
OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

Image Synthesis with Image-space Finite Elements

OTKA Project Report, PD — 104710

Principal investigator: László Szécsi PhD

September 28, 2016

1 Research objectives

The objective of the research was to investi-
gate image synthesis algorithms that construct
an image using atomic components different
from the pixels of classic optical simulation.
This approach does not only include illustra-
tive, non-photorealistic, or artistic rendering
techniques, but also synthesis of artificial vi-
sual stimuli and particle-based modeling and
simulation approaches.

2 Overall progress

On one part, research carried out during the
project went along the path outlined in the
original proposal, and for the other part, it ex-
tended to include applications in experimen-
tal biology. In terms of the stated practi-
cal goals, the work was fruitful — advances
in several areas have been made, international
cooperation has been established, several stu-
dents and a PhD student have been attracted
to the research — but management of time and
dissemination was not sufficiently stringent to
entirely deliver the high level of publications
that we anticipated. In particular, the GPU-
based retina stimulation project, carried out
in cooperation with international partners, ab-
sorbed inordinate amount of time and effort,
but suffered delays beyond our immediate con-
trol, with a major journal publication (Nature

Scientific Reports) due, but not submitted for
publication yet.

3 Results

3.1 Component-based visualization
engine

A framework for the implementation and test-
ing of new visualization algorithms was de-
veloped in the early stage of the project.
This component-based engine exploits new
language capabilites of C++ to realize a
strongly property-based object model, instead
of a monolythic hierarchical object-oriented
scheme. Convoluted GPU-programming tasks
can be scripted with relative ease. The frame-
work was the basis of the development of most
results detailed in this document, and will
remain a useful tool for any future research
within the group.

As part of this effort, our paper4 pre-
sented an algorithm for ordering state change
operations—including shader context changes
and input/output bindings—necessary to ren-
der a frame in an interactive application. We
expanded on the context of the render queue,
but instead of sorting renderable primitives
only by material, we propose a flexible frame-
work organizing draw calls into a tree, where
items that share any of the conceivable ren-
der states are grouped together in a cost-
optimal way, minimizing the number of CPU-

1



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

GPU communication instances required exe-
cute them.

Further publications may emerge as students
combine these ideas with upcoming graphics
technologies (projects on DX12 and Vulcan are
ongoing), but it will not be in focus for the
principal researcher.

4 Time-of-flight

An early branch of investigation carried out
under the umbrella of this grant was using
time-of-flight information in PET reconstruc-
tion31. This allows better reconstruction of
activity from measurement data (see table 1
for an example), albeit at an increased compu-
tation cost.

4.1 Non-photorealistic rendering

Non-photorealistic rendering (NPR) includes a
vast range of techniques from CAD through ed-
ucational illustrations8;6 to artistic paintings19

and animation7;35. One common aspect is that
they do not aim to produce a picture by opti-
cal modeling of human vision, accurately re-
producing the visual stimuli reaching the eye,
but also involve the other main organ of hu-
man vision — the brain — into the simulation.
The way to achieve this is to impose new rules
and limitations, not allowing pixel colors to be
found independently. The rules can be seen to
define image space finite elements. The task is
to place these elements in the image so that it
allows the human viewer to perceive the virtual
model and enhance specific features.

As plenty of high quality off-line solutions for
NPR have been published before, including a
our paper on hatching for motion picture pro-
duction35, in the OTKA project we focused on
real time algorithms. Existing ones were held
against a much poorer quality standard than
production solutions, and our motivation was
to bridge this gap.

4.1.1 Self-similar hatching algorithms

Hatching is one of the basic artistic techniques
that is often emulated in stylistic animation.
Hatching strokes should appear hand-drawn,
with roughly similar image-space width, dic-
tated by pencil or brush size, but they should
also stick to surfaces to provide proper object
space shape and motion cues. Both proper-
ties must be maintained in an animation, with-
out introducing temporal artifacts. In par-
ticular, when surface distance or viewing an-
gle is changing, object-space density of strokes
should adapt without the strokes flickering or
drifting on the surface, while presenting natu-
ral randomness inherent in manual work12;1.

