	Turn3	ωB97X-D	-102,7	63,9	1,0	81,5	-134,8	7,67
		B3LYP	143,8	56,7	-14,5	-74,6	-83,5	3,57
11	H14	M06-2X	150,4	82,0	9,2	-51,6	152,0	7,49
		ωB97X-D	89,6	68,9	0,1	-51,9	-68,3	4,70
		B3LYP	-61,6	138,5	6,4	-66,3	-21,9	10,05
13		M06-2X	-62,7	147,7	-0,1	-62,2	-24,2	7,71
		ωB97X-D	-61,3	142,8	4,6	-64,5	-23,5	8,21
		B3LYP	150,7	65,0	0,1	107,4	33,1	3,57
14		M06-2X	157,9	62,9	5,0	91,0	27,2	5,16
		ωB97X-D	157,4	63,2	3,2	96,2	32,8	5,00
• •		B3LYP	-66,8	99,2	1,7	-115,9	48,0	15,94
20		M06-2X	-61,9	101,1	2,5	-121,1	42,3	16,65
		ωB97X-D	-63,0	100,6	2,2	-119,7	46,3	16,40
		B3LYP	86,0	58,5	-0,9	104,1	39,3	2,76
21		M06-2X	76,6	60,7	2,1	90,5	33,1	4,54
		ωB97X-D	75,8	56,7	1,7	95,3	41,7	3,89
		B3LYP	91,5	-158,3	-3,3	-85,4	-60,9	4,36
		M06-2X	79,3	-168,8	-3,6	-82,9	-42,0	5,52
		ωB97X - D	85,2	-164,6	-4,3	-83,1	-45,7	5,19
		B3LYP	-67.4	-100.7	-2.3	-65.3	-69.8	5.99
		M06-2X	-72,7	-166,1	-6,8	-76,7	-32,6	7,50
		ωB97X-D	-65,8	-104,0	0,3	-60,0	-41,1	6,49
Non-								
identifie	d	B3LYP	88,8	-158,5	3,5	108,6	27,7	2,65
		M06-2X	67,7	-152,5	2,9	78,5	-8,5	2,30
		ωB97X-D	68,7	-148,2	2,2	92,4	-28,4	2,55
		B3LYP	150,7	65,0	0,1	107,4	33,1	3,57
		M06-2X	157,9	62,8	5,0	91,5	28,7	5,16
		ωB97X-D	157,4	63,0	3,1	96,6	33,0	5,11
		D21 VD	(0.2	72 (4.0	Q <i>C</i> A	5(0	2.04
		BOLIP MOG OV	-08,3	-/3,0	4,9	80,4	30,U	2,94
		WI00-2A	-60,3	-5/,4	8,U	//,0	30,1 24.0	0,63
		ωβγ/Χ-D	-00,3	-00,2	3,8	80,3	54,9	1,19

Figure 7. The 5Tzl R_S monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 6. Structural and energetic properties of **5Tzl** R_S conformers obtained at thet B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

