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The sampling problem 

Protein molecules have many degrees of freedom, resulting in a high-dimensional 

configurational space. Describing the (native) free energy landscape of a protein thus involves 

sampling a high-dimensional probability distribution. This is a formidable problem, and despite 

tremendous efforts to develop “enhanced sampling” methods, it still remains a major stumbling 

block. Unfortunately, measuring sampling quality is often also difficult, and the choice is often 

between performing some kind of sampling in the hope that it will provide some insight, or giving 

up on the problem. Therefore, many studies have been published in the literature that perform 

analyses on various samples, ignoring the possibility that the sample may be insufficient to make 

any valid conclusion. 

Because functional (native) free energy landscapes are much smaller than the full (folding) 

energy landscape of a protein, it was argued that exploring them is within the reach of current 

sampling/simulation techniques. In particular, Materese et al. published an influential paper in 

PNAS (1) presenting what was claimed to be a description of the native energy landscape of the 

70-residue protein eglin c, using principle component analysis (PCA) in the space of torsion 

angles from a pool of molecular dynamics (MD) trajectories of a few hundred nanoseconds. This 

promising method offered a potentially general way to describe the functional landscapes of 

proteins. The analysis presented in the paper suggested that the native energy landscape of eglin c 

is hierarchically organized: clusters of conformations observed in the space of the first two 

principal components showed up as a collection of smaller clusters in the space of other principal 

components, and so on. 

As this method appeared to be potentially widely applicable, we decided to test it out, and to 

try to reproduce the results. We performed extensive simulations with eglin c using MD, 

accelerated MD, and coarse-grained (MARTINI) MD sampling, performing the same type of 

analyses as in (1). However, we noticed a significant dependence of the results on the sample size, 

obtaining inconsistent representations of the energy landscape. Examining the trajectories in the 

space of the first two principal components of the torsion angles, we noticed that the trajectory 

never actually revisits earlier conformations, indicating poor sampling. Repeating the simulations 

several times, different results were obtained. These results hinted at a significant sampling 

quality issue. 

As a model experiment, we performed sampling on oversimplified “toy” energy landscapes 

such as a single quadratic energy well or a completely flat surface (in multidimensional spaces). 

When these simulations were relatively short, we obtained quite complex, hierarchical “free 

energy landscapes” which actually only reflected a random walk on a featureless surface. 

Depending on the dimensionality, only fairly large sample sizes revealed the actual simple shape 

of the energy landscape. 

Here, we present the comparison of a 10-ns vs. a 1000-ns coarse-grained trajectory of eglin c as 

they appear in the space of the first two principal components of the torsion angles: 
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Comparison of short-time vs. long time (10 vs 1000 ns) coarse-grained trajectories of eglin c in the space of 

the principal components of torsion angles. 

 

As the figure shows, the short trajectory indicates a quite complex energy landscape, and 

further analysis reveals it to be hierarchical. However, as the simulation continues, the complexity 

vanishes, and we end up with just a single energy basin. (As this was a coarse-grained simulation 

using the MARTINI forcefield, the simplicity of the final landscape may be due to the lack of 

detail in the forcefield. However, the fact remains that better sampling results in a simpler energy 

landscape in this case.) 

We conclude that is highly likely that Materese et al’s results were due to insufficient 

sampling. The energy landscape of eglin c is unlikely to be as complex as presented; poor 

sampling produces an apparent “energy landscape” that is much more complex than it is in reality. 

There still are several ways to alleviate the problem of poor sampling, but there are various 

tradeoffs associated with every solution: the number of degrees of freedom, the size of the region 

to be sampled, the accuracy of the energy function, etc. has to be sacrificed.  

