
Final report on the project K-108384:
‘A categorical study of quantum symmetries and their applications’

The subject of our fifty-four months long project was a study of quantum symmetries
applying the language and tools of category theory. As it had been envisaged in the research
plan, we investigated various algebraic structures which generalize Hopf algebras (and hence
groups in particular); and their appearance as symmetries of quantum field theories.

Below we summarize the results achieved in each work package (WP) of the project. In
the list of references, an asterisk distinguishes those publications which resulted from the
current project.

WP1. Interpreting weak (Hopf) bialgebras as (Hopf) bimonoids in appropriate
duoidal categories. Proving a duality between groupoids with finitely many
objects and cosemisimple pointed weak Hopf algebras.

Classical bialgebras — say, over a field k — can be described as monoids in the monoidal
category of k-coalgebras; which are in fact the comonoids in the category of k-vector spaces.
Equivalently, bialgebras are comonoids in the monoidal category of k-algebras; that is, of
the monoids in the category of k-vector spaces. The notions of a monoid in the category
of comonoids; and of a comonoid in the category of monoids coincide in any braided (so in
particular symmetric) monoidal category and they are termed bimonoids. So bialgebras are
bimonoids in the symmetric monoidal category of vector spaces over the field k.

For weak bialgebras [1], however, the unit is no longer a coalgebra map and the counit
is no longer an algebra map. So for a long time no interpretation of weak bialgebras as
bimonoids in any braided monoidal category had been available. The key observation in
[2*] is that it is possible to identify weak bialgebras with bimonoids; though not in a braided
monoidal category but more generally, in a duoidal category [3]. A duoidal category possesses
two different but compatible monoidal structures. The monoid and comonoid structures of a
bimonoid in a duoidal category are defined with respect to these different monoidal structures.
The duoidal category in which a weak bialgebra can be seen as a bimonoid is the category of
bimodules of the algebra R⊗Rop, where R is the so-called base algebra of the weak bialgebra.
Both monoidal products are module tensor products over R ⊗ Rop but different actions are
used in both cases. A weak bialgebra was proven to be a weak Hopf algebra (in the sense of
[1]) if and only if as a bimonoid in the duoidal category of R⊗Rop-bimodules it satisfies the
Hopf condition in [4] (i.e. it is a Hopf monad in the sense of [4]).

The above interpretation of weak bialgebras as bimonoids naturally leads to a definition
of morphisms between them (which need not be homomorphisms of algebras). A functor to
the category of weak bialgebras (and these morphisms between them), from the category of
small categories with finitely many objects (and functors as morphisms between them) was
obtained by taking the free vector space spanned by the morphisms in a category. This functor
was proven to possess a right adjoint, given by taking the grouplike elements in a suitable
sense. This adjunction was proven to restrict to the full subcategories of groupoids and of
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weak Hopf algebras, respectively. Moreover, it induces equivalences between the category of
small categories with finitely many objects and the category of pointed cosemisimple weak
bialgebras; and between the category of small groupoids with finitely many objects and the
category of pointed cosemisimple weak Hopf algebras. This extends the well-known duality
between groups and pointed cosemisimple Hopf algebras.

This was part of the PhD research of López-Centella at the University of Granada, Spain,
jointly supervised by Böhm and Gómez-Torrecillas.

[1 ] Böhm, Gabriella; Nill, Florian; Kornél Szlachányi: Weak Hopf algebras. I. Integral
theory and C*-structure, J Algebra 221 no. 2 (1999) 385-438.

[2*] Böhm, Gabriella; Gómez-Torrecillas, José; López-Centella, Esperanza: On the category
of weak bialgebras, J Algebra 399 (2014) 801-844.

[3 ] Aguiar, Marcelo; Mahajan, Swapneel: Monoidal functors, species and Hopf algebras,
Vol. 29 CRM Monograph Series. American Mathematical Society, Providence, RI,
2010.

