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Correlated states and excitations in d- and f-electron systems
and ultracold Fermi gases

Summary

In this project we have considered the low temperature properties of strongly correlated materials when
quantum effects are strong. Typical examples include magnetic materials with spin and orbital degrees of
freedom, ultracold atoms in optical lattices and f-electron systems. Most of these systems are Mott insulators,
i.e. the effective degrees of freedom are localized to the sites (atoms), such as the magnetic moments of an
ion. The model describing the dynamics in such system is the Heisenberg model, in the simplest case it just
exchanges the local quantum states of two neighboring atoms.

We treated these systems with analytical and numerical methods. While we conducted theoretical research,
in many cases we were motivated by the experiments done on existing materials. On a few occasions we
worked in a close collaboration with experimental researchers, as in the case of the Cu2OSeO3, a materials
showing skyrmions, and in the case of the multiferroic Sr2CoGe2O7. Our input proved to be essential to un-
derstand the experimental neutron spectra of the Cu2OSeO3 or to recognize the spin-quadrupolar excitations
in the high field ESR spectra in Sr2CoGe2O7.

To guide and motivate experiments, we were researching extreme quantum behavior in systems yet to be
realized. Such an example is the chiral spin liquid we found in the SU(6) honeycomb lattice and SU(N)
triangular lattice models with multiple exchange terms. Our implementation of a variational Monte Carlo
Method has played a key role in describing the chiral phase in these models of ultracold atoms.

One of the highlights of our results is the identification of the topological character of the triplon excitations
in the SrCu2(BO3)2 quantum magnet, which would lead to a thermal Hall effect. The topological property of
the excitations is due the relativistic spin-orbit interaction and the structure of the material.

We will discuss a selection of interesting results in detail following the list of publications.
In the last year of the project we have organized a workshop ”Topological properties in quantum magnets”,

from August 30 – September 1, 2017. The workshop took place in the Wigner Research Centre in Budapest
and was open to researchers who wished to listen to the talks. The accommodation of the invited foreign
participants was covered by the grant. The list of the invited speakers is appended to this final report.

During the project two PhD student were involved: Miklós Lajkó (he completed his doctoral studies suc-
cessfully in 2013), and Péter Balla.

Publications

Our results have been published in 22 refereed journals: 2 Nature Communications, 3 Physical Review
Letters, 1 Scientific Reports, 14 Physical Review B, and 2 Journal of the Physical Society of Japan. The total
impact factor is above 100.

The starred items in the publication list are presented in more details starting from page 3.

SU(N) Mott isulators

1. Competing states in the SU(3) Heisenberg model on the honeycomb lattice: Plaquette valence-bond
crystal versus dimerized color-ordered state, by Corboz P., Lajkó M., Penc K., Mila F., Läuchli A.M.,
in Phys. Rev. B 87 195113 (2013).

2. Tetramerization in a SU(4) Heisenberg model on the honeycomb lattice, by Lajkó M., Penc K. , in
Phys. Rev. B 87 224428 (2013).

3. Order, by disorder in a four flavor Mott-insulator on the fcc lattice, by Sinkovicz P., Szirmai G., Penc
K., in Phys. Rev. B 93 075137 (2016).

4. *Plaquette order in the SU(6) Heisenberg model on the honeycomb lattice, by Nataf P., Lajkó M.,
Corboz P., Läuchli A.M., Penc K., Mila F., in Phys. Rev. B 93 201113 (2016).

http://www.szfki.hu/topquma2017
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.195113
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.224428
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.075137
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.201113
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5. *Chiral Spin Liquids in Triangular-Lattice SU(N) Fermionic Mott Insulators with Artificial Gauge
Fields, by Nataf P., Lajkó M., Wietek A., Penc K., Mila F., Läuchli A.M., in Phys. Rev. Lett. 117
167202 (2016).

6. *Generalization of the Haldane conjecture to SU(3) chains, by Lajkó M., Wamer K., Mila F., Affleck
I., in Nucl. Phys. B 924 508-577 (2017).

7. Linear Flavor-Wave Theory for Fully Antisymmetric SU(N) Irreducible Representations, by Kim F.H.,
Penc K., Nataf P., Mila F., in Phys. Rev. B 96, 205142/1-11 (2017).

f-electron systems

1. *Scaling theory vs exact numerical results for the spinless resonant level model, by Kiss A., Otsuki J.,
Kuramoto Y. , in J. Phys. Soc. Jpn. 82 124713 (2013).

2. *Exact dynamics of charge fluctuations in the multichannel interacting resonant level model, by Kiss
A., Kuramoto Y., Otsuki J., in J. Phys. Soc. Jpn. 84 104602 (2015).

Quantum spin models

1. Zero-temperature Monte Carlo study of the non-coplanar phase of the classical bilinear-biquadratic
Heisenberg model on the triangular lattice, by Wenzel S., Korshunov S.E., Penc K., Mila F. , in Phys.
Rev. B 88 094404 (2013).