In our papers30;26;28 we presented recursive
procedural tonal art maps (RPTAM), a single-
shader rendering technique that fulfils the
above criteria with less limitations than previ-
ous techniques. In particular, strokes are pre-
served as constructing elements (as opposed to
texture harmonics5), infinite zooming is pos-
sible (as opposed to a finite LOD set18), and
single-pass local shading is sufficient (as op-
posed to global geometry processing and hid-
den stroke removal35). The key idea is that we
place strokes in texture space, at pre-generated
seed locations exhibiting a self-similar pattern,
allowing for smooth transitions between any
texture scalings. Figure 1 depicts recursively
nested seed sets, and figure 2 illustrates our
proposed algorithm for generating them, which
is similar to the chaos game method of IFS at-
tractor generation. We also have shown how
choosing an initial point with coordinates con-
structed as a recurring quaternary de Bruijn
sequence can ensure evenly distributed seed
sets, in the sense that the elemental inter-
val property is ensured. Actually, the rela-
tion between the newly invented method and
de Bruijn sequences was not discovered at the
time of our initial publication26, but was pub-
lished later in28. This meant that polinomial

2



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

NO TOF (2 OSEM cycles) TOF (2 OSEM cycles)

NO TOF (5 OSEM cycles) TOF (5 OSEM cycles)

 0

 10

 20

 30

 40

 50

 60

 70

 5  10  15  20  25  30  35  40  45

C
C
 e

rr
o
r

iterations

no ToF

ToF (5 bins)

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600

C
C
 e

rr
o
r

time (sec)

no ToF

ToF (5 bins)

CC error versus iteration count. CC error versus reconstruction time.

 10

 20

 30

 40

 50

 60

 70

 80

 5  10  15  20  25  30  35  40  45

L
2
 e

rr
o
r

iterations

no ToF

ToF (5 bins)

 10

 20

 30

 40

 50

 60

 70

 80

 0  100  200  300  400  500  600

L
2
 e

rr
o
r

time (sec)

no ToF

ToF (5 bins)

L2 error versus iteration count. L2 error versus reconstruction time.

Table 1: Geometry only reconstruction with and without time-of-flight (TOF).

3



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

time algorithms known for de Bruijn sequence
generation are applicable in our seed set gen-
eration process.

Figure 1: Seed sets of 4 and 16 elements with
the recursive nesting property. Large circles in-
dicate seeds, small circles are the seed pattern
repeated on a 2 × 2 grid. The dense pattern
scaled up from any corner gives the sparse pat-
tern.

Figure 2: Operator D projects seeds to double
their distance from the nearest corner. Seed
sequences are generated by repeating this op-
eration. Seeds are colored to show the corner
used for the scaling.

Our method, like dynamic solid textures5

and Tonal Art Maps18, provides impeccable
temporal coherence. Dynamic solid textures
can produce binary style rendering to approxi-
mate hatching, but our method can work with
stylized hatching strokes. Tonal Art Maps are
equivalent to our approach in quality, but they
do not offer infinite zooming. TAMs can be
edited manually, or generated automatically

by randomly inserting new strokes, and re-
jecting or clipping those colliding with exist-
ing ones. The TAM generation method is a
lengthy trial-and-error search, while polyno-
mial time methods exist for the generation of
de Bruijn sequences. Both methods target the
same quality criteria of uniformly distributed
strokes, but our method guarantees uniformity
in a well-defined geometric sense, not only as
an stopping criterion for a random process.
More importantly, as opposed to TAMs, seed
sets do not need to be re-generated if artistic
parameters like stroke length or stroke texture
change, even allowing these to be animated.
We can fade strokes simultaneously (producing
rendering similar to TAMs), but also individu-
ally, which is a unique feature among texture-
based hatching methods.

a) sharp contours

b) clipped strokes

c) UV distortion

Figure 3: TAM and RPTAM suffer from stylis-
tic inconsistencies including: a) strokes clipped
at object silhouettes, b) strokes clipped or
faded for density control, and c) strokes dis-
torted by anisotropic UV mapping.

Figure 3 shows stylistic artifacts that arise
with both TAM and RPTAM as a result of
their texture-space approach. In both meth-
ods, density control is performed on the pixel
level. This means that the decision weather a
stroke should appear can be different for differ-
ent parts of a stroke. In we take a binary deci-
sion, some strokes are clipped before entering
an area that should be less densely hatched. If

4



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

the decision is smooth, e.g. implemented by
blending between textures with different line
densities, then strokes will fade out. Neither
case is consistent with the requirement that
the image is constructed using strokes match-
ing an artist’s pencil or brush, in consistent
style. Similarly, as strokes are applied to object
surfaces in texture space, they are clipped at
object silhouettes (or UV-parametrization dis-
continuities) in image space. This is not possi-
ble in hand-drawn art, and makes the renders
appear artificial.

One concept for adding overdrawn strokes
was to render an inflated geometry and recon-
struct clipped stroke parts with a localized fil-
tering operation. This approach turned out
not to deliver robust results, despite consid-
erable researcher and student effort spent on
exploring it.

Figure 4: Texture-space methods like TAM
(left) must fade or clip strokes at object
boundaries and for density control. TAMISS
(right) restores stylistic coherence by fitting
new strokes in image space.