[4 ] Chikhladze, Dimitri; Lack, Stephen; Street Ross: Hopf monoidal comonads, Theory
Appl Categ 24 no. 19 (2010) 554-563.

WP2. A unified description of various quantum symmetries as Hopf monads.

In the above summarized research package WP1 and the resulting paper [2*] we obtained
a description of weak Hopf algebras as Hopf monoids in well-chosen duoidal categories. In
the paper [5] (prior to the current project) some other quantum symmetries — like small
groupoids and Hopf algebroids over central base algebras — were identified with Hopf monoids
in suitable duoidal categories.

The starting point of the research resulting in the paper [6*] was the observation that
these duoidal categories are, in fact, endohom categories of map monoidales (aka map pseudo
monoids) in monoidal bicategories. The aim was to take a next step beyond duoidal cate-
gories, and give a common description of more kinds of quantum symmetries as Hopf monads
on monoidales in monoidal bicategories. Several equivalent characterizations of classical Hopf
algebras (among bialgebras) were extended to this level of generality.

In particular, Hopf monads in general do not possess antipode morphisms. But in many
known examples there are antipodes. Their existence was explained by the natural Frobenius
structure of the base monoidale in these examples. The theory worked out was shown to
cover — in addition to the weak Hopf algebras in [2*] and the small groupoids and the Hopf
algebroids of [5] — also Hopf monoids in braided monoidal categories and the Hopf monads
of [7] on autonomous monoidal categories.

After the completion of the paper [6*], a new quantum symmetry structure was proposed
in [8] under the name Hopf category. Motivated by that, in [9*] a new family of monoidal
bicategories was constructed whose Hopf monads include Hopf categories, Hopf polyads in
[10] and Hopf group algebras in [11].
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This highly successful unified treatment of quantum symmetries as Hopf monads in various
monoidal bicategories was the subject of an invited plenary talk by Böhm at the conference
‘Category Theory 2015’. Also based on this research, an approach to the most easily accessible
quantum symmetries via Hopf monads was summarized (in a form digestible also by students)
in a textbook by Gabriella Böhm, entitled “Hopf Algebras and Their Generalizations from
a Categorical Point of View”. It was accepted for publication by Springer Verlag, it is to
appear in the Lecture Notes in Mathematics series before the end of 2018.

[5 ] Böhm, Gabriella; Chen, Yuanyuan; Zhang, Liangyun: On Hopf monoids in duoidal
categories, J Algebra 394 (2013) 139-172.

[6*] Böhm, Gabriella; Lack, Stephen: Hopf comonads on naturally Frobenius map-monoidales,
J Pure Appl Algebra 220 no. 6 (2016) 2177-2213.

[7 ] Bruguières, Alain; Lack, Steve; Virelizier, Alexis: Hopf monads on monoidal categories,
Adv Math 227 no. 2 (2011) 745-800.

[8 ] Batista, Eliezer; Caenepeel, Stefaan; Vercruysse, Joost: Hopf Categories, Algebr Rep-
resent Theory 19 no. 5 (2016), 1173-1216.

[9*] Böhm, Gabriella: Hopf polyads, Hopf categories and Hopf group monoids viewed as
Hopf monads, Theory Appl Categ 32 no. 37 (2017) 1229-1257.

[10] Bruguières, Alain: Hopf polyads, Algebr Represent Theor 20 no. 5 (2017) 1151-1188.

[11] Turaev, Vladimir G.: Homotopy field theory in dimension 3 and crossed group-categories,
preprint available at http://arxiv.org/abs/0005291.

WP3. Finding the right notion of weak (Hopf) bimonoids in duoidal categories.