2. *Berry phase induced dimerization in one-dimensional quadrupolar systems, by Hu S., Turner A.M.,
Penc K., Pollmann F., in Phys. Rev. Lett. 113 027202 (2014).

3. Interplay of charge and spin fluctuations of strongly interacting electrons on the kagome lattice, by
Pollmann F., Roychowdhury K., Hotta C., Penc K., in Phys. Rev. B 90 035118 (2014).

4. Chain-based order and quantum spin liquids in dipolar spin ice, by McClarty P., Sikora O., Moessner
R., Penc K., Pollmann F., Shannon N., in Phys. Rev. B 92 094418 (2015).

5. Subharmonic transitions and Bloch-Siegert shift in electrically driven spin resonance, by Romhányi
J., Burkard G., Pályi A., in Phys. Rev. B 92 054422 (2015).

6. Hall effect of triplons in a dimerized quantum magnet, by J. Romhányi, K. Penc and R. Ganesh, in Nat.
Commun. 6 6805 (2015).

7. Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model, by Co-
letta T., Tóth T.A., Penc K., Mila F., in Phys. Rev. B 94 075136 (2016).

8. Spin-Orbit Dimers and Noncollinear Phases in d1 Cubic Double Perovskites, by Romhányi J., Balents
L. and Jackeli G., in Phys. Rev. Lett. 118 217202 (2017).

Works done in collaboration with experimentalists

1. Empirical Monod-Beuneu relation of spin relaxation revisited for elemental metals, by Szolnoki L.,
Kiss A., Forró L., Simon F., in Phys. Rev. B 89 115113 (2014).

2. The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling, by Kiss A., Szol-
noki L., Simon F., in Sci. Rep. 6 22706 (2016).

3. *Magnon spectrum of the helimagnetic insulator Cu2OSeO3

Portnichenko P.Y., Romhányi J., Onykiienko Y.A., Henschel A., Schmidt M., Cameron A.S., Surmach
M.A., Lim J.A., Park J.T., Schneidewind A., Abernathy D.L., Rosner H., Brink J. v d and Inosov D.S.,
in Nat. Commun. 7 10725 (2016).

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.167202
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.167202
https://doi.org/10.1016/j.nuclphysb.2017.09.015
http://link.aps.org/doi/10.1103/PhysRevB.96.205142
http://journals.jps.jp/doi/abs/10.7566/JPSJ.82.124713
http://journals.jps.jp/doi/abs/10.7566/JPSJ.84.104602
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.094404
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.094404
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.027202
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.035118
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.094418
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.054422
http://www.nature.com/ncomms/2015/150413/ncomms7805/full/ncomms7805.html
http://www.nature.com/ncomms/2015/150413/ncomms7805/full/ncomms7805.html
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.075136
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.217202
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.115113
https://www.nature.com/articles/srep22706
http://www.nature.com/articles/ncomms10725
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4. *Spin excitations in the skyrmion host Cu2OSeO3, by Tucker G.S., White J.S., Romhányi J., Szaller D.,
Kézsmárki I., Roessli B., Stuhr U., Magrez A., Groitl F., Babkevich P., Huang P., Živković I., Rønnow
H.M., in Phys. Rev. B 93 054401 (2016).

5. Direct observation of spin-quadrupolar excitations in Sr2CoGe2O7 by high field ESR, by Akaki M.,
Yoshizawa D., Okutani A., Kida T., Romhányi J., Penc K., Hagiwara M., in Phys. Rev. B.96,
214406/1-16 (2017)

Detailed presentation of some selected results.

Topological excitations and Hall effect in a quantum magnet

Topology is a mathematical discipline that, remarkably, holds the answer to many of the interesting problems
arising in our field of interest. Commencing with the discovery of the quantum Hall effect [1] and topolog-
ical insulators [2], it has and keeps revolutionizing today’s physics. The notion of topology enabled us to
distinguish symmetrically identical but topologically distinct phases. Its importance has been recognized by
awarding the Nobel Prize “for discoveries of topological phase transitions and topological phases of matter”
last year. Most of topology related advances has been made in the context of weakly interacting electron
systems. The weakly interacting excitations of strongly correlated insulating magnets can, however, behave
similarly to the electrons of a topological band insulator. Recently, tremendous effort has been done in this
direction, underlining the relevance of such parallel.

In our work we identified the analogue of topologically nontrivial bands in the magnetic excitations of
the archetypal spin-gap quantum magnet SrCu2(BO3)2. The generalization of the conventional spin-1/2
Dirac physics known for the noninteracting electron systems to the spin-1 case arising naturally in the triplet
excitations is of particular importance [3].