In our papers21;27;29 we proposed Tonal Art
Maps with Image Space Strokes (TAMISS), a
hybrid technique that combines the robust vis-
ibility testing and density control of TAM or
RPTAM with the stylistic freedom of image
space stroke extrusion (figure 4). The idea is
to assign unique IDs to all TAM strokes, per-
form rasterization of surfaces with TAM, pro-
ducing fragments marked with stroke IDs, and
fit a curve on each set of fragments sharing the
same ID. The curves can be extruded to im-
age space strokes in proper style, while visibil-
ity and density control has already been taken

care of by TAM.

Figure 5: Knight model rendered with RP-
TAM (left) and TAMISS (right).

We discribed a fitting process using Ordi-
nary Least Squares10, solving the arising sys-
tem of equations with the Conjugate Gradient
Method17. We provided a GPU implementa-
tion capable of solving the task in real time,
regardless of the scene complexity.

Figure 6: Torus knot model rendered in a pen-
like style. All lines are uniquely randomized.

The TAMISS solution21 won the Best Poster
Award at the Eurographics conference, and the
extended version29 has been accepted to STAG

5



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

2016. Whether it will be invited as a Q1 jour-
nal publication in Computers and Graphics is
pending.

A remaining limitation of both our RP-
TAM and TAMISS methods is that, like
any texturing, they require a two-dimensional
parametrization of the 3D surface, i.e. texture
coordinates. The properties of this mapping
may strongly influence the quality of the result.
In order to sidestep this problem, we pursued
the idea of extending the de Bruijn sequence-
based method of seed point generation to three
dimensions. Even though this resulted in an el-
egant piece of theory, the point set projected to
the 2D surface turned out not to meet the orig-
inal requirements of consistency, meaning this
avenue of thought had to be abandoned, and
the necessity of 2D parametrization accepted.
We found that for RPTAM or TAMISS, the
parametrization needs to be close to confor-
mal, and without discontinutities. There ex-
ist high quality methods that achieve such a
parametrization, but we believe a specialized
solution exploiting the self-similarity charac-
teristics is possible. Ongoing research, in co-
operation with faculty collegaues involved in
computer geometry is expected to address this
open question.

4.1.2 Outlines

Outlines are used in both artistic and tech-
nical depictions to emphasize discontinuities.
Drawn outlines include silhouettes at image-
space boundaries of object surfaces (separating
front- and back-facing parts in object space),
and creases at discontinuities of the surface
normal. Outlines often must be rendered as
wide, textured, semi-transparent strips with-
out seems, folds or flickering.

There are two well known approaches to out-
line rendering. The first one works in im-
age space with the use of normal and depth
maps16. Edge pixels — those which lie

near discontinuities in these maps — can be
found using edge detection filters. What level
of image-space discontinuity warrants outline
edges must be adjusted by fine-tuning fil-
ter parameters and applying mask textures20.
Object-space consistency of outlines during an-
imations is also subject to those parameters.
However, the main problem with this approach
is the excessive texture access bandwidth and
the absence of real scalability in line features.
The other approach works in world space and
generates new triangle strip geometry to visu-
alize the outlines. In this case we do not need
to search on per pixels basis.

We investigated the visibility problem of
crease outlines in stylistic and engineering ren-
dering. We offered two different, consistent
formulations that lead to artistic and techni-
cal drawing styles. We developed real-time,
flicker-free GPU algorithms for both problems.

Compositing object-space outlines with sur-
faces in a 3D scene is a major challenge. It
can be seen as a hidden line removal prob-
lem that can be solved geometrically in ob-
ject space2, which is expensive, even if ac-
celerated by an image-space lookup15, or us-
ing image space depth testing11, where fil-
tering must be used to alleviate instabilities.
One technique we proposed is based on the lat-
ter approach. The outline, rendered as a wide
strip, will be considered visible in all its width
where its centerline is not hidden. This is sim-
ilar to an artist painting strokes on paper, lift-
ing the brush roughly where outlines would go
behind objects. We will refer to this approach
as the Wide Outlines with Approximate Ren-
dering Technique, or WO/ART.

In technical drawings, enhancing feature
edges must not modify shape contours or in-
terfere with exact occlusion. Drawing the poly-
gon wireframe3 only where the object itself is
visible—thus, practically, onto its surface—is
such a technique. We extend this from poly-
gons to non-planar, potentially self-occluding

6



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

smoothing groups of arbitrary topology to get
on-surface crease edge rendering. We will refer
to this approach as Wide Outlines with Precise
Rendering of Occlusions, or WO/PRO.

We proposed a solution25 that can render
outlines with a performance similar to regu-
lar incremental triangle mesh rendering, but
meeting quality standards set by offline NPR
methods. The particular contribution of this
work is a real-time outline rendering algorithm
that does not use image processing filters, ren-
ders antialiased, continuous, textured, alpha-
blended outlines of any width without seems
or folds, and provides flicker-free animation.

The goal is to provide a solution which can
replace costly edge detection filters with a more
flexible, geometry-aware method in real-time
applications, and offer a faster alternative in
stylistic rendering.