A bimonoid in a duoidal category [3] is an object equipped with a monoid structure with
respect to one of the monoidal structures, and with a comonoid structure with respect to the
other monoidal structure; in such a way that the multiplication and the unit are comonoid
morphisms; equivalently, the comultiplication and the counit are monoid morphisms (see
WP1 for the particular case of bimonoids in braided monoidal categories). In the student-
project of Chen — supervised by Böhm and resulting in the paper [12*] — the compatibility
conditions between the monoid and comonoid structures were weakened analogously to the
axioms of weak bialgebra [1]. The most important results on weak bialgebras — such as
the structure of the base algebras and the behavior of the representations — were proven to
extend to this generalization.

[12*] Chen, Yuanyuan; Böhm, Gabriella: Weak bimonoids in duoidal categories, J Pure Appl
Algebra 218 no. 12 (2014) 2240-2273.
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WP4. Isolating from Van Daele and Wang’s definition of multiplier weak Hopf
algebra the structure which is present without the antipode. With a study of
its base algebras, finding a non-unital generalization of separable Frobenius
algebra.

The most well-known examples of Hopf algebras are the linear spans of (arbitrary) groups.
Dually, also the vector space of linear functionals on a finite group carries the structure of a
Hopf algebra. In the case of infinite groups, however, the vector space of linear functionals
with finite support possesses no unit. Consequently, it is no longer a Hopf algebra but,
more generally, a multiplier Hopf algebra [13]. Replacing groups with finite groupoids, both
their linear spans and the dual vector spaces of linear functionals carry weak Hopf algebra
structures [1]. Finally, removing the finiteness constraint in this situation, both the linear
spans of arbitrary groupoids, and the vector spaces of linear functionals with finite support
on them are examples of weak multiplier Hopf algebras in [14,15].

In the papers [14,15] only weak multiplier Hopf algebras are considered without looking
for the more general structure of weak multiplier bialgebra. But if considering monoids
instead of groups, their linear spans (and vector spaces of functionals in the finite case) are
only bialgebras, no longer Hopf algebras. Similarly, the linear spans of small categories with
finitely many objects (and the vector spaces of functionals in the case when also the number of
arrows is finite) are only weak bialgebras but not weak Hopf algebras. To be able to describe
the analogous structures associated to categories without any finiteness assumption, in [16*]
the notion of weak multiplier bialgebra was worked out (which contains as a particular case
non-weak multiplier bialgebras, neither defined before).

In this non-unital — ‘multiplier’ — setting, the (separable Frobenius) base algebras of
a weak bialgebra are replaced by certain distinguished (non-unital) subalgebras of the mul-
tiplier algebra of a weak multiplier bialgebra. Under a mild (fullness) assumption on the
(multiplier valued) comultiplication, these subalgebras were proven to carry coseparable co-
Frobenius coalgebra structures. This can be seen as the appropriate non-unital generalization
of separable Frobenius algebra in the sense that the canonical epimorphisms to the module
tensor products over them split. An appropriate category of modules over a regular weak
multiplier bialgebra with a full comultiplication was proven to be monoidal admitting a strict
monoidal and faithful (in some sense forgetful) functor to the category of firm bimodules over
the base algebra. Some other representation categories in the same setting were investigated,
and related to each other, in [17*] and [18*].

While it was proven in [13] that a multiplier Hopf algebra is a Hopf algebra if and only if it
possesses a unit element, no analogous result is available in the weak case; a weak multiplier
Hopf algebra with a unit element is not known to be a weak Hopf algebra. Such a statement
was proven in [14,15] only under the additional condition that also the opposite algebra is a
weak multiplier Hopf algebra; and this assumption was needed in [14,15] also to prove several
other expected results. But this is a rather strong restriction, not even satisfied by weak
Hopf algebras in general. So one of our aims in [16*] was to find the appropriate intermediate
case, for which the expected properties can be proven, but which also contains all weak Hopf
algebras. A satisfying answer was found by considering regular weak multiplier bialgebras
equipped with an antipode map in a suitable sense.
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The paper [16*] contains some results from the PhD research of López-Centella at the
University of Granada, Spain, supervised jointly by Böhm and Gómez-Torrecillas.