SrCu2(BO3)2 is the physical realization of the well-known Shastry-Sutherland model, a two-dimensional
orthogonal dimer lattice of antiferromagnetically interacting spin-1/2 entities. In the exact ground state, the
spin-halves form a singlet states, which unambiguously cover the lattice, not breaking any symmetry. Due
to the finite spin-gap, the dimer-singlet state remains stable in low magnetic field as well. The low energy
excitations corresponds to promoting a singlet into a triplet state which then propagates over the lattice. In
an isotropic (spin rotational invariant) model the three different triplets are degenerate and localized. This is
not however what has been observed in experiments [4, 5]. The neutron spectrum reveals propagating triplet
modes that are split even in the absence of magnetic field [5]. To fully understand the physical properties of
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Figure 1: Left: The triplon dispersions for increasing magnetic field in the model for SrCu2(BO3)2. The
Chern number for each band is indicated. Right: Topologically protected edge-states (blue and red) at the
edges of an imaginary Sr2Cu(BO3)2 layer wrapped as a cylinder. The excitation on the upper and lower edge
move in opposite directions.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.054401
http://link.aps.org/doi/10.1103/PhysRevB.96.214406
http://link.aps.org/doi/10.1103/PhysRevB.96.214406
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SrCu2(BO3)2 therefore, one needs to extend the original Shastry-Sutherland model with anisotropies arising
from a weak spin-orbit interaction. The anisotropy responsible for the experimental observations is the so
called Dzyaloshinksii-Moriya interaction [6, 7].

Remarkably, the Dzyaloshinksii-Moriya is accountable for a lot more. We showed that this anisotropy term
renders the triplet bands topologically nontrivial. The great advantage of topological excitations over the
conventional noninteracting electron systems is that the topological properties can be tuned by magnetic field
instead of the more complicated doping. Such is the case with SrCu2(BO3)2. In zero field the triplet bands
form a novel spin-1 Dirac cone, with the three bands touching at a single point. A finite field fully splits the
triplets and the Chern number, the invariant characterizing the topological properties of the bands, becomes a
well-defined quantity. The larger spin-1 nature of triplets is reflected in the larger +2, 0,−2 Chern numbers.
Increasing the magnetic field, the bands undergo a band touching topological transition, above which they
become topologically trivial with zero Chern numbers. This topological transition is shown in Fig. 1

As a consequence of finite Chern numbers and nontrivial topology, when the system has edge states ap-
pearing at its open boundaries. Such edge modes emerge in the gap of the Chern-bands connecting those,
and are topologically protected against back-scattering, simply because there is “nowhere” to be scattered.
This means that at the edges, the sample is “conducting” and the current of edge modes is unaffected by
local defects or other small perturbations present in real materials. A representative propagating edge state of
SrCu2(BO3)2 is shown in Fig. 1. Beyond theoretical interest, the robust topological edge states have tremen-
dous potential in applications. They are ideally suited for devices in which the electrons themselves are static,
but the spin can be transported as in a wire. Such currents will not be dissipated by heating and the device
itself can work at higher speeds. This discovery suggests new systems for spintronics and new ways to use
spin currents to process and store information.

Our work has been published as: “Hall effect of triplons in a dimerized quantum magnet” by J. Romhányi,
K. Penc and R. Ganesh in Nat. Comm. 6, 6805/1-6, (2015)

Generalization of the Haldane conjecture to SU(3) chains

About 35 years ago, Haldane’s conjecture for Heisenberg spin chains came as a surprise to both condensed
matter and high energy physics communities [8,9]. Mapping the low energy degrees of freedom in the large-S
limit to the 1+1 dimensional O(3) nonlinear sigma model, Haldane argued that integer and half-integer chains
have fundamentally different behaviours: while half-integer spin chains are gapless, integer spin chains are
gapped with a unique ground state. The argument hinges on the presence of a topological term in the sigma
model, that has a nontrivial angle for half integer spins, while being trivial for the the integer spin case.
Despite the initial controversy, Haldane’s conjecture was quickly verified by numerical simulations and by
experiments on quasi one dimensional antiferromagnets [10].

Extending Haldane’s method to the SU(N) case is of interest for several reasons. Recent developments in
cold atom experiments allow the realization of SU(N) symmetric systems using alkaline earth atoms [12,13],
therefore it is very timely to provide theoretical predictions which can fuel future experiments. On the
other hand, although several numerical techniques are also extended for the SU(N) case [14, 15], due to the
increased size of the local Hilbert space and the increased correlation lengths they are often burdened with
finite size effects.

In our work we extended Haldane’s method to SU(3) spin chains in the fully symmetric representation
with p boxes in the Young tableau (see Fig. 1.) In this case the low energy degrees of freedom can be mapped
onto a SU(3)/[U(1) × U(1)] nonlinear sigma model containing a topological term with a topological angle
θ = 2πp/3. Based on numerical Monte Carlo calculations on the nonlinear sigma model we argue, that the
original SU(3) Heisenberg models must be gapped for p = 3m, while gapless for p = 3m ± 1. The latter
corresponds to an SU(3)1 critical point of the nonlinear sigma model at θ = ±2π/3 (see Fig. 2).

