
Final report on the project entitled

“Collective properties of dislocations”

The main objective of the work proposed in the project was the experimental and theoretical
investigation of the statistical properties of the deformation of micron sized objects. The research
carried out can be separated into five different tasks.

Developing a continuum theory of dislocations

According to recent experimental and numerical investigations if a characteristic length (like grain
size) of a specimen is in the submicron size regime several new interesting phenomena emerge during
the deformation. Since in such systems boundaries play a crucial role, to model the plastic response
it is crucial to determine the dislocation distribution near the boundaries. We proposed a phase field
type continuum theory of the time evolution of an ensemble of parallel edge dislocations with identical
Burgers vectors, corresponding to the dislocation geometry near internal boundaries. In order to
account for the strong variation of the dislocation density (denoted by ρ+) near the boundaries
observed by discrete dislocation dynamics (DDD) simulation (see Fig. 1) we had to introduce gradient
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Figure 1: (a) Random initial configuration of dislocations in a channel. (b) Relaxed dislocation
configuration. The boundaries in x direction are impenetrable and periodic boundary condition is
used in the y direction. It is mentioned, that the channel is embedded in a medium infinite in the x
direction.

like and surface terms into the phase field dislocation continuum theory we proposed earlier. The
phase field functional suggested reads as:
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where χ is the stress potential generated by the dislocation system, D, T , ρ0, u0, and αsf are
constants, and Ŝ is a 2x2 constant matrix. According to the standard formalism of phase field theory
for conserved quantities the evolution equation of the dislocation density reads as

ρ̇+ + ∂xj+ = 0 with j+ = M
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]

.
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An important nonstandard feature of the above evolution equation is that M [x] is a nontrivial on/off
type mobility function preventing the evolution of the dislocation density if the internal stress related
to dislocation-dislocation correlations is smaller than a critical value (for details see [4]). A direct
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Figure 2: Dislocation density profiles (relative to the initial density), averaged in the direction perpen-
dicular to the slip direction, developing between two impenetrable walls obtained by DDD simulation
(circles) and the numerical solution of the phase field model proposed (full line). Relevant simulation
parameters are: u0 = 0.26, αsf = 5.5, αm = 0.02.

comparison of the prediction of the continuum theory and DDD simulations can be seen in Fig. 2.
The results obtained are published in PRL [4].

We could also generalized the continuum theory of dislocations with two types of dislocation
densities ρ+ and ρ−. It turned out, that a term we have neglected earlier plays an important role
in dislocation patter formation. In this case the evolution equations for the total dislocation density
ρ = ρ+ + ρ− and the “geometrically necessary” dislocation density κ = ρ+ − ρ− read as
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where M [x] is again a nontrivial on/off type mobility function, while M0 is a constant. It is found if
κ << ρ the phase field functional

P (ρ, κ, χ) =

∫
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where A and T are constants, gives the same evolution equations obtained by the systematic coarse
graining the equation of motion of individual interacting dislocations (see details in [6]). It was found
by the stability analysis of the trivial homogeneous solution of the above system of partial differential
equations that the continuum theory derived leads to dislocation pattern formation if the external
load is large enough. It is interesting to note that the primary source of instability is related to
the on/off type mobility function (responsible for the finite flow stress of the dislocation system),
but the last two terms in P (ρ, κ, χ) related to dislocation-dislocation correlations are crucial for the
observed length scale selection in dislocation patterning. Since the theory proposed is scale free, i.e.
the evolution equations do not contain any parameter with length dimension, the length scale of the
patterning is inversely proportional to

√
ρ, that is in agreement with the experimental observation.
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Understanding patterning is a nearly 60 years old problem of dislocation theory. The continuum
theory we have derived is obtained by linking the microscopic and mesoscale descriptions of the
collective motion of dislocations. Our theory is the first one that predict patterning on a non-
phenomenological manner. The results obtained are published in PRB [6].