[13 ] Van Daele, Alfons: Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 no. 2
(1994) 917-932.

[14 ] Van Daele, Alfons; Wang, Shuanhong: Weak Multiplier Hopf Algebras. Preliminaries,
motivation and basic examples, in: Operator Algebras and Quantum Groups. W. Pusz
and P.M. So ltan (eds.), Banach Center Publications (Warsaw), vol. 98 (2012), 367-415.

[15 ] Van Daele, Alfons; Wang, Shuanhong: Weak Multiplier Hopf Algebras. The main
theory, Journal für die reine und angewandte Mathematik (Crelle’s Journal) Published
Online: 2013-07-23, DOI: https://doi.org/10.1515/crelle-2013-0053.

[16*] Böhm, Gabriella; Gómez-Torrecillas, José; López-Centella, Esperanza: Weak multiplier
bialgebras, Trans Amer Math Soc 367 (2015) no. 12, 8681-8721.

[17*] Böhm, Gabriella: Comodules over weak multiplier bialgebras, Int J Math 25 1450037
(2014).

[18*] Böhm, Gabriella: Yetter-Drinfeld modules over weak multiplier bialgebras, Israel J Math
209 no. 1 (2015) 85-123.

WP5. (Weak) multiplier bialgebras in braided monoidal categories.

In all of the papers [13,14,15,16*], (weak or not) multiplier (Hopf or not) bialgebras
only were considered on vector spaces. But there are many other interesting situations; like
modules over commutative rings, graded vector spaces, Hilbert spaces, and so on. All of
these settings can be treated simultaneously, and a deeper insight can be gained by studying
various multiplier structures in unspecified braided monoidal categories.

The novelty of the approach in [19*] is a concise formulation of the axioms of multiplier
bimonoid in a braided monoidal category in terms of a generalized version of the fusion
morphism of [20] — avoiding any reference to multipliers. This approach allows for a smooth
treatment of modules and comodules; constituting monoidal categories in both cases. A
conceptual explanation of this monoidal structure was found via the study of a functor induced
by a multiplier bimonoid, by observing that it carries a structure generalizing that of a
bimonad (aka opmonoidal monad).

Multiplier Hopf monoids were introduced in [21*] as multiplier bimonoids whose fusion
morphisms are invertible. In the category of vector spaces over the complex numbers, mul-
tiplier Hopf algebra of [13] was re-obtained by that. It was shown that the key features of
multiplier Hopf algebras (over fields) remain valid in this more general context. Namely, for
a multiplier Hopf monoid, the existence of a unique antipode was proved in an appropriate,
multiplier-valued sense which was shown to be a morphism between some twisted multiplier
bimonoids. For a regular multiplier Hopf monoid (whose twisted versions are multiplier Hopf
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monoids as well) the antipode was proved to factorize through a proper automorphism. Un-
der mild further assumptions, duals in the base category were shown to lift to the monoidal
categories of modules and of comodules over a regular multiplier Hopf monoid. Finally, the
so-called Fundamental Theorem of Hopf modules was proved which states an equivalence
between the base category and the category of Hopf modules over a multiplier Hopf monoid.

As recalled above (see WP1), a bialgebra over a field or, more generally, a bimonoid in a
braided monoidal category, is an object carrying a monoid and a comonoid structure subject
to compatibility conditions that can be interpreted as saying that a bimonoid is a monoid
in the category of comonoids; equivalently, it is a comonoid in the category of monoids. A
multiplier bialgebra over a field [16*] or, more generally, a multiplier bimonoid in a braided
monoidal category [19*], is a generalization which is no longer a monoid or a comonoid in
the base category. However, in [22] a monoidal category was constructed, whose objects
are certain non-unital algebras (say over a field), and in which the comonoids include the
multiplier Hopf algebras of [13]. The aim of [23*] was to generalize and strengthen this result.
Namely, under mild assumptions (involving a classQ of regular epimorphisms) we constructed
a category M of certain semigroups in a braided monoidal category C. We described multiplier
bimonoids in C (whose structure morphisms lie in Q) as certain comonoids in M. Defining the
morphisms between such multiplier bimonoids as the morphisms between the corresponding
comonoids in M, we obtained a category of multiplier bimonoids in C.