This work has been published as “Generalization of the Haldane conjecture to SU(3) chains”, by Lajkó
M., Wamer K., Mila F., Affleck I., in Nucl. Phys. B 924 508-577 (2017).

Quantum Monte Carlo simulations of Samarium based heavy electron compounds

Heavy-fermion materials with strong electron correlations play central role in solid state physics since they
provide fascinating novel phenomena such as unconventional superconductivity, non-fermi liquid behavior

http://www.nature.com/ncomms/2015/150413/ncomms7805/full/ncomms7805.html
https://doi.org/10.1016/j.nuclphysb.2017.09.015
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Figure 2: Left: Illustration for SU(3) spin chains with spins of the fully symmetric representation p-box
representation on each site. Right: The renormalization group flow diagram for the SU(3)/[U(1) × U(1)]
nonlinear σ-model. At θ = 2π/3 and θ = 4π/3 the system undergoes a phase transition from a gapless
phase at g < gc into a gapped phase with a spontaneously broken Z3 symmetry at g > gc. This corresponds
to a gapless to dimerized phase transition upon turning on next nearest neighbour interactions in the original
spin model [11]. For 2π/3 < θ < 4π/3 the system is gapped with a spontaneously broken Z2 symmetry,
while for θ < 2π/3 and θ > 4π/3 the system is gapped with a unique ground state for all values of g.

or anomalous Kondo effect. The main challenge in these systems is the study and understanding of interac-
tions between the localized electrons of partly filled f-orbitals and conduction electrons, which led to large
enhancement of the effective mass of electrons reflected in the low-temperature specific heat or resistivity.

Recently, peculiar heavy-fermion behavior has attracted attention in some samarium-based compounds
with large specific heat coefficient which is insensitive to external magnetic field. The resistivity shows
clear Kondo-like logarithmic anomaly in these compounds, which is, however, almost completely magnetic
field independent in strong contrast to the ordinary Kondo effect based on the spin degrees of freedom.
Motivated by these experimental observations we have searched for a charge fluctuation mechanism that
gives rise to energy scale much smaller than the bare hybridization. As a first step, we studied numerically
a modified version of the spinless Anderson model by the continuous-time quantum Monte Carlo method,
and then we extended this model by the inclusion of multiple channels for the conduction electrons. In this
extended model we have found that the competition of the Anderson orthogonality effect with the exciton
effect gives rise to heavy fermion state with large effective mass and strong charge fluctuations, which might
be responsible for the observed peculiar properties in the samarium-based compounds. Additionally, we have
found an unusual double-Lorentzian lineshape for the single-particle spectra which is explained successfully
by a quasi-particle perturbarion theory.

Our work has been published as “Scaling theory vs exact numerical results for the spinless resonant level
model” by Kiss A., Otsuki J., Kuramoto Y. in J. Phys. Soc. Jpn. 82 124713 (2013) and as “Exact dynamics of
charge fluctuations in the multichannel interacting resonant level model” by A. Kiss, Y. Kuramoto, J. Otsuki
in J. Phys. Soc. Jpn. 84 104602 (2015)

Excitations in the magnetoelectric skyrmion host Cu2OSeO3

Long-range dipole interactions, magnetic frustration, or relativistic spin-orbit coupling can lead to the forma-
tion of twisting spin structures in a wide range of compounds. Skyrmions are probably the most prominent
among them due to their nontrivial topology. These extended vortex-like spin textures can under certain
conditions condense into a lattice commonly observed in the metallic helimagnets such as MnSi [16, 17],
Fe1−xCoxSi [18, 19], FeGe [20], and CoZnMn [21].

http://journals.jps.jp/doi/abs/10.7566/JPSJ.82.124713
http://journals.jps.jp/doi/abs/10.7566/JPSJ.84.104602


Page 6 K106047 Final Report

Figure 3: Energy dependence of single-particle spectra withM = 1 (inset) andM = 5 (main panel) channels
for the conduction electrons. The double-Lorentzian lineshape develops with increasing Coulomb interaction
Ufc for M = 5.

When additional magnetoelectric coupling is present, the topologically protected skyrmions can be con-
trolled with the use of electric field, opening new frontiers in spintronical applications. Among the cubic
helimagnets, Cu2OSeO3 is the only insulator exhibiting skyrmion lattice phase and having finite magneto-
electric coupling. Cu2OSeO3 offers a unique playground to explore the microscopic origins of skyrmion
formation, besause its ground-state properties and low-energy excitations are fully governed by the magnetic
interactions between localized spins and are not affected by the presence of itinerant carriers.

Cu2OSeO3 consists of alternating Cu-tetrahedra with strong and weak interactions. A suitable model thus
treats the strongly interacting spins exactly, allowing for quantum mechanical entanglement between them.
These Cu-tetrahedra are the elementary units of our calculations. The four spin-halves form an entangled
spin-1 state on each tetrahedra, which below TC = 60 K establish the helical or the skyrmion lattice phases
instead of the bare Cu2+ spins.

