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During this project I have studied several loosely connected problems.
First I would like to list those in the area of extremal set theory. In what
follows the underlying set is always [n] = {1, . . . , n}. I am going to use both
the expressions family and hypergraph for subsets of the power set of [n].

Together with Máté Vizer we studied the so-called tilted Sperner families.
These were defined by Leader and Long [19]. A family F is called (p, q)-tilted
Sperner if there are no distinct F,G ∈ F with p|F \ G| = q|G \ F |. They
determined asymptotically the maximum size of such a family in case p and
q are co-prime. Long [20] added the additional property (pattern) that a
pair (F,G) is only forbidden if in addition to the previous property f > g for
all f ∈ F and G ∈ G (here we use that the elements of the underlying set
are numbers). This is an unusual restriction, usually the elements of the un-
derlying set are treated equally. He examines the maximum size of a family
satisfying these properties, and gives the upper bound O(e120

√
logn2n/

√
n).

We have improved the bound to O(
√

log n2n/
√
n) in [16]. Our proof is based

on a new approach to the permutation method together with standard prob-
abilistic arguments. We show that for every set there is a so-called (p, q)-cut
point: an element x such that p/q times the number of points of A that are
smaller than x is close to the number of points not belonging to A that are
larger than x. With probabilistic arguments we show that for most members
of F the cut point is close to pn/(p+ q), and the permutation method gives
that for any given point x there cannot be too many sets in F with x as cut
point.

With Abhishek Methuku and Casey Tompkins we studied the following
problem. We are given a poset P and we want to find the largest family
F not containing P as a (not necessary induced) subposet, such that F is
also intersecting. Without the intersecting property this is a well-known and
well-studied question. With the intersecting property the only known results
were for Sperner familes [21] and k-Sperner families [6]. We give bounds for
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general posets in [12], using ideas from [4]. As a corollary, we get an infinite
family of posets where the bound is sharp, at least for odd n. We also give a
sharp bound for the case P is the butterfly poset, using an advanced version
of Katona’s cycle method. The result is the same that we get for 2-Sperner
families. We show that even though there might be members of the family
that are in the middle of a 3-chain, we can delete them if we count the isolated
members with a larger weight, where isolated means they do not appear in
any chain of length more than 1. Furthermore, we prove some LYM-type
inequalities for intersecting butterfly-free families.

With Fabricio Benevides, Cory Palmer and Dominik Vu we considered
the problem of finding the smallest d-separating family consisting of sets of
size at most k. A family F is called d-separating if for any two distinct sets
of size d there is a member of F that intersects one and is disjoint from the
other. This question comes from search theory (also called group testing).
Suppose we are given a set containing d unknown defective elements. We
can ask queries that correspond to subsets of the base set, and the answer
to a query shows if it contains a defective element or not. It is easy to see
that a set of queries determine all the d defective elements if and only if the
corresponding subsets form a d-separating family. It is a well-studied problem
without the size restriction. If we restrict the size of the queries to at most
k, but only assume that there are at most d defective elements, then strong
results were achieved by D’yachkov and Rykov [5]. For our problem, we gave
upper and lower bounds with a small gap. Surprisingly, what we get is about
half of what D’yachkov and Rykov get for their version. It shows that even
though having d defectives is the hardest case, knowing that there cannot be
less than d defectives helps a lot. This is different from the usual situation
in search theory. We also give sharp result for d = 2 and asymptotically
tight result for d = 3. For the upper bound we use a construction of linear,
regular, uniform hypergraphs with large girth by Ellis and Linial. Girth in
hypergraphs leads to the next topic.

With Cory Palmer we considered the definition of cycles in hypergraphs
given by Berge. A set of k edges E1, . . . , Ek on k vertices x1, . . . , xk is a
k-cycle if Ei contains xi and xi+1 for 1 ≤ i ≤ k, where xk+1 := x1. Other
containment is allowed, for example k hyperedges all containing the same k
vertices is a k-cycle. We have generalized this definition to every graph G in
[13]. A hypergraph H is Berge-G if there is a bijection f : E(G) → E(H)
such that for e ∈ E(G) we have e ⊂ f(e). A hypergraph is G-free if it does
not contain a subhypergraph that is Berge-G. The maximum cardinality of
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G-free hypergraphs were studied in several papers by Győri, Lemons and
Katona in case G is a cycle or path. They also consider a weighted version
where we add up the sizes of the hyeredges. We showed that if all hyperedges
are large enough, then even this sum is at most quadratic. For Ks,t-free
hypergraphs we gave the upper bound O(n2−1/s) where s ≤ t.