Triangle adjacency computation could be
necessary either for identifying edges between
front- and backfaces, or to link segments of sil-
houettes crossing from one triangle to another.
This can be performed once at mesh loading
time. The resulting triangle adjacency buffer
contains a triplet of integer triangle indices for
all mesh triangles. For manifold meshes, all
entries are valid, if triangles adjoint at creases
are considered adjacent.

Crease halfedge identification can be per-
formed during triangle adjacency computation.
Whenever two spatially aligned halfedges are
found, if their vertices are not identical, we
have found two crease halfedges. Halfedges
form one or more closed loops, and can be or-
ganized as such. There could be various rep-
resentations for the result, but it is usually re-
quired that the halfedge loops can be traversed
and the vertices along crease outlines enumer-
ated. In our solution, we need to know for
every triangle, which crease halfedges are ad-
jacent. If we are not interested in triangle ad-
jacencies over creases, this information can be
stored in the triangle adjacency buffer, storing

the crease halfedge ID instead of the neighbor-
ing triangle ID. The ID ranges must be sepa-
rate, easily assured if crease halfedge IDs start
from the number of triangles in the mesh.

Silhouette segment identification is view de-
pendent, and must be performed in every
frame.

We argue against Markosian-style silhou-
ette segments, aligned on triangle mesh edges.
First, they are prone to backtracking. Sec-
ond, finding adjacent segments would require
a varying-number-of-steps search over edges
sharing the end vertices of the silhouette edge.
A data structure listing adjacent edges for
all vertices would also be required. While
this would provide a clear-cut situation where
all outline segments are edges of the triangle
mesh, which could be beneficial for hidden seg-
ment removal and provide a better alignment
of outlines with triangle mesh renderings in
low-polygon-count cases, but burdens the out-
lines with artistically undesirable triangulation
artifacts.

Segments of Herzmann and Zorin style sil-
houettes are easily linked together, and also to
crease halfedges, using the triangle adjacency
buffer. All segments are assigned an ID identi-
cal to the ID of their triangle. The adjacency
buffer entries for the two edges the silhouette
crosses readily contain the IDs of the adja-
cent outline halfedges, be they silhouettes or
creases.

Clipping crease halfedges to silhouettes is
necessary when using Herzmann and Zorin sil-
houettes because a crease edge might be par-
tially back-facing by that definition. Clip-
ping the halfedges and linking them to the sil-
houette edges produces closed halfedge loops
around visible on-screen areas.

Linking edge segments into continuous
halfedge loops is necessary if we wish to ren-
der outline strokes as wide triangle strips. An
ordered, traversable list of halfedges also allows
for smoothing and parametrization.

7



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

Hidden halfedge removal must be performed
to avoid drawing outlines behind closer sur-
faces.

Outline parametrization can be performed
along the halfedge loops. We have to take care
to ensure animation coherence. Thus, parame-
ters are stored for all crease halfedges and tri-
angles, and only slightly adjusted from frame
to frame.

Outline stylization includes smoothing,
stroke breakdown and vectorization, convert-
ing the halfedge loop into textured triangle
strips acceptable as artistic strokes. Switch-
backs and small glitches in the outline should
be removed, and loops should be separated
where they turn at sharp angles to produce
separate strokes.

WO/ART can be implemented as a two-
pass method. The first pass renders solid sur-
face geometry, also producing a depth buffer
with a small depth slope bias. The second pass
renders crease halfedges—augmented with ad-
jacent vertices along the crease halfedge loop—
as four-control-point patches. The constant
hull shader computes and outputs crease nor-
mals at vertices, and samples visibility using
comparison filtering along the three-segment
line strip, producing an output visibility bit-
mask. The number of samples depends on the
screen-space size of the halfedge, but we lim-
ited it to 64 to fit the bitmask into two integers.
The tessellator is set up to convert the patch
to a quad strip with a linear tessellation fac-
tor along the v axis roughly corresponding to
the sample density. The domain shader po-
sitions the strip vertices offsetting them along
the interpolated crease normals, at a distance
proportional to their visibility. Vertex visibil-
ity is computed by averaging relevant bits of
the visibility mask. Completely hidden parts
will have zero width, the strip will taper off
where visibility vanes, and numerical inconsis-
tencies are hidden by averaging multiple visi-
bility samples. The pixel shader applies tex-

turing with alpha-blending.

These results have only been published in a
preliminary poster form at the Eurographics
conference25. The WO/ART solution will be
submitted as a journal paper to strongly evolv-
ing outlet Periodica Polytechnica on behest of
its general editor as part of an effort to fill the
journal with quality articles and help elevate it
to gain an impact factor.