Inelastic neutron scattering measurements accompanied with our theoretical calculation of magnon disper-
sion reveal the complete picture of magnetic excitations in Cu2OSeO3 over a broad range of energies in the
entire Brillouin zone. We used tetrahedron-factorized multiboson method to calculate the magnon spectrum
for the collinear state. Symmetrizing the time of flight data we assembled energy–momentum profiles along
a polygonal path involving all high-symmetry directions in momentum space as shown in Fig. 4(a). As a
test of our model, we calculated the scattering cross section (see Fig. 4(b)) demonstrating strikingly good
agreement with the inelastic neutron scattering data. This proves that the tetrahedral entities are protected by
a considerable gap and give rise to a rich magnetic excitation spectrum comprising a low-energy manifold
and a set of weakly dispersive high-energy magnon branches. The low energy modes can be understood as
classical (inter-tetrahedra) fluctuations of the effective S = 1 spins and the spectrum is dominated by an
intense parabolic Goldstone mode associated with the spin-wave branch of ferromagnetically ordered spin-1
entities. The high-energy modes correspond to intra-tetrahedra fluctuations which involves breaking up the
triplet state of a Cu-tetrahedron. The gap separating the two sets of excitations is nothing but the energy-cost
of the transition to a different spin-S multiplet.

Our model is able to describe all the available experimental results (magnetization, electron spin resonance
and inelastic neutron scattering data) simultaneously and may serve as a starting point for more elaborate low-
energy theories to understand the complex magnetic phase diagram of Cu2OSeO3, including the helimagnetic
order and challenging skyrmion-lattice phases.

This work has been published as “Magnon spectrum of the helimagnetic insulator Cu2OSeO3” by Port-
nichenko P.Y., Romhányi J., Onykiienko Y.A., Henschel A., Schmidt M., Cameron A.S., Sumach M.A., Lim
J.A., Park J.T., Schneidewind A., Abernathy D.L., Rosner H., van den Brink J., Inosov D.S., Nature Com-
mun. 7, 10725, 2016; and as “Spin excitations in the skyrmion host Cu2OSeO3” Tucker G.S., White J.S.,
Romhányi J., Szaller D., Kézsmárki I., Roessli B., Stuhr U., Magrez A., Groitl F., Babkevich P., Huang P.,
Živković I., Rønnow H.M., Phys. Rev. B 93, 054401/1-5, 2016

https://www.nature.com/articles/ncomms10725
https://www.nature.com/articles/ncomms10725
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.054401
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Figure 4: (a) Inelastic neutron scattering spectrum of Cu2OSeO3. The black lines represent the theoretically
calculated spectrum. The theoretically determined intensity of the modes is shown by the opacity of the
lines. (b) Dynamical spin structure factor calculated theoretically. The lines are artificially broadened with a
Gaussian function to model the experimental resolution.

Spin-orbital dimer-singlet

On account of spin-orbit interaction, the lattice- and spin degrees of freedom become coupled. A weaker
spin-orbit coupling, characteristic for light 3d transition metal compounds, gives rise to anisotropic exchange
interactions. In these materials the orbital degrees of freedom order and a local Jahn–Teller distortion of the
ligands surrounding the magnetic ions realizes the magnetic anisotropies. For materials with heavy transition
metal ions with 4d and 5d electric configurations, the spin-orbit coupling has a more direct effect in admixing
the spin and orbital degrees of freedom. The Jahn–Teller effect falls victim to the strong spin-orbit coupling
and the interplay between magnetism and lattice symmetries is manifested in modulated interactions and the
formation of unconventional magnetically and orbitally disordered ground states. The Mott insulating double
perovskites, such as spin-1/2 Ba2B MoO6 (B=Y, Lu) and Ba2BOsO6 (B=Na, Li) well exemplify this physical
scenario.

In these compounds the magnetic ions, Mo5+ or Os7+, form undistorted face centered cubic (fcc) lattices.
The osmium compounds Ba2NaOsO6 and Ba2LiOsO6 order magnetically [22–24], but the strong reduc-
tion of local moments is a direct fingerprint of unquenched orbital momentum and strong SOC [25–27].
The molybdenum compound, Ba2YMoO6 does not show any structural or magnetic transition down to 50
mK [28–30]. Based on magnetic susceptibility and muon spin rotation data, a valence bond glass state
has been proposed for Ba2YMoO6, in which spin singlets are amorphously distributed on the fcc lattice [29].
Theoretically various exotic phases have been suggested, such as multipolar order [31] and chiral spin-orbital
liquid states [32].