Gaussian mixture model of the molecular probability density function 

Assuming satisfactory sampling, the molecular probability density function (pdf) can be 

estimated, which is directly related to the energy landscape when the nature of the ensemble is 

known (we typically assume a canonical or isobaric-isothermal ensemble). Estimating the density 

is, however, not trivial. Starting from the idea that a quadratic energy well (which is the simplest 

form of an energy minimum) gives rise to a (multivariate) Gaussian distribution, we have 

developed a novel approach to describe energy landscapes: we approximate the molecular pdf 

with a mixture of multivariate Gaussians: 

𝑝𝑘(𝐪) = ∑ 𝑤𝑖𝑁(𝛍𝑖 , 𝛔𝑖)
𝑘
𝑖=1 , 

where the vector q represents the variables (in our case, torsion angles), k is the number of 

Gaussian components, wi is the weight of the i-th component, and N(μi, σi) is the multivariate 

normal distribution with mean μi and covariance matrix σi. The advantage of this estimate is that it 

is analytical, therefore easy to use for various estimations, and that it provides a smooth and 

realistic density function, informed by the knowledge that harmonic vibrations and therefore 

Gaussian distributions are ubiquitous in the statistical physics of macromolecules. Also, it has 

been proven that any function can be arbitrarily closely approximated with Gaussian mixtures. 

The estimation of a multivariate Gaussian mixture is, however, not trivial. Luckily, an efficient 

greedy learning method has been developed (2), which we were able to adapt to our purposes. 
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Combined with a cross-validation based stopping criterion, we have established a robust method 

that prevents both underfitting and overfitting. (3) 

Entropy estimation using Gaussian mixtures 

Once the Gaussian mixture model of an energy landscape has been estimated, it can be used for 

a number of analyses. The entropy of the probability distribution is easy to calculate from the 

Gaussian mixture, as it is simply a byproduct of the estimation algorithm. This can be converted 

to physical entropy in a straightforward way. When applied to probability distributions over 

torsion angles, the resulting absolute entropy is not physical, but the entropy differences between 

states are. Thus, the Gaussian mixture method gives us a practical way to calculate entropy 

differences between ensembles. 

We have implemented the method as a program named GMENTROPY, and made it publically 

available (http://gmentropy.szialab.org). Careful testing on small peptide test systems have shown 

that the method yields more accurate entropy differences on smaller samples than other, 

competing methods. It also scales well to larger molecules: we have calculated the entropy 

difference between the disulfide-bonded and disulfide-less states of a 17-residue antimicrobial 

peptide (see figure), and the entropy difference between two sub-states of the native state of the 

58-residue bovine pancreatic trypsin inhibitor (BPTI). 

 

 
Tachyplesin is a 17-residue antimicrobial peptide with 2 disulfide bridges. We estimated the molecular 

probability density of two variants (shown projected on the first two principal components in torsion angle 

space), and estimated the entropy difference. 

Application of entropy calculation on relative domain motion 

Uroporphyrinogen-3 synthase (UP3S) is a segment-swapped protein, i.e. it consists of two 

domains that evolutionary formed from a domain-swapped dimer (4). This results in the presence 

of two linkers between the domains, rather than one. We hypothesized that this helps reduce the 

entropy cost of ligand binding as the ligand binds between the domains and fixes the relative 

position of the domains. We generated conformational ensembles representing relative domain 

motions in several ways, and applied our entropy calculation method to the angles describing 

domain orientation. Comparisons were made with in silico variants of the protein with only one 

linker between the domains. The results confirmed the favorable effect of the two linkers on the 

free energy of ligand binding (5). 

Energy landscape analysis using Gaussian mixtures 

In addition to calculating entropies, the Gaussian mixture based probability density model also 

offers a novel way to analyze the free energy landscape of biomolecules. As there is a strict 

correspondence between the peaks of the molecular probability density function and the local 

energy minima of the energy landscape, analyzing the landscape is equivalent to analyzing the 

probability density.  
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We have developed a set of algorithms to identify the various features of the energy landscape 

using the individual components of the Gaussian mixture. This also allows us to answer the 

difficult question whether an energy landscape is hierarchical. 

The assumption behind this analysis is that each Gaussian component represents an underlying 

quasi-quadratic energy minimum on the energy landscape, even though there may not be an actual 

minimum on the landscape at that particular location due to the other components in the mixture 

which may suppress or shift the minimum. The first step of our analysis method is to associate a 

multidimensional ellipsoid with each Gaussian component. This “principal ellipsoid” is calculated 

from the covariance matrix of the Gaussian component, with its axes corresponding to the 

principal components and its border defined to be nσ from the mean where σ is the standard 

deviation whose value depends on the direction with regard to the mean, calculated from the 

eigenvalues of the covariance matrix, and n is a predefined number (we used n=4.0 in our 

calculations). In the second step, we determine the overlaps of the ellipsoids with each other. 