Properties of dislocation avalanches studied by DDD simulations

Experimental evidences obtained during the past decade indicate that if the system size is less then
about 100µm the mechanical response of the system (stress-stain relation) depends on the system size.
This phenomenon is commonly called size effect. Moreover, if one goes below of 10µm characteristic
sizes the stress strain response obtained contains random irregular steps resulted by the avalanche
like collective motion of dislocations. So, the mechanical properties at this scale cannot be described
on a deterministic manner.

In order to get a deep insight into the statistical nature of the stress-strain relation we have
performed many large scale 2 and 3D discrete dislocation dynamics simulations with different system
sizes and initial dislocation configurations. During the simulations the external stress was slowly
increased. A typical simulation result can be seen in Fig. 3.

Figure 3: Typical configuration of 3D DDD simulations together with the stress-strain curve. Dislo-
cation colors denote different glide planes of the fcc crystal structure.

An important new result obtained is that the regions between avalanches in the individual stress
curves as functions of the plastic strain were found nearly linear and reversible (see Fig. 4). In
these regions the plastic deformation obeys an effective equation of motion with a nearly linear force.
Moreover, for small plastic deformation, the means of the stress-strain curves are power law over two
decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge
for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit.
In accordance with size-effects from experiments, the converging averages decrease with increasing
size. For large plastic deformations, where steady flow sets in, thermodynamical limit was not realized
in this model system. At any strain level the probability distribution of stress (corresponding to
different realization, i.e. different initial dislocation configuration) follows a Weibull distribution
with a Weibull exponent practically independent from the strain level. The results obtained are
published in Acta Mat. [2] and PRB [5].

We have also studied in details the properties of strain bursts (dislocation avalanches) occurring
in a 2D DDD models under quasistatic stress-controlled loading. Contrary to previous suggestions,
the avalanche statistics differs fundamentally from predictions obtained for the depinning of elastic
manifolds in quenched random media. Instead, we have found an exponent τ = 1 of the power-law
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Figure 4: Stress-strain curves for two realizations obtained by 2D DDD with N = 512 dislocations.
Segments between plateaus are found to be nearly linear, dashed lines are guide to the eye. Inset:
averages of increasing segments normalized to have the same initial and final values. For fixed N ’s
all fall on the same curve, close to a linear function.

distribution of slip or released energy, with a cut of that increases exponentially with the applied
stress and diverges with system size at all stresses (see Fig. 5).

Figure 5: Differences between pinning and the jamming/unjamming scenario observed for dislocation
systems. For pinning/depinning type of transition the mean value of the avalanche size < s > is
independent from the system size at small external forces, while it diverges at a critical force value.
For dislocation systems it always size dependent and no divergence is observed.

These observations demonstrate that the avalanche dynamics of 2D dislocation systems is scale-
free at every applied stress and, therefore, can not be envisaged in terms of critical behavior associated
with a depinning transition. The results obtained are published in PRL. [3].

Mesoscopic stochastic model

As it is discussed in the previous section the plastic deformation of crystalline matter often involves
intermittent local strain burst events. Similar behavior is also observed for amorphous matter, al-
though in an amorphous structure dislocations cannot exist (the elementary carriers of plasticity are
the shear transformation zones). To understand the physical background of the nondeterministic
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nature of the stress-strain response observed a minimal stochastic mesoscopic model was introduced,
where microstructural details are represented by a fluctuating local yielding threshold. It represents
a link between the DDD approach corresponding to the microscale and the fully deterministic con-
tinuum descriptions. The model is a cellular automaton (CA) representation of the plastic strain
field evolution. The elementary event is the local slip of a cell (achieved in practice by the motion of
nearby dislocations), that induces a long-range internal stress redistribution, that may trigger fur-
ther events. To account for microstructural rearrangements taking place during plastic slip, the local
yield threshold is updated on a stochastic manner after each event. The resulting model recovers the
stochastic nature of plasticity and yields a power-law distribution for the random steps appearing on
the stress-strain curves.