Conf.	sec. struct.	Method	φθ	θ ζ	. ρ	y y	y .	kei. En. (kcal.mol ⁻¹)
		B3LYP	-103,1	55,2	-8,8	-101,0	-48,0	4,67
1	H14	M06-2X	-109,7	53,1	-11,0	-82,7	-28,8	4,65
		ωB97X-D	-105,7	55,8	-10,6	-93,4	-37,6	4,88
		B3LYP	124,8	63,3	-8,8	-86,8	-62,9	0,00
2	C8	M06-2X	71,2	50,4	-10,7	-74,0	-26,6	0,00
		ωB97X-D	73,6	54,0	-8,3	-76,5	-34,3	0,00
_		B3LYP	-102,5	77,8	-5,2	61,0	-128,0	12,05
3	Turn	M06-2X	-126,9	78,9	7,5	67,9	-157,7	13,02
		ωB97X-D	-107,1	74,5	-4,4	61,5	-129,8	11,29
		B3LYP	159,4	-62,7	9,6	85,6	128,5	2,18
4	2-Helix	M06-2X	154,6	-63,1	5,4	88,7	138,1	3,31
		ωB97X-D	155,1	-61,1	6,5	86,9	139,2	2,61
		B3LYP	114,3	45,3	-14,1	58,0	81,2	3,40
6	H8	M06-2X	86,3	45,9	-10,9	54,3	67,1	4,57
		ωB97X-D	99,8	45,3	-12,6	56,2	68,6	3,64
		B3LYP	-102,5	77,8	-5,2	60,9	-128,0	12,05
7	Spiral	M06-2X	-109,1	73,6	-3,7	60,1	-133,9	11,89
	H16	ωB97X-D	-107,1	74,5	-4,4	61,5	-129,8	11,29
_		B3LYP	-63,4	99,0	5,3	-136,4	65,6	5,85
8	H10	M06-2X	-60,0	101,4	5,8	-139,8	60,8	6,86
		ωB97X-D	-60,1	100,1	5,8	-139,0	63,1	6,66

	H10	B3LYP	90,3	-154,1	1,8	-112,0	-37,3	0,80
10	Turn2	M06-2X	79,1	-165,1	-2,4	-94,4	-34,7	3,68
	Turn3	ωB97X-D	82,7	-161,7	-1,8	-98,6	-41,4	2,98
		B3LYP	-64,7	-65,6	-0,3	-104,4	-36,7	3,35
11	H14	M06-2X	-70,5	-159,6	-6,7	-89,3	-27,6	5,98
		ωB97X-D	-73,1	-154,6	-4,9	-93,7	-33,0	5,82
		B3LYP	73,8	-141,4	0,5	62,0	58,8	2,96
13		M06-2X	64,1	-145,5	-0,5	71,7	-0,4	2,31
		ωB97X-D	63,4	-143,3	-2,5	73,6	-4,0	1,85
		B3LYP	98,2	74,1	5,0	77,2	46,2	5,40
14		M06-2X	150,3	74,8	6,0	71,8	32,6	6,30
		ωB97X-D	146,6	76,3	4,9	72,9	32,4	5,81
		B3LYP	-69,6	-90,2	0,9	65,3	86,7	3,31
20		M06-2X	-63,6	-52,5	6,8	71,7	36,5	1,13
		ωB97X-D	-62,9	-56,3	6,4	71,6	41,0	1,58
		B3LYP	-69,6	-90,2	0,9	65,4	86,7	3,31
21		M06-2X	-66,6	-88,8	1,8	54,8	65,8	3,78
		ωB97X-D	-62,9	-56,3	6,3	71,6	41,0	1,58
Non-		B3LYP	73,8	-141,4	0,5	62,0	58,7	2,96
identified	1	M06-2X	64,5	-145,6	-0,4	71,7	-0,5	2,31
		ωB97X-D	64,3	-143,4	-2,1	73,7	-3,4	1,89

Figure 8. The 5Tzl S_R monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 7. Structural and energetic properties of **5Tzl** S_R conformers obtained at thet B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