4.1.3 Image space hatching

In our papers34;14 we presented a screen space
hatching algorithm that provides time coher-
ent placing of hatching lines relative to object
surfaces. While with screen space techniques
we can easily achieve consistent image space
hatching density, it is hard to make hatch-
ing lines express surface features, and to make
them follow the underlying geometry. Draw-
ing individual textured lines can provide high
quality results, but their direction and amount
of bending should be calculated according to
the 3D geometry. We proposed a method that
combines the illumination gradient with cur-
vature based line direction calculation to sup-
port a wide variety of objects. To achieve sur-
face position coherency during animation we
use image space velocity maps to move the in-
dividual hatch lines. We use rejection sam-
pling and low discrepancy sequences to filter
out high density areas where the flow accumu-
lates lines, and to fill in the vacant areas.

4.1.4 Hatching for natural phenomena

In our papers32;33 we presented a highly paral-
lel algorithm for the stylized, real-time display
of fluids and smoke. We use metaballs to define
a fluid surface from a particle-based fluid rep-
resentation, but instead of the costly complete
reconstruction of this surface, we only trace the
motion of random seed points on it. Hatching
strokes are extruded along the lines of curva-

8



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

ture. We proposed methods for hidden stroke
removal and density control that maintain an-
imation consistency.

4.2 Real-time ray casting of self-
similar procedural geometries

The basic question asked in this line of re-
search is: what kind of geometry can be ray
traced with an iterative, branching-free algo-
rithm? This is a critical property for efficient
GPU parallelization. We aim to provide a geo-
metric model with this motivation, and explore
what kind of application such a limited model
may have.

Complex geometries, like those of plants,
rocks, terrain, or even clouds are challenging to
model in a way that allows for real-time render-
ing but does not make concessions in terms of
visible detail. In our papers 22;24 we proposed
a procedural modeling approach, called KRS,
or kernel–reflection sequences, inspired by it-
erated function systems. The model is com-
posed of kernel geometries defined by signed
distance functions, and reflection transforma-
tions that multiply them. We showed that a
global distance function can be evaluated over
this structure without recursion, allowing for
the implementation of real-time sphere tracing
on parallel hardware. We also showed how the
algorithm readily delivers continuous level-of-
detail and minification filtering. This, com-
bined with the smooth shading and texturing
techniques we also describe, eliminates alias-
ing and achieves automatic, continuous level-
of-detail.

We proposed several techniques to enhance
modeling freedom and avoid conspicuous sym-
metries. Conformal transformations, which
include geometric inversion, map spheres and
planes to spheres and planes. If symmetric ge-
ometry is subjected to such a transformation,
mirror planes are mapped to spheres, eliminat-
ing symmetry. An unbounding sphere of the

symmetric geometry is mapped to an unbound-
ing sphere of the transformed geometry. This
makes it possible to find unbounding spheres
for a conformally transformed KRS, even if dif-
ferent KRS levels are subject to different trans-
formations. For that reason, sphere tracing ge-
ometries defined by signed distance functions
under conformal transformations are of inter-
est.

Given a world space probing sphere, we can
verify if it is an unbounding sphere simply by
transforming it to kernel space, by always tak-
ing the mirror test decision on the sphere cen-
ter (which is known now), and checking the
radius against the distance. Note that this
relaxes the requirement on kernel geometries
that they have to be defined by distance func-
tions, as it is enough to merely support a bi-
nary intersection test with a sphere.

The sphere tracing process becomes a trial-
and-error search finding unbounding spheres,
not entirely unlike numerical root finding
methods employing binary search. Therefore,
we call this algorithm binary sphere tracing. It
can be seen as an extreme version of sphere
tracing with over-relaxation 13, with no option
to revert to classical sphere tracing near sur-
faces, and without the possibility to accept an
unbounding sphere that is larger than what we
speculated on. These restrictions are necessary
for admitting conformally transformed geome-
try.

Following up on the work of Bisi and Gentili
on the quaternion algrebra of Möbius tranfor-
mations, we derived a set of formulas for trans-
forming spheres, perfomring ray–sphere inter-
sections in quaternions, and transforming sur-
face normals.

We also proposed a GPU load balancing
scheme for best utilization of computing power.
To prove that the model can be used to realize
various natural phenomena in uncompromis-
ing detail and extents, without obvious clues
of symmetry, we implemented real-time ren-

9



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

dering of aquatic and terrestrial surface forma-
tions and vegetation.

The paper on this research was accepted for
STAG 2016, with an invitation for publication
in the Q1 journal Computers and Graphics
possible.