The free parameters of the model are the distribution of the local yield stress and the magnitude
(or distribution) of a local slip event. These parameters are representing the microstructural features
of the actual material. They have to be determined from a lower level model. In order to do so we
performed large scale DDD simulations. We found that the stress value corresponding to the first
avalanche follows a Weibull distribution, and the mean stress at the ith avalanche represent a weakest
link sequence from the same distribution. This implies that plastic events are local and the subsequent
avalanches are weakly correlated confirming the main assumption of the stochastic mesoscopic model.
Moreover, with the appropriate choice of the parameters of the Weibull distribution used to get the
flow stress values at the updating of the system, the stochastic mesoscopic model is able to reproduce
the stress-strain response obtained by DDD. The results obtained are published in two papers [7] ans
[10].

Micropillar compression tests

In order to experimentally study the plastic deformation properties of micron sized specimens we
performed compression tests on micron sized pillars (called micropillar) fabricated into the surface
of different (Cu, Zn, Al alloy) single crystals (for details see below). To be able to carry out the
compressions we first had to build a micro-compression device suitable to put into the chamber of
our SEM (a FEI Quanta 3D). Although, similar devices available commercially, each of them has
digital feedback controlling system, resulting a relatively strong integration of the signal measured.
So, they are not really suitable to measure the fast avalanches happening during the compression
test. To overcome this limitation we have developed a device with fast analogous feedback system.

The sketch and a picture of the device are shown in Fig. 6. Two linear ultrasonic motors are
used for the X and Y positioning of the sample. They can move in 0.3µm steps, but with 10nm
precision. To be able to detect acoustic emission signal generated during the dislocation avalanches
an AE transducer is mounted on the top of the two stages. In Z direction two stages are used.
One is a linear step-motor stage used for the “raw” motion of the compressing tip to get it close
to the sample. The other one mounted on the linear step-motor stage is a piezoelectric positioning
(PEP) stage with about 0.1 nm resolution. During the actual compression test only this stage is
moved. To measure the external force a standard spring mounted on the PEP stage is used with
strong transverse but very weak longitudinal stiffness. The elongation E of the spring is measured
by a capacitive sensor with 0.1 nm resolution. If the PEP stage is moved by the distance P , and the
capacitive sensor measures E elongation than the sample deformation is D = P − E and the acting
force is F = SE , where S is the stiffness of the spring. The pillar compression is performed using a
flat punch diamond tip. It should be mentioned that to avoid the charging of the compressing head
in the SEM a tip doped by boron has to be used.
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Figure 6: The sketch and pictures of the micro-compression device.

Since the statistical analysis of the deformation process of micropillars requires a large number
of independent tests we had to develop a new efficient method to fabricate the pillars. They are
produced by FIB “digging” a hole around the pillar into the surface of the single crystal. The steps
of the fabrication process are described in details in [8].

Figure 7: Compressed micropillar with the corresponding stress versus time curve together with the
acoustic emission signal. The right box shows an enlarged part of the curve plotted in the left box.
The coincidence between the stress drops and the acoustic emission signals can be seen.

Typical results obtained can be seen in Fig. 7.(For a movie of an in situ compression see
http://metal.elte.hu/∼groma/micropillar/compresion.mp4) It is important to note that with the
device developed we found much more small stress drops than in the earlier investigations presented
in the literature. This is due to the fast analogous feedback introduced and the enhanced sensitivity
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of the force measurement. Moreover, for the first time we could detect directly acoustic emission
signal generated during the compression of a micropillar.

X ray line profile and internal stress distribution measurements

Based on the cross correlation analysis of the Kikuchi diffraction patterns high-resolution EBSD
(HR-EBSD) is a well established method to determine the internal stress in deformed crystalline
materials. In many cases, however, the stress values obtained at the different scanning points have
a large (in the order of GPa) scatter. As it was first demonstrated by Wilkinson and co-workers
this is due to the long tail of the probability distribution of the internal stress (P (σ)) generated by
the dislocations present in the system. According to the theoretical investigations of the PI and co-
workers the tail of P (σ) is inverse cubic with prefactor proportional to the total dislocation density
< ρ >. This opens a new possibility to determine important microstructural parameters by EBSD
but there are several open issues need to be resolved before the method can be used in a routine way.