Conf.	Sec. struct.	Method	φ	θ ζ	ρ	ψ	r	Rel. En. (kcal.mol ^{–1})	
		B3LYP	-144,6	61,0	-4,8	-79,6	-40,0		2,00
1	H14	M06-2X	-147,6	56,2	-4,6	-75,9	-30,7		0,24
		ωB97X-D	-145,0	57,1	-4,7	-75,9	-29,3		0,41
		B3LYP	69,6	90,2	-0,9	-65,3	-86,7		3,31
2	C8	M06-2X	63,6	52,5	-6,8	-71,7	-36,5		1,13
		ωB97X-D	62,9	56,3	-6,3	-71,6	-41,0		1,58
		B3LYP	-159,4	62,7	-9,6	-85,6	-128,5		2,18
3	Turn	M06-2X	-154,6	63,1	-5,4	-88,7	-138,1		3,31
		ωB97X-D							
		B3LYP	-80,9	103,4	4,1	102,2	37,1		0,06
4	2-Helix	M06-2X	-70,1	105,5	5,9	79,1	125,5		3,19
		ωB97X-D	-77,6	102,5	4,4	81,2	125,2		3,23
_		B3LYP	-124,8	-63,2	8,8	86,8	62,9		0,00
6	H8	M06-2X	-155,5	-59,2	11,8	91,2	71,6		2,12
		ωB97X-D	-73,7	-54,1	8,3	76,6	34,4		0,00
		B3LYP	64,7	65,6	0,3	104,4	36,7		3,35
7	Spiral	M06-2X	58,3	48,0	-4,5	56,0	52,1		4,02
	H16	ωB97X-D	60,5	48,4	-5,3	59,1	53,0		4,21
_		B3LYP	-80,9	103,3	4,1	102,2	37,1		0,06
8	H10	M06-2X	-67,6	103,0	5,2	99,4	34,6		2,48
		ωB97X-D	-74,4	101,9	6,4	98,6	38,6		2,07

	H10	B3LYP	-116,5	75,3	3,3	74,4	-118,6	0,40
10	Turn2	M06-2X	-118,3	73,1	6,1	72,2	-124,4	1,78
	Turn3	ωB97X-D						
		B3LYP	69,6	90,2	-0,9	-65,4	-86,7	3,31
11	H14	M06-2X	66,6	88,8	-1,8	-54,8	-65,7	3,78
		ωB97X-D	62,9	56,3	-6,3	-71,6	-41,0	1,58
		B3LYP	-67,0	141,0	3,7	-75,9	5,0	2,04
13		M06-2X	-64,1	145,5	0,5	-71,7	0,3	2,31
		ωB97X-D	-62,5	143,0	2,8	-73,6	3,7	1,87
		B3LYP	-141,0	73,2	2,5	114,6	27,4	0,39
14		M06-2X	-137,6	41,7	-11,1	56,3	28,6	2,82
		ωB97X-D	-138,0	42,4	-11,2	58,9	27,3	3,55
		B3LYP	-67,0	141,1	3,7	-75,9	5,0	2,04
20		M06-2X	-64,4	145,6	0,5	-71,8	0,5	2,31
		ωB97X-D	-63,4	143,3	2,5	-73,6	4,0	1,85
		B3LYP	64,7	65,6	0,3	104,4	36,7	3,35
21		M06-2X	67,8	127,5	5,0	68,2	40,4	6,50
		ωB97X-D	72,3	153,6	4,8	93,3	32,9	5,79
		B3LYP	69,6	90,2	-0,9	-65,3	-86,7	3,31
		M06-2X	66,1	87,8	-3,2	-54,4	-63,9	3,84
		ωB97X-D	62,9	56,3	-6,3	-71,6	-41,0	1,58
		B3I VP	-73 8	141 4	-0.5	-62 0	-58 8	2 96
		M06-2X	-64.5	145.7	0.4	-71.7	0.5	2.31
Non-		ωB97X-D	-63.4	143.3	2.5	-73.6	4.0	1.85
identified	1	<i></i>	,.	,.	_,.	,.	.,0	1,00
		B3LYP	-141,0	73,2	2,5	114,6	27,4	0,39
		M06-2X	-153,9	65,6	2,9	112,4	21,6	3,36
		ωB97X-D	-117,9	69,8	2,0	123,8	19,7	2,18
		B3I YP	-124 8	-63 2	88	86.8	62 9	0.00
		M06-2X	-71 2	-50.4	10 7	74 0	26 6	0.00
			_73 5	-54 O	,, 8 3	76 5	34.2	0.00
		WD3/A-D	-70,0	- ,0	0,0	70,5	57,2	0,00

Figure 9. The 5Tzl S_S monomer obtained at the B3LYP/6-311++G(2d,2p) level of theory

Table 8. Structural and energetic properties of 5Tzl S_S conformers obtained at the	B3LYP/6-
311++G(2d,2p) , M06-2X/6-311++G(2d,2p) and $$ ω B97X-D/6-311++G(2d,2p) levels of the	ory.