With Balázs Keszegh and Balázs Patkós we considered a new variant of
forbidden subposet problems. As the paper is in preparation and cannot be
found even on my homepage or arXiv, I want to give a bit more details. Given
a poset P , instead of counting the members of a P -free family, we count the
copies of another poset Q (and, as usual, we want to maximize this number).
The similar question for graphs is also a new area, and I am going to describe
my results regarding that later. Here the results and the methods are very
different from the old question of determining the cardinality, i.e. counting
the copies of the 1-element poset. We determine the maximum for a couple
pairs P,Q in [10]. In fact, if both are chains then the result follows from an
old result of mine with Balázs Patkós [15].

Some of our results follow from known results or can be proved applying
basic methods. But the most surprising development is that we can use profile
polytopes in this area. For a family F , let f(F) = (f0, f1, . . . , fn) denote the
profile vector of F , where fi = |{F ∈ F : |F | = i}|. Many problems
in extremal finite set theory ask for the largest size of a family in a class
A ⊆ 22[n] . This question is equivalent to determining maxF∈A f(F) ·1, where
1 is the vector with all entries being 1, and · denotes the scalar product.
More generally, if for a given weight function w : 2[n] → R we want to
maximize w(F) :=

∑
F∈F w(F ), where w(H) depends only on the size of F

(i.e. w(H) = w(H ′) whenever |H| = |H ′| holds), then this is equivalent to
maximizing f(F) ·w, where w = (w0, w1, . . . , wn) with wi being the value of
w(H) for every i-element set H. As A ⊆ 22[n] holds, we have {f(F) : F ∈
A} ⊂ Rn+1 and therefore we can consider its convex hull µ(A) that we call
the profile polytope of A. It is well known that any weight function with the
above property is maximized by an extreme point of µ(A) (a point that is not
a convex combination of any other points of µ(A)). Determining the extreme
points of the profile polytope of a class of families is the ultimate answer to
the weighted extremal questions. It is known for several families, however I
am not aware of any earlier results where it was used in the proof.

Let me illustrate how profile polytopes can be applied to our general-
ized forbidden subposet problems by sketching the proof of the following
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statement. The number of 2-chains in families without 3-chains is at most(
n
d 2n

3
e

)(d 2n
3
e

bn
3
c

)
. If F is family without 3-chains, then it can be partitioned into

F1 ∪ F2 such that F1 = {F ∈ F : 6 ∃F ′ ∈ F F ′ ⊂ F} and F2 = F \ F1.
Obviously, any copy of a 2-chain in F (i.e., a pair of sets in containment)
contains one element from F1 and F2 each. Therefore one can count these
copies by summing over all sets F ∈ F2 the number s(F ) of sets in F1

contained by F . As F1 is an antichain, by a theorem of Sperner we obtain
s(F ) ≤

( |F |
b |F |

2
c

)
=: w(F ). Clearly, w(F ) is a weight function that depends only

on the size of F . Therefore we can apply Katona’s result [18] that states that
essential extreme points of the profile polytope of Sperner families are the
profile vectors of full levels of Qn. It follows that we only have to maximize(
n
i

)(
i
bi/2c

)
over i. An easy calculation shows that the maximum is attained at

i = 2n/3 (here we omit floor and ceiling signs as uniqueness depends on the
residue of n modulo 3). This yield the upper bound and the corresponding
construction (the family consisting of subsets of size n/3 and 2n/3) shows
that this is tight.

With Balázs Keszegh, Gábor Mészáros, Balázs Patkós and Máté Vizer we
considered a generalized bootstrap percolation model. The usual bootstrap
percolation is defined on graphs. A set A of infected vertices is given, and
another vertex gets infected if it has at least r infected neighbors. This way
we have defined a process; A is called percolating if every vertex gets infected
by the end of this process. For practical applications this question is very
interesting on the d-dimensional grid. Balister, Bollobás, Lee and Narayanan
[2] defined a line percolation model, where the vertices of a line get infected
if the line already contains at least r infected vertices, thus changing the
rule of infection from a local property to one, where the infection can spread
much faster. We generalize it to any hypergraph, and study the case of
projective planes in [7]. There are numerous parameters to consider. In the
probabilistic setting we calculate the critical probability that a random set
of vertices percolate. We also prove a bottleneck phenomenon: if we pick
random infected vertices one by one, when we pick enough vertices to find
a line with r infected vertices, the set percolates with probability tending to
infinity. In the combinatorial setting we study the size of the smallest and
the largest percolating set, and also the number of rounds it takes to infect
all the vertices.