4.3 Retina stimulation

This project23;9 emerged as an international
cooperation with Peter Hantz at the Friedrich
Miescher Institute in Swizerland. Aimed at
retina research crucial for understanding retina
pathologies and restoring vision artificially, the
results were (and are) destined to appear in
a high impact factor biology or neuroscience
journal. However, several factors delayed this.
First, the effort kept extending to provide a re-
search tool as generic as possible, surveying the
entirety of visual stimulation techniques used
over several fields of visual science, including
psychophysics and optogenetics. Second, our
research partner’s professional and personal re-
lations at the FMI have deteriorated over time,
resulting in him and the institute parting ways.
Dr. Gnther Zeck from the NMI (Institute
for Sciences and Medicine) of the University
of Tübingen joined the international coopera-
tion, providing the necessary laboratory back-
ground, but at the moment, crucial measure-
ment results remain missing that prove our so-
lution’s superior applicability in the field.

Both of the above mentioned institutes con-
duct experiments with rodent retina. Visual
stimulus patterns have to be projected onto the
specimen obtained from animals bred for the
purpose. The stimulus patterns range from the
very simple to the computationally demanding.
Temporal synchronzation requirements are dif-
ficult to achieve with the existing equipment,
and the solutions must support the purposes of
biology researchers lacking any programming
or graphics background.

Light stimulation with precise and complex

spatial and temporal modulation is required in
several research fields like visual neuroscience,
optogenetics, ophthalmology, and visual psy-
chophysics. We devised an intuitive and flex-
ible stimulus generating framework (GEARS
— GPU-based Eye And Retina Stimulation),
which offers access to GPU computing power,
and allows interactive modification of stimulus
parameters during experiments. Furthermore,
it has support for driving external equipment,
as well as for synchronization tasks, via USB
ports.

GEARS supports real-time operations like
tone mapping, histogram equalization or con-
trast stretching, filtering operations like edge
enhancement by double-Gaussian kernels, im-
age sharpening, as well as further operations in
real or Fourier space. If a large batch of ran-
dom numbers is required in every frame, GPU-
based parallel random number generation is
also possible.

We proposed a new computational workflow
model that is more inclusive than any of previ-
ous solutions, some of which are restricted to
polygon rendering with precomputed textures.

In most light stimulus software developed up
to this time, simple usage and flexibility were
conflicting demands. A graphical user interface
(GUI) has inherent limitations and requires
permanent development. In contrast, if cus-
tomizing the software is implemented through
an application program interface (API), the
user has to possess deep programing skills. In
order to avoid drawbacks of APIs and GUIs,
a visually aided scripting interface (VSI) has
been developed. This is an integrated, Python-
based script editor to write, modify and com-
bine intuitive stimulus components, with cus-
tom code completion and call tips, providing
instant documentation, as well as component
and parameter listing. The VSI offers instant
visual presentation of the editable features of
the stimulus elements. Moreover, it shows the
time flow of the stimulus sequence prepared for

10



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

execution.
In GEARS, all stimuli are constructed as

a combination of previously defined compo-
nents. Our approach is inspired by modern
game engine systems, where aspects of game
world entities are represented by components
that can be freely combined. Most of the ear-
lier solutions utilized a low number of shaders,
while stimuli were implemented by setting ap-
propriate shader parameters. This structure
cannot guarantee the flexibility and efficiency
that shaders tailored for specific tasks would
provide. Moreover, the continuous demand for
new stimuli will inevitably exceed the limita-
tions of previously written shaders, while new
ones cannot be implemented without resorting
to GPU programing.

In GEARS, creating custom-made shaders
for specific tasks does not need GPU pro-
graming expertise, because of the core software
mechanism that dynamically generates graph-
ical (GLSL) shaders from SBC combinations.
This modular structure is the key to the flexi-
bility and simplicity, and at the same time the
high computational power of GEARS. A large
library of parametrizable components is pro-
vided, which covers the needs for displaying
practically all of the stimuli we identified in
the literature.

external 

device control

display 

on device

random number 

generation

forward 3D 

rendering

video frame 

decoding

drawing 

pass n

audio signals to

electronics

temporal 

filtering

tone 

mapping

gamma 

comp.

spatial 

filtering

GPU

CPU

prerequisites (optional) core drawing post-processing (optional)

drawing 

pass 1...

graphical workflow

non-graphical functions

synchronization

Figure 7: Generation procedure of a single
stimulus frame. Prerequisites, core drawing
and post processing phases are each composed
of passes marked by red boxes.

Figure 7 shows the proposed workflow for
rendering a single frame of a stimulus. The
nucleus of the workflow is called core draw-

ing, which is a set of passes designed to pro-
duce an intermediate version of a stimulus im-
age, which may be further processed before be-
ing displayed on the screen. The core draw-
ing may be preceded by operations like video
decoding, random number generation, and/or
3D OpenGL rendering, and can be followed by
post-processing steps like spatial and temporal
filtering, or gamma compensation.

GEARS offers a feature which is unique
within the set of similar software, namely the
possibility for real-time spatial and temporal
filtering of the rendered frames. Filtering with
large kernels is computed more efficiently in
the frequency domain, whilst for filterings with
small ones, the spatial domain method de-
mands less resources. This capability is im-
portant in opening the possibility of a system
identification approach to acquire models of
retina cell behavior. For filtering in the Fourier
space, the kernel can directly be given in the
frequency domain, offering a convenient way
to specify low-pass, band-pass, high-pass, or
anisotropic filterings.