To elucidate the physical origins of the experimental observation in the double perovskites, we introduced a
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Figure 5: Phase diagram as the function of Hund’s coupling η and the spin-orbit coupling λ (in units of J).
For small values of η the dimer-singlet phase is stable over the entire range of the spin-orbit coupling. With
increasing η, noncollinear coplanar phases with ordered moments are stabilized.

suitable spin-orbital model which encompasses the directional dependent interactions, the Hund’s and spin-
orbit coupling. A dimer-singlet phase, composed of random arrangement of spin-orbit dimers that do not
break any symmetry nor show any type of long-range order is a natural ground state of the model. This
state can account for the experimental observations in the molybdenum compound; the lack of ordering and
the extensive degeneracy are consistent with the observed glassy behavior and measured residual entropy.
In addition, the four-sublattice ordered states with reduced moments emerging at larger values of Hund’s
coupling can describe the isostructural osmium compounds [33]. In both the spin-orbital dimer and the
ordered phases the spin and orbital degrees of freedom are entangled, involving the superposition of a S =
1/2 spin and the relevant t2g orbitals. The calculated phase diagram as the function of Hund’s and spin-orbit
coupling is shown in Fig. 5.

Our work has been published as “Spin-Orbit Dimers and Noncollinear Phases in d1 Cubic Double Per-
ovskites” by Judit Romhányi, Leon Balents, and George Jackeli in Phys. Rev. Lett. 118, 217202 (2017)

Berry phase induced dimerization in one-dimensional quadrupolar systems

The way quantum fluctuations melt a classical order and create novel quantum states is a fundamental
question of modern condensed matter physics. Mechanisms involving topological effects [34] have been
studied in great detail in one-dimensional spin chains as minimal models [35, 36]. In particular, the Berry
phase [37] associated with rotation of spins discriminates between antiferromagnetic Heisenberg chains with
half-integer and integer spins, making the excitations in the former gapless and in the latter gapped [38].

We studied the role of the Berry phase in the case of spin quadrupoles. Such nonmagnetic spin states
appear as a mean field solution of the S = 1 Heisenberg model

HBB =

L−1∑
j=1

cos θ (Sj · Sj+1) + sin θ (Sj · Sj+1)2 , (1)

where θ parameterizes the ratio of the bilinear and biquadratic terms and L is the length of the chain. It is
generally agreed that the model exhibits a ferromagnetic phase, a gapped “Haldane” phase [38], a gapless
trimerized phase and a gapped dimerized phase [39–41]. A long lasting debate has been going on about the
possible existence of a fifth, non-dimerized phase close to the θF = −3π/4 SU(3) symmetric point.

At the ferromagnetic SU(3) point θF the ground state is degenerate, and it has no fluctuations: any wave
function where each spin is in the same state is an exact ground state. Such is the spin ferromagnet, where
each spin points in the same direction, but also the

|ψFQ〉=
L∏
j=1

|ψ〉j =
L∏
j=1

(
nx |x〉j+ny |y〉j+nz |z〉j

)
(2)

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.118.217202
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wave function which describes a nonmagnetic ferroquadrupolar state. Here the coefficients are the compo-
nents of the n̂ = (nx, ny, nz) real unit vector. The states |x〉j = i(|1〉j−|1̄〉j)/

√
2, |y〉j = (|1〉j+|1̄〉j)/

√
2

and |z〉j = −i |0〉j form the time-reversal invariant basis of the S = 1 spins at site j (|1〉, |0〉 and |1̄〉 are
the Sz eigenstates), so the whole wave function is time reversal invariant. The |ψFQ〉 does not have the full
SO(3) symmetry. The order parameter can be thought of as an ellipsoid, as shown in Fig. 6(a). It has a
rotational symmetry around n̂, as well as an additional symmetry from flipping the direction axes n̂ → −n̂.
This extra symmetry distinguishes the quadrupolar order from the ferromagnetic order. As a consequence,
the “director” n̂ lives in the projective plane RP2 formed by identifying antipodal points of the unit sphere.

 
(a) (b) (c)

 

Figure 6: (a) In the quadrupolar state |y〉 the spin fluctuates over the yellow region perpendicular to the
director (green) [42, 43]. (b) Rotating a director in the projective plane, a Berry phase is picked up on the
red path only (the red dashed line connects equivalent points in RP2). (c) World lines of directors in 1 + 1
dimensional space time. The directors tend to align with adjacent ones in space, and they can rotate in time.
Rotations of a director as a function of time lead to a Berry-phase. Directors can either rotate by an angle
0 or π as shown in the two highlighted world lines, picking up a phase π in the latter case. To keep track
of the total rotation, we add a red dot onto the green ellipsoid. In between domains of different windings,
π-vortices appear (black dots).