With Cory Palmer we consider a new variant of Turán-type problems.
During studying Berge-type problems, that I have described above, we have
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realized that counting hyperedges in a k-uniform hypergraph that is G-free
(in the Berge sense) is closely related to counting copies of Kr in G-free
graphs. That motivated the general question: what is the maximum number
of copies of a graph H in an F -free graph on n vertices? (This in turn
motivated the similar questions in posets that I have already discussed and
the following question about the number of cycles). There were sporadic
results in this area, and Alon and Shikhelman published a paper [1] about
this while we did our research. They determined which graphs F have the
property that every F -free graph contains only O(n) triangles. In [14] We
extend this to every cycle showing which forbidden graphs imply only a
linear number of copies of Ck and showing that for every other forbidden
graph we can find quadratic many copies of Ck. We also show that for
t ≥ 2 we have that the maximum number of copies of Ck is (1

2
+ o(1))(t −

1)k/2nk/2/k, and the maximum number of copies of Pk is (1
2

+ o(1))(t −
1)(k−1)/2n(k+1)/2 in K2,t-free graphs on n vertices. We also prove an Erdős-
Stone-Simonovits-type result, and explore the already mentioned connection
to Berge-hypergraphs. The maximum number of hyperedges in r-uniform
Berge-F -free hypergraphs is at least the maximum number of copies of Kr in
G-free graphs, and at most the mayimum number of copies ofKr plus number
of edges in G-free graphs. Moreover, if we consider non-uniform hypergraphs,
then the maximum number of hyperedges is equal to the maximum number
of complete subgraphs in G-free graphs.

With Balázs Keszegh, Cory Palmer and Balázs Patkós we considered a
variation of the above problem. Instead of forbidding only one cycle, we
forbid almost all of them. We still wanted to study extremal properties of
such graph; the interesting question turned out to be the number of cycles
in such graphs. Let L be a set of positive integers. We call a graph G an L-
cycle graph if all cycle lengths in G belong to L. Let c(L, n) be the maximum
number of cycles possible in an n-vertex L-cycle graph (we use ~c(L, n) for
the number of cycles in directed graphs). In the undirected case we show
that for any fixed set L, we have c(L, n) = ΘL(nbk/`c) where k is the largest
element of L and 2` is the smallest even element of L (if L contains only
odd elements, then c(L, n) = ΘL(n) holds.) We also give a characterization
of L-cycle graphs when L is a single element. In the directed case we prove
that for any fixed set L we have ~c(L, n) = (1 + o(1))(n−1

k−1 )k−1, where k is the
largest element of L. We determine the exact value of ~c({k}, n) for every k
and characterize all graphs attaining this maximum.

I also had some results that are less closely related to the main topic.
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With Viola Mészáros, Dömötör Pálvölgyi, Alexey Pokrovskiy and Günter
Rote [11] we studied the discrete Voronoi game. It is defined in graphs, two
players alternatingly claim vertices in t rounds. At the end of the game, the
remaining vertices are divided between the players, with each player receiving
the vertices that are closer to his or her claimed vertices. The question is what
percent of the vertices the first player can control at the end. We showed that
this number can be arbitrarily small and proved bounds for general graphs
depending on the one-round game. We also determined the minimum the
first player can get for trees in case there are only one or two rounds. With
Balázs Keszegh, Dömötör Pálvölgyi, Balázs Patkós, Máté Vizer and Wiener
Gábor [9] we considered a variant of the majority problem. In the original
version we are given n blue or red ball. As one step we can compare two balls
if they are of the same color (there is no way to actually find out the color of
the ball). The goal is to find a ball of the majority color using as few steps
as possible. In our model we check k balls as a step and find a majority ball
among them. The goal is to find a majority (more precisely a non-minority)
ball among all the balls. With Máté Vizer [17] we considered several other
variant of the same problem. Finally, I would like to mention that together
with Balázs Patkós I started writing a book with the title Extremal Finite
Set Theory.
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