Note that the results of [23*] only tell us how certain multiplier bimonoids in a braided
monoidal category C can be seen as certain comonoids in an appropriately constructed
monoidal category M. In [24*] we applied the methods of [25] to prove a bijection between ar-
bitrary multiplier bimonoids in C and arbitrary simplicial maps from the Catalan simplicial set
to a suitable simplicial set constructed for this purpose. With its help, multiplier bimonoids
can be regarded as (co)monoids in something more general than a monoidal category (namely,
the simplicial set itself). We analyzed the particular simplicial maps corresponding to that
class of multiplier bimonoids which can be regarded as comonoids in [23*].

Finally in [26*] weak multiplier bimonoids in braided monoidal categories were introduced
and studied. For that a further generalization of the fusion morphisms — used in [19*] in
the non-weak case — was needed. Under some assumptions, the so-called base object of a
regular weak multiplier bimonoid was shown to carry a coseparable comonoid structure; hence
to possess a monoidal category of bicomodules. In this case, appropriately defined modules
over a regular weak multiplier bimonoid were proven to constitute a monoidal category with
a strict monoidal forgetful type functor to the category of bicomodules over the base object.

Braided monoidal categories considered in WP5 include various categories of modules or
graded modules, the category of complete bornological spaces, and the category of complex
Hilbert spaces and continuous linear transformations, see [26*].

[19*] Böhm, Gabriella; Lack, Stephen: Multiplier bialgebras in braided monoidal categories,
J Algebra 423 (2015) 853-889.

[20 ] Street, Ross: Fusion operators and cocycloids in monoidal categories, Appl Categor
Struct 6 no. 2 (Special Issue on Quantum Groups, Hopf Algebras and Category Theory,
ed. A. Verschoren, 1998) 177-191.
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[21*] Böhm, Gabriella; Lack, Stephen: Multiplier Hopf monoids, Algebr Represent Theory
20 no. 1 (2017) 1-46.

[22 ] Janssen, Kris; Vercruysse, Joost: Multiplier bi- and Hopf algebras, J Algebra Appl 9
no. 2 (2010) 275-303.

[23*] Böhm, Gabriella; Lack, Stephen: A category of multiplier bimonoids, Appl Categor
Struct 25 no. 2 (2017) 279-301.

[24*] Böhm, Gabriella; Lack, Stephen: A simplicial approach to multiplier bimonoids, Bull
Belgian Math Soc Simon Stevin 24 (2017) 107-122.

[25 ] Buckley, Mitchell; Garner, Richard; Lack, Stephen; Street, Ross: The Catalan simplicial
set, Math Proc Camb Phil Soc 158 (2015) 211-222.

[26*] Böhm, Gabriella; Gómez-Torrecillas, José; Lack, Stephen: Weak multiplier bimonoids,
Appl Categor Struct 26 no. 1 (2018) 47-111.

WP6. Analysis of skew-monoidal categories.

Skew monoidal categories (SMC) are monoidal categories with non-invertible coherence
morphisms. As shown in our paper [27] preceding the current project, bialgebroids over a ring
R can be characterized as the closed skew monoidal structures on the category of R-modules
in which the unit object is the regular module. This offers a new approach to bialgebroids
and Hopf algebroids.

Little is known about skew monoidal structures on general categories. In [28*] we analyzed
the one-object case: the skew monoidal monoids (SMM). It was shown that each SMM
possesses a dual pair of bialgebroids describing the symmetries of its (co)module categories.
These bialgebroids are submonoids of their own base and are rank 1 free over the base on
the source side. Various equivalent definitions of SMM were presented, the structure of their
(co)module categories was studied and the possible closed and Hopf structures on a SMM
were discussed.