Ellipsoids that have no overlap with any other ellipsoid correspond to separate energy minima on 

the landscape, with their locations corresponding to the mean of the Gaussian component. Then, 

we define energy basins as connected sets of overlapping ellipsoids. A basin is considered to be a 

wider area that may include several energy minima. 

A further step of the analysis examines the relationships between individual ellipsoids and 

basins. An ellipsoid may lie completely inside another ellipsoid or a basin, thereby defining a 

lower level in the organization of the landscape. Nested sets of basins define a hierarchical 

landscape. 

Are native energy landscapes hierarchical? 

The hierarchical nature of free energy landscapes is a recurring theme in the literature (1, 6, 7), 

in the context of both folding landscapes and functional landscapes. However, different authors 

use different definitions of hierarchicity, and the algorithms used to define the hierarchy are often 

such that they will always yield a hierarchy regardless of how the landscape actually looks like 

(e.g. hierarchical clustering will always produce a hierarchical arrangement of clusters). In order 

to avoid tautology, and meaningfully ask the question whether a particular landscape is 

hierarchical, we need a stricter and consistent definition of hierarchicity. Our definition is based 

upon well-defined energy basins (as identified by our Gaussian mixture based algorithms), and the 

criterion that an energy basin is assigned to a lower level of hierarchy if it lies completely inside 

another (necessarily wider) energy basin. As an example, we show here the organization of the 5-

dimensional free energy landscape of the Ala-Val-Ala peptide as obtained from a sample of 

10,000 Monte Carlo samples: 

 
The organization of the free energy landscape of the Ala-Val-Ala peptide, as gleaned from Gaussian 

mixture fitting on 10,000 Monte Carlo samples. Rounded rectangles represent energy basins; the arrow 

indicates a step down in the hierarchy. Bar graphs represent individual Gaussian components, with the bars 
proportional to the lengths of the semi-axes of the principal ellipsoids; the last bar in each graph represents 

the weight of the component. 

 

As the figure shows, this landscape has 6 energy basins organized into 2 levels of hierarchy; 3 

basins are only composed of a single Gaussian component each. However, we found that when we 

increase the sample size, the hierarchy disappears, again indicating that some of the complexity 

observed here is only a result of insufficient sampling. 
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We have applied our algorithm to conformational ensembles of several systems, from small 

peptides with only 3 degrees of freedom up to proteins with over 200 degrees of freedom (i.e. 

torsion angles). In general, we found little hierarchicity, if any. Running the algorithm on a 51-

component Gaussian mixture in 221-dimensional space obtained from a 1-millisecond trajectory 

of bovine pancreatic trypsin inhibitor (BPTI) (8) revealed 3 distinct energy basins but no 

hierarchy. When applied to ensembles obtained from coarse-grained simulations of eglin c (a 70-

residue protein), two-level hierarchies were seen on short sub-trajectories but no hierarchy on the 

full trajectory. From extensive simulations, the (non-)disulfide-bonded 17-residue tachyplesin was 

found to have 7 (10) energy basins but no hierarchical organization. Although it is difficult to 

generalize based on this small number of systems, the results suggest that native free energy 

landscapes tend to have little or no hierarchy (apart from spurious hierarchy resulting from 

insufficient sampling). Hierarchicity may be more prominent in folding energy landscapes. 

Using SAXS data to estimate the conformations of ROCK kinase 

Although the energy landscapes of large protein molecules are expected to be very complex 

and inaccessible due to the high number of degrees of freedom, there are cases when a significant 

part of the landscape can be assumed to be nearly flat. This is the case when the molecule contains 

a long flexible part. The ROCK2 kinase molecule is a homodimer of 2 chains of 1388 residues. 