During temporal filtering the pixel values
of the stimulus frames are regarded as dis-
crete time signals. Filtering can be performed
either by convolution with a temporal one-
dimensional filter kernel, or, if the kernel is
smooth enough to be well approximated by a
composition of complex exponentials, a linear
time invariant (LTI) signal processing opera-
tion is also suitable. The LTI state representa-
tion can be directly given, which is essential if
a theoretical system realization is being inves-
tigated, where the differential equations gov-
erning the system are known.

Realizations of temporal filtering funtional-
ity include rectangular, triangular, Hamming,
and Hann windows, exponential attenuation,
and a mixture-of-Gaussians model for the ap-
proximation of retina cell response.

Another unique capability is that of real-
time dynamic tone mapping operations with

11



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

linear (contrast stretching) and sigmoidal
transfer functions, as well as histogram equal-
ization of picture sequences or videos.

Our computational model has been shown
to be able to reproduce results from litera-
ture, and measurements for new experimen-
tal schemes made possible by the extended
computational pipeline were also carried out.
These include measuring the response to ran-
dom white noise stimuli with various tempo-
ral and spatial kernels modeling behavior or
specific retinal cells, natural or artificially ma-
nipulated. Similar measurements with sim-
ple shapes, moving or stationary, also occured.
Measurmetns of natural videos with various
real-time processing options are under eval-
uation currently. These results validate our
proposed framework as a useful tool in retina
research. However, until these measurements
were all processed and the biological implica-
tions laid out by our partners, publication was
not quite possible. The paper is not yet sub-
mitted to Nature Scientific Reports, but part-
ners believe that is going to happen in the up-
coming weeks. Thus, the research would con-
clude with a high IF journal publication.

References

[1] Zainab AlMeraj, Brian Wyvill, Tobias Isenberg,
Amy A Gooch, and Richard Guy. Automatically
mimicking unique hand-drawn pencil lines. Com-
puters & Graphics, 33(4):496–508, 2009.

[2] A. Appel. The notion of quantitative invisibility
and the machine rendering of solids. In Proceedings
of the 1967 22nd national conference, pages 387–
393. ACM, 1967.

[3] J.A. Bærentzen, S.L. Nielsen, M. Gjøl, and B.D.
Larsen. Two methods for antialiased wireframe
drawing with hidden line removal. In Proceed-
ings of the 24th Spring Conference on Computer
Graphics, pages 171–177. ACM, 2008.

[4] D. Bányász and L. Szécsi. Optimizing state
changes in rendering engines. In L. Szirmay-Kalos,

editor, Hungarian Computer Graphics and Ge-
ometry Conference (GRAFGEO), pages 116–123,
2014.

[5] Pierre Bénard, Adrien Bousseau, and Joëlle Thol-
lot. Dynamic solid textures for real-time coherent
stylization. In Proceedings of the 2009 symposium
on Interactive 3D graphics and games, pages 121–
127. ACM, 2009.

[6] S. Bruckner, S. Grimm, A. Kanitsar, and M.E.
Gröller. Illustrative context-preserving volume
rendering. In Proceedings of EUROVIS, volume
2005, pages 69–76, 2005.

[7] J. Collomosse and J.E. Kyprianidis. Artistic styl-
ization of images and video. Tutorial at Eurograph-
ics, 2011.

[8] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and
E. Gröller. Fast visualization of object contours by
non-photorealistic volume rendering. In Computer
Graphics Forum, volume 20, pages 452–460, 2001.

[9] P. Hantz, Á’. Kacsó, G. Zeck, and L. Szécsi. In-
teractive light stimulus generation with high per-
formance real-time image processing and simple
scripting. Frontiers in Neuroscience, (41), 2016.

[10] F Hayashi. Econometrics. Princeton University
Press, 2000.

[11] T. Isenberg, N. Halper, and T. Strothotte. Styl-
izing silhouettes at interactive rates: From sil-
houette edges to silhouette strokes. In Computer
Graphics Forum, volume 21, pages 249–258. Wiley
Online Library, 2002.

[12] Pierre-Marc Jodoin, Emric Epstein, Martin
Granger-Piché, and Victor Ostromoukhov. Hatch-
ing by example: a statistical approach. In Proceed-
ings of the 2nd international symposium on Non-
photorealistic animation and rendering, pages 29–
36. ACM, 2002.

[13] Benjamin Keinert, Henry Schfer, Johann Korn-
drfer, Urs Ganse, and Marc Stamminger. En-
hanced Sphere Tracing. In Andrea Giachetti, edi-
tor, Smart Tools and Apps for Graphics - Euro-
graphics Italian Chapter Conference. The Euro-
graphics Association, 2014.