Conf.	Sec. struct.	Method	φ (θ ζ	ρ	ψ	r	Rel. En. (kcal.mol ^{–1})	
1		B3LYP	-124,3	62,3	-3,8	-104,0	-43,1		0,00
	H14	M06-2X							
		ωB97X-D	-124,0	60,3	-6,2	-92,9	-32,0		0,00
		B3LYP	68,3	73,6	-4,9	-86,4	-55,9		2,94
2	C8	M06-2X	60,3	57,4	-8,0	-77,5	-30,2		0,00
		ωB97X-D	60,3	60,2	-5,8	-80,3	-34,9		1,10
		B3LYP	-128,2	102,7	5,4	67,3	136,2		4,21
3	Turn	M06-2X							
		ωB97X-D	-135,0	96,6	4,7	66,0	157,4		5,47
_		B3LYP	-143,9	-56,6	14,5	74,6	83,5		3,57
4	2-Helix	M06-2X	-151,3	-53,6	16,1	73,7	69,6		4,00
		ωB97X-D	-143,7	-54,3	14,8	72,4	69,6		3,80
		B3LYP	69,4	63,5	-10,6	48,0	77,2		6,09
6	H8	M06-2X	61,5	59,6	-7,2	43,9	63,8		4,40
		ωB97X-D	64,1	60,1	-8,5	45,8	65,5		5,01
7		B3LYP	-116,7	96,3	-1,1	52,6	-117,3		4,40
	Spiral	M06-2X	-123,4	90,3	0,9	50,0	-130,4		3,97
	H16	ωB97X-D	-123,5	91,1	0,5	53,3	-122,0		3,85
_		B3LYP	-73,2	128,8	-0,4	-117,2	55,9		1,73
8	H10	M06-2X	-67,2	152,4	-2,8	-78,2	7,7		1,68
		ωB97X-D	-68,7	148,3	-2,2	-92,4	28,4		2,46