Much of the molecule is a coiled coil, which appears to be relatively flexible. The kinase domain 

is at the N-terminus but is usually inactive as it is assumed to be inhibited by the C-terminal 

domain binding to it. The RhoA protein binds to a region on the coiled coil, and there is some 

contradictory experimental evidence that it may activate the kinase by allowing the C-terminal 

domain dissociate from it. Thus, we were interested in comparing the energy landscape of ROCK 

in its RhoA-free and RhoA-bound state. Due to the flexibility of the coiled coil, we expect a 

relatively flat landscape. Thus, we were able to use geometric simulation (the FRODAN program 

(9)) to generate very large ensembles of conformations and filter them using available small-angle 

X-ray scattering data. The results confirmed that the RhoA-free form is more compact, with its 

termini close to each other, while the RhoA-bound form is more extended (see figure). We have 

also developed a protocol using geometric simulation to help interpret SAXS data and estimate 

structures. A publication presenting the results has been submitted. 

 
Left: the most probable RhoA-free; Right: the most probable RhoA-bound structure of the ROCK2 

kinase as selected using SAXS data from ensembles of conformations generated by geometric simulations 

 

Solving the sampling problem by reducing the state space: coupled folding-
binding of homodimers 

 

As large molecules and molecular complexes have an astronomical number of possible states, 

sampling all of them to estimate the probability density is not feasible. But even the real 

molecules themselves are unable to sample all their states, which suggests that a full sampling 

should not be necessary to understand their function. In fact, large groups of microscopic states 
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are essentially equivalent. This suggests that sampling can be simplified if we merge those states 

that are functionally and structurally equivalent. 

To test this idea, we have chosen the coupled folding and binding of homodimers of 

intrinsically disordered peptides. The source of intractability here is the huge size of the part of the 

state space reflecting the relative positions and orientations of the chains.   

To reveal the whole dynamics of a two-protein system, all the microstates and the transitions 

between them must be known. They constitute a graph (kinetic network) the nodes of which are 

the microstates and the edges are the transitions. Analysis of the kinetic network provides insight 

into the mechanisms of dimer formation. Based on the foldedness state of the monomers at the 

moment of association, we defined three possible mechanisms of dimer formation: induced 

folding (association between two unfolded monomers); conformational selection (association 

between a folded and an unfolded monomer); and rigid docking (association between two folded 

monomers). This is an extension of the traditional binary classification of mechanisms of folding 

of an unstructured peptide coupled to its binding to a partner. 

Two-layer kinetic network model  

To perform exact calculations for the dimer formation, we reduced the dimensions of the state 

space belonging to the relative positions and orientations of the chains by compressing the relative 

positional and orientational subspace belonging to a particular conformational state into a unique 

associated state, i.e. a state where at least one interchain contact is present, and a unique 

dissociated state, i.e. a state where there are no contacts between the chains. Thus, we defined a 

network where each conformational state was represented by two nodes representing an 

associated and a dissociated state, respectively, with the associated and dissociated states 

constituting the two-layers of the graph.   

The two assumptions underlying the definition of our two-layer kinetic network model are: i) 

the translational movements and the binding dissociation events are fast compared to the 

conformational transitions of the chains and ii) among microstates belonging to the same pair of 

monomer states, only the associated states of minimal energy are populated significantly. The 

second assumption corresponds to the fact that the partial energy landscape of binding between 

the particular conformations is funneled.  

We combined our two-layer kinetic network model with both the two-dimensional HP lattice 

model (10) and the Wako-Saito-Muñoz-Eaton (WSME) ensemble-based model (11). Both studies 

concluded that all three dimer formation mechanisms (as defined above) are simultaneously 

present, but with widely different probabilities for different proteins; their relative importance also 

depends on external criteria such as concentration, time, or the type of process investigated (i.e. 

equilibrium, steady-state, transient, etc.). 

WSME 

We applied our two-layer approximation in combination with the WSME model to eight 

homodimers, four of which are two-state and the other four are three-state homodimers. 

Modified single sequence approximation. The problem of solving the WSME model (12) 

exactly is computationally intractable. On the other hand, exact solution is not capable of 

generating all the conformational states. Instead, often the single- or double-sequence 

approximation is used where only one or two stretches of folded residues are allowed. The single- 

and double-sequence approximations, however, provide very inaccurate estimations for the free 

energies. We modified the single sequence approximation by considering the entropic effect of 

non-specific residue folding out of the single sequence. 