[14] Z. Lengyel, T. Umenhoffer, and L. Szécsi. Re-
altime, coherent screen space hatching. In
L. Szirmay-Kalos, editor, Hungarian Computer
Graphics and Geometry Conference (GRAFGEO),
pages 131–137, 2014.

12



OTKA Principal investigator: Dr. Szécsi, László Identifier: 104710 PD Version:1 Final report

[15] L. Markosian and J.F. Adviser-Hughes. Art-based
modeling and rendering. Brown University, 2000.

[16] M. Nienhaus and J. Doellner. Edge-enhancement-
an algorithm for real-time non-photorealistic ren-
dering. Journal of WSCG, 11(2), 2003.

[17] Jorge Nocedal and Stephen J Wright. Conjugate
gradient methods. Springer, 2006.

[18] Emil Praun, Hugues Hoppe, Matthew Webb, and
Adam Finkelstein. Real-time hatching. In Pro-
ceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages
581–581. ACM, 2001.

[19] R. Sayeed and T. Howard. State of the art non-
photorealistic rendering (NPR) techniques. Euro-
graphics UK: Theory And Practice Of Computer
Graphics, pages 89–98, 2006.

[20] J. Shin. A stylised cartoon renderer for toon shad-
ing of 3d character models. Master’s thesis, Uni-
versity of Canterbury, UK, 2006.

[21] Lszl Szcsi, Marcell Szirnyi, and gota Kacs. Tonal
Art Maps with Image Space Strokes. In Luis Gon-
zaga Magalhaes and Rafal Mantiuk, editors, EG
2016 - Posters. The Eurographics Association,
2016.

[22] L. Szécsi. A geometry model for logarithmic-time
rendering. In L. Szirmay-Kalos, editor, Hungar-
ian Computer Graphics and Geometry Conference
(GRAFGEO), pages 21–28, 2014.

[23] L. Szécsi. Gpu pattern generation for retina stim-
ulation experiments. In Képfeldolgozók és Alakfe-
lismerők Társaságának 10. országos konferenciája,
pages 388–393, 2015.

[24] L. Szécsi, Z. Bendefy, and Á’. Kacsó. Kernel-
reflection sequences. In Smart Tools and Apps
in computer Graphics 2016, pages 53–62. EURO-
GRAPHICS, 2016.

[25] L. Szécsi, B. Hajagos, and T. Umenhoffer. On
depth-testing wide outlines. In Miguel Chover and
A. Augusto de Sousa, editors, Girona, pages 15–
16, 2013.

[26] L. Szécsi and M. Szirányi. chapter Recursive
Porcedural Tonal Art Maps, pages 57–66. Vaclav
Skala - Union Agency, 2014.

[27] L. Szécsi and M. Szirányi. chapter Tonal Art Maps
with Image Space Strokes, pages 155–159. BME
Iranyitastechnika es Informatika Tanszék, 2015.

[28] L. Szécsi and M. Szirányi. Dinamikusan generált
textúra alapú vonalkázás. In Képfeldolgozók és
Alakfelismerők Társaságának 10. országos konfer-
enciája, pages 687–702, 2015.

[29] L. Szécsi, M. Szirányi, and Á’. Kacsó. Tonal art
maps with image space strokes. In Smart Tools
and Apps in computer Graphics 2016, pages 39–
44. EUROGRAPHICS, 2016.

[30] L. Szécsi, M. Szirányi, and T. Umenhoffer. Im-
proving texture-based npr. In L. Szirmay-Kalos,
editor, Hungarian Computer Graphics and Ge-
ometry Conference (GRAFGEO), pages 138–148,
2014.

[31] L. Szécsi, L. Szirmay-Kalos, Gy Egri, and
G. Patay. Binned time-of-flight positron emis-
sion tomography. In KEPAF 2013, pages 340–350,
2013.

[32] L. Szécsi and F. Tükör. Hatching animated im-
plicit surfaces. In L. Szirmay-Kalos, editor, Hun-
garian Computer Graphics and Geometry Confer-
ence (GRAFGEO), pages 124–130, 2014.

[33] F. Tükör and L. Szécsi. chapter Hatching for
Metaball Surfaces., pages 89–98. 2014. TU Vi-
enna.

[34] T. Umenhoffer, Z. Lengyel, and L. Szécsi. Screen
space features for real-time hatching synthesis. In
Czúni Lászlo, editor, Képfeldolgozók es Alakfe-
lismerők 9. országos konferenciája, pages 82–94,
2013.

[35] T. Umenhoffer, L. Szécsi, and L. Szirmay-Kalos.
Hatching for motion picture production. In Com-
puter Graphics Forum, volume 30, pages 533–542,
2011.

13