The main object of study in [29*] was the structure of the category of modules over a SMC
which, in case of bialgebroids, is known to be a monoidal category equipped with a monadic
strong monoidal functor to the category of bimodules. Whether analogous structures exist for
SMC-s is a nontrivial problem illustrated by the fact that for the category of comodules over
an SMC even the existence of a reasonable tensor product is an open question. Working in
the framework of enriched categories we presented a construction of a (skew monoidal) tensor
product of modules and of a monadic skew monoidal forgetful functor. We also gave conditions
for the category of modules to be monoidal and the forgetful functor to be strong monoidal. In
formulating these conditions a notion of ‘self-cocomplete’ subcategories of presheaves appears
to be useful which provides also some insight into the problem of monoidality of the skew
monoidal structures found in [30] on functor categories.
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In our research plan for the project we had also planned to prove appropriate weakenings
of Mac Lane’s coherence theorem on skew-monoidal categories. This problem, however,
was solved in the meantime by other authors in [31-33]. So we focussed on the other (not
completely unrelated) problems described above.

[27 ] Szlachányi, Kornél: Skew-monoidal categories and bialgebroids, Adv in Math 231 no
3-4 (2012) 1694-1730.

[28*] Szlachányi, Kornél: Skew monoidal monoids, Comm Algebra 44 no 6 (2016) 2368-2388.

[29*] Szlachányi, Kornél: On the tensor product of modules over skew monoidal actegories, J
Pure Appl Algebra 221 (2017) 185-221.

[30 ] Altenkirch, Thorsten; Chapman, James; Uustalu, Tarmo: Monads need not be endo-
functors, In: Foundations of software science and computational structures, pp 297-311,
Lecture Notes in Comput Sci 6014, Springer 2010.

[31 ] Lack, Stephen; Street, Ross: Triangulations, orientals, and skew monoidal categories
Adv in Math 258 (2014) 351-396.

[32 ] Bourke, John; Lack, Stephen: Free skew monoidal categories, J Pure Appl Algebra
available online at https://doi.org/10.1016/j.jpaa.2017.12.006.

[33 ] Uustalu, Tarmo: Coherence for skew monoidal categories, Electron Proc Theor Comput
Sci 153 (2014) 68-77.

WP7. Quantum theory and local causality.

Quantum theory is usually thought to be non-local. Most derivations of the contradiction
between causality and the quantum description of nature are based on the putative implica-
tion of Bell’s inequalities by various causality requirements, because these inequalities exclude
the strong correlation present in quantum theories.

It was shown in our papers [34,35] prior to the current project that the derivation of
these inequalities from common cause principles is impossible in quantum theories. In this
project, in the papers [36*] and [37*], we showed that Bell’s local causality is valid in a
general class of quantum field theories, no contradiction occurs. For the precise statement,
first we formulated Bell’s notion of local causality in algebraic (classical and quantum) field
theories. Then in case of local primitive causality, which is a regular assumption in algebraic
field theories, we proved that Bell’s local causality holds if the corresponding local (abelian or
non-abelian) von Neumann algebras are atomic. In classical theories without local primitive
causality, state extension procedure from a Cauchy surface algebra to the quasilocal one may
correspond to a causal Markov process. In that case Bell’s local causality is shown to hold if
the local (abelian) algebras are finite dimensional.

Péter Vecsernyés, together with Gábor Hofer-Szabó finished a short book [38*] which is an
extended review of their publications in recent years about the verified peaceful coexistence
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of causality and quantum theory. It was published in February 2018 by Springer Verlag in
the Brief Review Book Series.

[34 ] Hofer-Szabó, Gábor; Vecsernyés, Péter: Noncommuting local common causes for corre-
lations violating the Clauser–Horne inequality, J Math Phys 53 (2012) 122301.