H10	B3LYP	-143,3	53,3	-15,8	50,5	41,4	6,00
Turn2	M06-2X	-140,9	48,1	-12,8	46,8	39,1	2,57
Turn3	ωB97X-D	-141,6	49,8	-14,2	48,9	38,1	3,70
	B3LYP	-73,2	128,7	-0,4	-117,2	56,0	1,73
H14	M06-2X	-64,4	108,7	5,5	-141,8	63,1	2,78
	ωB97X-D	-67,1	112,5	3,5	-135,8	63,0	3,26
	B3LYP	67,4	100,7	2,3	65,3	69,8	5,99
	M06-2X	64,3	104,5	0,0	59,4	37,4	5,87
	ωB97X-D	65,9	104,0	-0,3	60,0	41,0	6,40
	B3LYP	68,3	73,6	-4,9	-86,4	-56,0	2,94
	M06-2X	60,3	57,4	-8,0	-77,6	-30,0	0,00
	ωB97X-D	60,3	60,2	-5,8	-80,3	-34,9	1,10
	B3LYP	-73,2	128,7	-0,4	-117,3	55,9	1,73
	M06-2X	-67,2	152,5	-2,8	-78,2	7,7	1,68
	ωB97X-D	-68,7	148,2	-2,2	-92,4	28,4	2,46
	B3LYP	67,4	100,7	2,3	65,3	69,9	5,99
	M06-2X	72,7	166,2	6,7	76,7	32,6	6,87
	ωB97X-D	65,8	104,0	-0,3	60,0	41,1	6,40
	B3LYP	-89,3	132,0	-2,5	64,7	94,3	4,36
ł	M06-2X	-72,5	139,8	-4,2	58,5	61,5	4,33
	ωB97X-D	-77,8	139,5	-4,9	59,6	59,0	4,48
	H10 Turn2 Turn3 H14	H10 B3LYP Turn2 M06-2X Turn3 wB97X-D B3LYP M06-2X H14 M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D B3LYP M06-2X wB97X-D	H10 B3LYP -143,3 Turn2 M06-2X -140,9 Turn3 wB97X-D -141,6 B3LYP -73,2 H14 M06-2X -64,4 wB97X-D -67,1 B3LYP 67,4 M06-2X 64,3 wB97X-D 65,9 B3LYP 68,3 w06-2X 60,3 wB97X-D 66,7 B3LYP -73,2 M06-2X -67,2 wB97X-D -68,7 B3LYP 67,4 M06-2X 72,7 wB97X-D 65,8 B3LYP -89,3 M06-2X -72,5 wB97X-D -77,8	H10 B3LYP -143,3 53,3 Turn2 M06-2X -140,9 48,1 Turn3 ωB97X-D -141,6 49,8 B3LYP -73,2 128,7 H14 M06-2X -64,4 108,7 ωB97X-D -67,1 112,5 B3LYP 67,4 100,7 ωB97X-D 65,9 104,0 B3LYP 68,3 73,6 M06-2X 60,3 57,4 ωB97X-D 60,3 60,2 B3LYP 60,3 60,2 B3LYP 60,3 60,2 B3LYP -73,2 128,7 M06-2X 60,3 57,4 ωB97X-D 60,3 60,2 B3LYP -73,2 128,7 M06-2X -67,2 152,5 ωB97X-D -68,7 148,2 B3LYP 67,4 100,7 M06-2X 72,7 166,2 ωB97X-D 65,8 104,0 <	H10B3LYP-143,353,3-15,8Turn2M06-2X-140,948,1-12,8Turn3ωB97X-D-141,649,8-14,2B3LYP-73,2128,7-0,4H14M06-2X-64,4108,75,5ωB97X-D-67,1112,53,5B3LYP67,4100,72,3M06-2X64,3104,50,0ωB97X-D65,9104,0-0,3B3LYP68,373,6-4,9M06-2X60,357,4-8,0ωB97X-D60,360,2-5,8B3LYP67,2152,5-2,8ωB97X-D-68,7148,2-2,2B3LYP67,4100,72,3M06-2X-67,2152,5-2,8ωB97X-D-65,8104,0-0,3B3LYP67,4100,72,3M06-2X72,7166,26,7ωB97X-D65,8104,0-0,3B3LYP-89,3132,0-2,5M06-2X-72,5139,8-4,2ωB97X-D-77,8139,5-4,9	H10B3LYP-143,353,3-15,850,5Turn2M06-2X-140,948,1-12,846,8Turn3ωB97X-D-141,649,8-14,248,9B3LYP-73,2128,7-0,4-117,2H14M06-2X-64,4108,75,5-141,8ωB97X-D-67,1112,53,5-135,8B3LYP67,4100,72,365,3M06-2X64,3104,50,059,4ωB97X-D65,9104,0-0,360,0B3LYP68,373,6-4,9-86,4M06-2X60,357,4-8,0-77,6ωB97X-D60,360,2-5,8-80,3B3LYP-73,2128,7-0,4-117,3M06-2X-67,2152,5-2,8-78,2ωB97X-D-68,7148,2-2,2-92,4B3LYP67,4100,72,365,3M06-2X72,7166,26,776,7ωB97X-D65,8104,0-0,360,0B3LYP-89,3132,0-2,564,7M06-2X72,7166,26,776,7ωB97X-D65,8104,0-0,360,0B3LYP-89,3132,0-2,564,7M06-2X72,7166,26,776,7ωB97X-D-77,8139,8-4,258,5ωB97X-D-77,8139,5-4,959,6	H10 B3LYP -143,3 53,3 -15,8 50,5 41,4 Turn2 M06-2X -140,9 48,1 -12,8 46,8 39,1 Turn3 ωB97X-D -141,6 49,8 -14,2 48,9 38,1 B3LYP -73,2 128,7 -0,4 -117,2 56,0 H14 M06-2X -64,4 108,7 5,5 -141,8 63,1 ωB97X-D -67,1 112,5 3,5 -135,8 63,0 B3LYP 67,4 100,7 2,3 65,3 69,8 M06-2X 64,3 104,5 0,0 59,4 37,4 ωB97X-D 65,9 104,0 -0,3 60,0 41,0 B3LYP 68,3 73,6 -4,9 -86,4 -56,0 M06-2X 60,3 57,4 -80,0 -77,6 -30,0 ωB97X-D 60,3 60,2 -5,8 -80,3 -34,9 B3LYP -73,2 128,7 -0,4 -117,3 55,9 M06-2X -67,2 152,5 -2,8