Calculations with the modified single sequence approximation for acylphosphatase (1aps) 

provides a free energy curve very similar to that provided by exact calculation in opposed to the 

original form of single-sequence approximation or the double sequence approximation. 
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Relative importance of the dimer formation mechanisms. The probabilities of the possible 

mechanisms were calculated for the eight homodimers by the Transition Path Theory (13). We 

found that for almost all of the eight proteins, all three mechanisms are present but often with very 

different probabilities.  

Preformed structural elements. We investigated how folded the monomers are before they 

bind together, and found that even for the two-state sequences, some (occasionally even quite 

significant) residual structure is present in the monomer form, as the figure below shows. 

 
The foldedness of particular residues at the moment of association for (a) the two-state and (b) the 

three-state dimers. Two-state dimers are rather unfolded when the two chains bind together, while three-

state dimers are essentially fully folded with the exception of BS-RNase 

 

Effect of concentration on the dimer formation mechanism. The effect of the protein 

concentration on the dominant mechanism was investigated. We found that as the concentration 

increased, the importance of rigid docking relative to induced folding also increased. For several 

proteins, the probability of conformational selection had a maximum at medium concentrations. 

Also, the proportion of preformed segments increased with the concentration.   

HP lattice models 

We applied our two-layer network model to two-dimensional HP (hydrophobic-polar) lattice 

model sequences to investigate the coupled folding and binding of intrinsically disordered 

peptides to an ordered complex. Sequences of 4-8 beads having a degenerated ground state as 

monomers and a unique native state conformation in the dimer were selected for investigation, 

representing sequences for which the monomers are disordered but the dimer is ordered. 

Defining an energy function reproducing two-state folding behavior. As the adjacency-

based energy function proposed by Lau and Dill (10) does not reproduce two-state folding 

behavior, we tested three additional energy functions: a distance-based energy function, a cluster-

based energy function, and a “squared diagonal” energy function. In the distance-based energy 

function, the energy of a conformation depends on some negative power of the Euclidean 

distances between each pair of hydrophobic beads. In the cluster energy function, clusters of 

adjacent hydrophobic beads are defined and the distance-based energy between pairs of beads 

belonging to the same cluster are calculated. In the squared diagonal energy function, the energy 

of a conformation is the squared sum of distance-based energy terms calculated for pairs of beads 

for which the squared Euclidean distance less than 2.  

The four energy functions were compared, and it was concluded that only the squared diagonal 

energy function exhibits two-state folding as shown by the ratio of van't Hoff and calorimetric 

enthalpies. Thus, the squared diagonal energy function was used in the further calculations. 
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Transition matrix. A transition matrix was built with the microstates of a two-chain system as 

nodes and transitions defined by the ‘pull moves’ move set as edges. A fixed version of the pull 

moves move set was used (14). Transition probabilities were calculated according to the 

Metropolis-Hastings criterion (15, 16).   

Metastable states. We applied Perron Cluster Cluster Analysis (PCCA) methods (17, 18) to 

reveal the metastable states in the state space. We found that our sequences do not have a few 

metastable states containing many microstates but rather many metastable states each with a few 

microstates and having similar escape times.   

Relative importance of dimer formation mechanisms. Calculations based on Transition Path 

Theory, and time-dependent flux calculations showed that each of the three mechanisms was 

present for all the sequences. The relative importance of the mechanisms was also dependent on 

whether a non-stationary, a steady-state of an equilibrium process was investigated. The dominant 

mechanism may also change in time as the process advances. 

Symmetry of dimer formation. We investigated whether the immanent symmetry being 

present in the native structure of the studied homodimers manifests itself in the process of dimer 

formation. An asymmetry parameter for the two chains was defined and calculated as a function 

of time. For some sequences, the maximal asymmetry during the dimer formation significantly 

exceeded the equilibrium value of the asymmetry parameter indicating that asymmetry can be 

essential in the coupled folding and binding process. 

 

Our results related to dimer formation mechanisms have been presented at several conferences, 

and a publication has been submitted (expected to be published early 2018). 

 

Collaborations with other groups 

During the project, we have also utilized our methods in several collaborations including the 

modeling of the effect of mutations on the Sleeping Beauty transposon (19), modeling of 

transposon proteins (20), kinetics of proteinase networks (21), allo-network drugs (22), template-

based prediction of protein-protein interactions (23). Several projects with collaborators have 

produced further manuscripts that are submitted. 
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