To address some of the issues, HR-EBSD results obtained on compressed Cu single crystals were
compared to X-ray diffraction (XRD) line profile analysis, that is a well established experimental
technique for determining microstructural parameters such as coherent domain size, dislocation den-
sity, its fluctuation, and polarization of the dislocation system. As shown by the earlier work of
the PI in the so-called ”strain broadening” setup the three leading terms at the tail of the intensity
distribution I(q) read as

I(q) =
1

π2d

1

q2
+

Λ

4π2
< ρ >

1

q3
+

3

8π3
〈s〉 q

|q5| |q| > q0

where q = 2[sin(Θ) − sin(Θ0)]/λ, d is the coherent domain size, < ρ > is the average dislocation
density, < s > is a parameter proportional to the net polarization of the dislocation system, and λ
is the wavelength of the X-rays. Θ and Θ0 are the half of the scattering angle and the Bragg angle,
respectively. The parameter Λ is commonly given in the form Λ = 2|~g|2|~b|2Cg/π where ~b and ~g are
the Burgers and the diffraction vector, respectively. Cg is called the diffraction contrast factor and
depends on the type of the dislocation and the relative geometrical position between the dislocation
line direction and the direction of ~g. Considering that the tail of the experimental intensity curve
can be rather noisy the actual values of the domain size and the dislocation density can be better
obtained from the integral quantity

M2(q) =

∫ q

−q
q′2I(q′)dq′

called as second order restricted moment. In the large q regime it reads as

M2(q) =
1

π2d
q +

Λ

2π2
< ρ > ln

(

q

q0

)

where q0 is a constant depending on the dislocation-dislocation correlation. If the coherent domain
size is larger than of about 1 µm the first term becomes negligible beside the contribution of dislo-
cations and the plot of M2 versus ln(q) becomes a straight line in the asymptotic regime q → ∞. Its
slope is proportional to the mean dislocation density. Using this feature the dislocation density can
be determined with an accuracy of a few percent. Since the tail of the internal stress distribution is
also inverse cubic the second order restricted moment calculated from the stress distribution is also
linear in ln(σ) with slope again proportional to the dislocation density.

Since the software required for HR-EBSD internal stress analysis is not commercially available,
as a first step, we had to develop our own software. After this HR-EBSD analysis were performed
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on Cu single crystals deformed up to 6 and 10%. X-ray profiles were also determined on the same
samples.

Figure 8: The probability distribution of the σ13 stress component at strains of 0%, 6% and 10% ,
and the corresponding M2 versus ln(σ) for the deformed samples, with the straight lines fitted in the
asymptotic regime.

It is found that the dislocation density < ρ > determined from P (σ) is about the same obtained
from X-ray line profile (for details see [9]. This opens further perspectives for the application of
EBSD in determining mesoscale parameters in a heterogeneous sample.
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Figure 9: The M3(q) restricted moments at different external stress levels which are below the flow
stress. For easier interpretation the M3(q) curve obtained on the unloaded sample is subtracted from
the curves.

Another issue studied during the project is related to the fact that an external load, even if
smaller than the flow stress, generates dislocation rearrangement leading to a net polarization of the
system. According to the theory of X-ray line broadening explained above, this polarization leads
to Bragg peak asymmetry. We have found a direct experimental validation of the theory by in situ
profile measurements on an “elastically” deformed Cu single crystals. The profiles are evaluated by
the third order restricted moments defined as

M3(q) =

∫ q

−q
q′3I(q′)dq′ ≈ 3

4π3
〈s〉 ln(q/q1),
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where q1 is a constant. In agreement with the theory it is found that peak asymmetry is increasing
with deformation (for details see [1]).
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