[35 ] Hofer-Szabó, Gábor; Vecsernyés, Péter: Noncommutative common cause principles in
algebraic quantum field theory, J Math Phys 54 (2013) 042301.

[36*] Hofer-Szabó, Gábor; Vecsernyés, Péter: On the concept of Bell’s local causality in local
classical and quantum theory, J Math Phys 56 (2015) 032303.

[37*] Hofer-Szabó, Gábor; Vecsernyés, Péter: A generalized definition of Bell’s local causality,
Synthese, 193 (2016) 3195-3207.

[38*] Hofer-Szabó, Gábor; Vecsernyés, Péter: Quantum Theory and Local Causality, ISBN
978-3-319-73932-8, Springer, 2018.

WP8. Dynamical description of measurements in quantum mechanics.

A measurement in standard quantum theory is ‘described’ by an instant non-unitary, non-
linear jump into an eigenstate of the measured quantity with probability — meaning in fact
relative frequency — equal to the expectation value of the corresponding spectral projection
in the identically prepared states of repeated experiments.

One may try to interpret the measurements as very fast processes; so that non-unitarity
and non-linearity arise as an effective behavior of the unknown unitary dynamics of the inter-
action of the measured quantity with the measuring device. The probabilistic nature may be
attributed to the unknown initial state of the measuring device. Keeping these assumptions
in [39*] a two-step dynamical model was constructed for selective measurements in arbi-
trary finite dimensional quantum mechanics. The first one of these steps is the non-selective
measurement, or M -decoherence of a self-adjoint observable M described by a semigroup of
completely positive maps generated by the linear, deterministic first order Lindblad differen-
tial equation for the state. The second step is a process from the decohered state resulting
from the first step to an M -pure state, which is described by an effective non-linear ‘ran-
domly chosen’ toy model dynamics: the pure states arise as asymptotic fixed points, and
their emergent probabilities are the relative volumes of their attractor regions.

[39*] Vecsernyés, Péter: An effective toy model in Mn(C) for selective measurements in quan-
tum mechanics, J Math Phys 58 (2017) 102109.
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WP9. Superselection sectors and phase structure in quantum chains.

Phases of algebraic field theoretical models can be defined as partitions of the pure states of
the observable algebra A of the model, given by equivalence classes of local observable algebra
extensions in the irreducible representations of A obtained from the pure states. Although
formerly in [40] we derived the general structure of phases of Hopf spin chains, there are
popular particular models where the explicit construction can be useful and interesting.

In the MSc thesis project [41*] of Megyeri — supervised by Vecsernyés — the phase struc-
ture of the pure translation invariant states of the spin one-half XYZ-chain was described.
Since this model can be rewritten as a Hopf spin chain based on the group algebra H of the
finite group Z2 × Z2, the equivalence classes of phases correspond to the cohomology classes
of the so-called bosonic intermediate ∆-cocycles of the Drinfeld double of H, which were
explicitly presented. The publication of these results is delayed by Megyeri’s moving to the
UK for a PhD student position.

In [42*] the superselection sectors — that is, the localized and transportable amplimor-
phisms — of the observable algebras of various Hubbard quantum chains were classified.
Unlike in Hopf spin chains, here the observable algebra is not an UHF, but only an AF C∗-
algebra. This fact is reflected on the superselection sectors: they are not characterized by the
monoidal category of representations of a finite dimensional (quasitriangular) Hopf algebra
but by that of the compact group U(1).

[40 ] Müller, Volkhard F; Vecsernyés, Péter: Phase structure of G-spin models, to be pub-
lished.

[41*] Megyeri, Balázs; Vecsernyés, Péter: Phase structure of the spin 1/2 XYZ-chain, to be
published.

[42*] Barankai, Norbert; Vecsernyés, Péter: Algebraic quantum field theory of the Hubbard
chain, to be published.
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