Slightly away from θF , the nematic state of the spins described by |ψFQ〉 have lower energies than other
states at the mean-field level. There is no obvious reason that this state should become modulated with a
period of two near this point. Could this nematic phase be the fifth phase? This question was first raised
in [44, 45], where a window θF < θ . −0.66π for the existance of the nematic was given. This idea has
attracted considerable interest, and despite the progress in numerical techniques, recent simulations still are
producing contradicting results [46–49]. In Refs. [50, 51] it has been argued that the Berry phase associated
with quantum fluctuations of the quadrupoles dimerizes the nematic phase.

The Berry phase of a spin-quadrupole behaves differently from the Berry phase of a spin-coherent state.
We can distinguish two topologically distinct classes of closed adiabatic paths of the n̂: the paths can cross
the boundary of the RP2 an even or odd number of times [see Fig. 6(b)]. Since the Berry phase for the time
reversal invariant quadrupoles is quantized to 0 or π [52], the phase on homotopic paths is equal. In the case
of even number of crossings the path can be contracted to a single point, and we expect no Berry phase. For
an odd number of crossings the path cannot be contracted, and the wave function acquires a Berry phase π
for a spin-1 quadrupolar state.

To show that the Berry phase indeed makes the ground state dimerized, we constructed a low-energy
effective description by mapping the spin-model to a quantum rotor model near θF and used a space-time
path integral approach. Because of the continuous O(3) rotation symmetry n̂ does not have long-range order.
As illustrated in Fig. 6(c), the n̂ field in the two-dimensional (x, t̃) space has topological defects in the form
of vortices, characterized by the fundamental group π1(RP2) = Z2 [53]. The vortices separate domains
where worldlines of the directors have different winding numbers (and hence different Berry phases 0 and
π). The sign of the path integral depends on their distance: the sign is positive (negative) if the vortices are
separated by an even (odd) number of sites. This alternation leads to the dimerization. The mapping also
allowed us to derive scaling predictions, which we verified using large scale density-matrix renormalization
group simulations.

Additional insight into the nature of the ground state was obtained by studying the entanglement spectrum,
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by comparing the numerical one to the exact spectrum at the SU(3) symmetric θF point, which we also
derived.

Our work has been published as “Berry phase induced dimerization in one-dimensional quadrupolar sys-
tems, by Hu S., Turner A.M., Penc K., Pollmann F., in Phys. Rev. Lett. 113 027202 (2014)

Chiral phases in SU(N) Heisenberg models

With the recent progress towards achieving SU(N ) symmetry with ultra-cold fermionic atoms, [12, 54–60]
the investigation of the effective SU(N ) Heisenberg model on various one- and two-dimensional lattices
has become a very active field of research. Several remarkable ground state properties have been reported,
including long-range color order [61], algebraic correlations [62], translational symmetry breaking valence-
bond solid states in which groups of N atoms form local singlets on plaquettes [63, 64], and chiral ground
states [65,66]. In particular, for the SU(6) Heisenberg model on the honeycomb lattice, a mean-field calcula-
tion predicted a chiral spin one particle per site [67, 68]. However, the quite natural plaquette state in which
six SU(6) spins form singlets on nonadjacent hexagons was found to lie very close in energy.

To clarify the situation, we considered the SU(6) Heisenberg model defined by the Hamiltonian

H = cos θ
∑
〈i,j〉

Pij + sin θ
∑

plaquettes

i
(
P7 − P−1

7
)

(3)

where the operator Pij =
∑

α,β |αiβj〉〈βiαj | exchanges the N = 6 colors α and β of the atoms on neighbor-
ing sites i, j of a honeycomb lattice, and the P7 and P−1

7 ring exchange terms permute the configuration
on a hexagon clockwise and anticlockwise. We studied the properties of the model as a function of θ, noting
that θ = 0 corresponds to the pure Heisenberg model using state-of-the-art numerical methods: variational
Monte Carlo simulations based on Gutzwiller projected wave functions, exact diagonalizations, and infinite
projected entangled pair states (iPEPS) simulations.

In the variational Monte Carlo method we projected out the configurations having multiple occupancy
from the Fermi-sea constructed from a mean-field model. The variational parameters are the hopping am-
plitudes and the artificial fluxes given by their total phase around the elementary hexagons (plaquettes). An
importance sampling Monte Carlo method was used to calculate the energies and correlations of the pro-
jected states. [62] Our calculations [shown in Fig. 7(a)] revealed that the lowest energy states are similar
to those of Ref. [67]: (i) a configuration with uniform 2π/3-flux before projection, corresponding to a chi-
ral spin-liquid, [69] and (ii) a translation symmetry breaking configuration with 0-flux in a center plaquette
surrounded by π-flux plaquettes with non-uniform hopping integrals, corresponding to a plaquette ordered
phase. While the mean-field results of Ref. [67] favored the chiral phase, the plaquette-ordered phase turned
out, after projection, to have a slightly lower energy. Only after turning to exact diagonalizations and iPEPS
could we find compelling evidence that the ground state indeed has plaquette order. However, the chiral state
is not far in parameter space, however, and it does not take a large ring-exchange term to stabilize it.