All computations were carried out using the Gaussian 09 software package [2]. The conformers were selected using those obtained for the non-chiral **5Tzl** unit [3]. The calculations were performed using three different methods. B3LYP is a standard approach using density functional theory, developed by Becke et al. [4,5]. Head-Gordon's ω B97X-D functional, was selected because it includes dispersion correction and long-range electron correlation corrections [6]. Finally, the M06-2X functional was selected as it is a top performing functional of the Minnesota group for main group non-covalent interactions [7].

The results indicate, that all the 8 chiral derivatives could in principle build several secondary structures. The second column of the tables indicate the different types of helices, turns or secondary structure elements that could be built from the particular conformer in question.

This indicates that for final decision for the best suitable chiral **5Tzl** unit we need to investigate longer oligomers, as well as consider synthetic aspects and potential difficulties. This is to be performed once the synthetic work is done by the collaborators. Since in case of 2 compounds initial efforts resulted very low yields, they are currently investigating how to approach the cyclization step on alternative routes.

The theoretical part of this project (financed by OTKA) was active for a six month period, starting from 2015.08.01 it was suspended, and then in this year, due to obligations dictated by my awarded Momentum Grant, it has to be closed. Based on the initial results as well as on the previous published data, we aim to submit a new manuscript on the structural and synthetic aspects of these chiral monomers during this year. Though the project was suspended on the Hungarian part, we have written a review manuscript on the RuAAC reaction, related to these foldamer units. This was recently submitted: "The Ruthenium-Catalyzed Azide Alkyne Cycloaddition (RuAAC) Reaction: Scope, Mechanism and Applications", Johan R. Johansson,* Tamás Beke-Somfai,* Anna Said Stålsmeden, and Nina Kann*.

I would like to thank the opportunity to initiate this project and I hope that in the, somewhat overlapping, Momemntum programme I will have the chance to continue with these initial results towards and interesting and upcoming area of engineering non-natural biomimetic constructs.

References

[1] Johansson, Hermansson, Kann, Nordén, **Beke-Somfai***: δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units, *Eur. J. Org. Chem.* 2014, *13*, 2703-2713

[2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A.,, H. Nakatsuji, Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G.,, J. L. Sonnenberg, Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M.,, T. Nakajima, Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J., O. E., F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N.,, R. Kobayashi, Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S.,, J. Tomasi, Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken,, A. V., C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J.,, R. Cammi, Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G.,, G. A. Voth, Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., and J. B. Foresman, Ortiz, J. V., Cioslowski, J., Fox, D. J., *Gaussian 09, Revision A.1*, (2009) Gaussian, Inc., Wallingford CT.

[3] Kann, Johansson, **Beke-Somfai***: Conformational properties of 1,4- and 1,5-substituted 1,2,3triazole amino acids – building units for peptidic foldamers, *Org & Biomol Chem*, 2015, *13*, 2776-2785

[4] C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785

[5] A. D. Becke, J. Chem. Phys., 1993, 98, 1372.

[6] J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615.

[7] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, **120** (2008) 215-41