The exact diagonalization spectrum on 24 sites [Fig. 7(e)] shows a clear change of behavior between the
small θ range, with a twofold excited state well separated from the rest of the spectrum, and the range above
θ ' 0.2, where a manifold of 6 singlet states becomes almost degenerate and very well separated from the
rest of the spectrum. So, the ED results are clearly consistent with a phase transition between a plaquette
phase and a chiral phase upon increasing the ring exchange term. This interpretation is further supported by
the comparison with variational Monte Carlo calculation on 24 sites. To access the low energy spectrum and
not just the ground state, we have constructed a large family of Gutzwiller projected states by changing the
boundary conditions of the fermionic wave-functions. For the chiral state, this parton construction leads to 6
(and only 6) significant eigenvalues of the overlap matrix [Fig. 7(f)], which themselves lead to 6 low-lying
states very close in energy. The 6-fold degeneracy of the ground state, which does not break translational nor
SU(6) symmetry, is of topological origin.

Encouraged by these results, we have extended our study to the triangular lattice with nearest neighbor
exchange and triangular ring-exchange terms for N=3, 4. . . 9. We have found very similar behavior, the
N -fold degenerate chiral ground state appeared for some finite values of ϑ.

Our work has been published as “Plaquette order in the SU(6) Heisenberg model on the honeycomb lattice”,
by Nataf P., Lajkó M., Corboz P., Läuchli A.M., Penc K., Mila F. , in Phys. Rev. B 93 201113 (2016) and

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.027202
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.201113
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Figure 7: Energies of Gutzwiller projected wave functions (a) after projection for the different flux configu-
rations as a function of td/th for 72 site cluster. (b)-(d) shows the flux configurations, black bonds represent
hopping amplitude td, while dark and light purple bonds denote hopping amplitudes th and −th, respec-
tively. In case of the uniform 2π/3 flux configuration, red arrows represent the complex hopping amplitude
∝ ei2π/3. (e) Comparison of the ED spectrum (black points) of the model of Eq. (3) with the variational
energies (continuous lines) based on Gutzwiller projected wave-functions for the 0ππ plaquette phase and
the 2π/3 chiral phase. (f) The ordered eigenvalues λj of the overlap matrices of the projected states with dif-
ferent twisted boundary conditions before projection as a function of j. The cutoff after 6 large eigenvalues
in the 2π/3 case corresponds to the sixfold degenerate ground state of the chiral phase.

in “Chiral Spin Liquids in Triangular-Lattice SU(N) Fermionic Mott Insulators with Artificial Gauge Fields,
by Nataf P., Lajkó M., Wietek A., Penc K., Mila F., Läuchli A.M., in Phys. Rev. Lett. 117 167202 (2016).

List of the invited talks for the ‘Topological properties in quantum magnets’
workshop

• Didier Poilblanc (Université Paul Sabatier, Toulouse), “Chiral spin liquid in a simple spin-1/2 frus-
trated Heisenberg AF on the square lattice”

• Frank Pollmann (TU München), “Dynamical signatures of quantum spin liquids”

• Judit Romhányi (Okinawa Institute of Science and Technology), “Chernful multiplet excitations in the
breathing kagome model”

• Fakher Assaad (Universität Würzburg) “Dirac Fermions with Competing Mass Terms: Non-Landau
Transition with Emergent Symmetry”

• Christopher Mudry (Paul Scherrer Institute) “Topological order in three spatial dimensions from cou-
pled wires”

• George Jackeli (Universität Stuttgart) “Spin-orbital frustration in Mott insulators”

• R. Ganesh (The Inst. of Mathematical Sciences, Chennai) “The quantum spin quadrumer”

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.167202
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• Frédéric Mila (EPFL, Lausanne) “Edge states and exact zero modes in topological 1D quantum mag-
nets”

• Itamar Kimchi (MIT, Cambridge Boston) “Randomness and Valence Bonds: theory and relevance to
YbMgGaO4”

• Alexei M. Tsvelik (Brookhaven National Laboratory) “Non-Abelian analog of Kitaev model”

• Hong-hao Tu (Ludwig-Maximilians-Universität, Munich) “Universal entropy of conformal critical
points on a Klein bottle”

• Keisuke Totsuka (Yukawa Institute, Kyoto University) “SU(N) cold fermions in a double-well optical
potential - a realistic playground for symmetry-protected topological phases”

• Matthias Punk (Ludwig-Maximilians-Universität, Munich) “Deconfined criticality in triangular SU(3)
antiferromagnets”

• Miklós Lajkó (EPFL, Lausanne) “Generalization of the Haldane conjecture to SU(3) chains”

References

[1] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-
structure constant based on quantized hall resistance,” Phys. Rev. Lett., vol. 45, pp. 494–497, Aug 1980.

[2] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological dirac
insulator in a quantum spin hall phase,” Nature, vol. 452, pp. 970 EP –, 04 2008.
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