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The main topic of the project was the study of the decomposition of multiple coverings, initiated
by J. Pach in 1980. The project ended with a breakthrough, giving a negative answer to the main
question posed by Pach. We have also completed a survey of the topic [11].

Basics of Cover Decomposition

Let P = { Pi | i ∈ I } be a collection of planar sets. We say that P is an m-fold covering if
every point in the plane is contained in at least m members of P. The biggest such k is called the
thickness of the covering. A 1-fold covering is simply called a covering.

De�nition. A planar set P is said to be cover-decomposable if there exists a (minimal) constant
m = m(P ) such that every m-fold covering of the plane with translates of P can be decomposed
into two coverings.

Pach [9] proposed the problem of determining all cover-decomposable sets in 1980 and made the
following conjecture.

Conjecture. (Pach) All planar convex sets are cover-decomposable.

We have managed to disprove this conjecture by exhibiting for any m an m-fold covering of the
plane with unit disks that cannot be decomposed into two disjoint coverings, i.e., no matter how one
colors the unit disks of the covering with two colors, one of the color classes will not cover the whole
plane [10]. The construction easily generalizes to other covering shapes and regions to be covered.
The main parts of the construction are explained at the end of this report.

Octants

Note that earlier the problem was mainly investigated for polygons.
For a cover-decomposable set P , one can ask for the exact value of m(P ). In most of the cases,

the best known upper and lower bounds are very far from each other. The only case where the gap
is relatively small is for open triangles where we have proved with Keszegh that 4 ≤ m(P ) ≤ 9 [8]
improving our earlier result [4]. This result is a corollary of a more general theorem about coverings of
the three dimensional space by the translates of an octant. Here the notions can be similarly de�ned
and an octant is the natural generalization of a quadrant, e.g., the set (0,∞)× (0,∞)× (0,∞). We
have in fact proved that 5 ≤ m(octant) ≤ 9.
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Decomposition to multiple parts

De�nition. Let P be a planar set and k ≥ 2 integer. If it exists, let mk(P ) denote the smallest
number m with the property that every m-fold covering of the plane with translates of P can be
decomposed into k coverings.

The numbermk(P )might be �nite for all cover-decomposable P , moreover, maybe evenmk(P ) =
O(m2(P )) holds. This was established for polygons by Gibson and Varadarajan [2], i.e., they have
proved that for any open convex polygon P , mk(P ) = O(k).

For octants, �rst we could show that mk(octant) is �nite [5]. Later this was improved to polyno-
mial by Cardinal et al. [1], who used our newly developed general method that allows one to show
that mk(P ) is polynomial given certain conditions [6].

We have managed to prove similar results related to pseudohalfplane arrangements [7], general-
izing results of Smorodinsky and Yuditsky [14]. Our approach is entirely abstract and builds on a
generalization of shift-chains, which I have de�ned in my PhD thesis [12].

We have proved some related results about so-called online colorings in [3].

Construction - indecomposable covering by unit disks

Here we sketch the main idea of the counterexample for the conjecture if instead of the whole
plane, only a �nite point set is being covered. In the equivalent dual (here we do not go into details
about why this equivalence holds) this means that we have to give, for every k, a �nite point set,
S, such that in any 2-coloring of S there is a unitdisk that contains exactly k points of S and each
of these have the same color. The construction is the realization of the same hypergraph that was
realized in [13] with a similar induction argument. First we describe the hypergraph H(k, l) which
is constructed inductively.

The set of vertices of H(k, l), denoted by V (k, l), is de�ned inductively as V (k− 1, l)∪∗ V (k, l−
1)∪∗{p} if k and l are both bigger than 1 and as kl points if k or l equals 1. The set of edges ofH(k, l)
are given as the disjoint union of a k-uniform set, ER(k, l), and an l-uniform set, EB(k, l), which are
de�ned as follows. If l = 1, then ER(k, 1) = {V (k, 1)} and EB(k, 1) = V (k, 1). Similarly, if k = 1,
then ER(1, l) = V (1, l) and EB(1, l) = {V (1, l)}. If k and l are both bigger than 1, then ER(k, l) =
{e∪{p} | e ∈ ER(k− 1, l)}∪ER(k, l− 1), and EB(k, l) = {e∪{p} | e ∈ EB(k, l− 1)}∪EB(k− 1, l).
A simple inductive argument (see [13]) gives

Lemma. H(k, l) cannot be 2-colored, if we color its vertices with red and blue, then either there is

an edge in ER(k, l) that contains only k red points, or there is an edge in EB(k, l) that contains only

l blue points.

Now our goal is to realize H(k, l) with unitdisks, i.e., map V (k, l) into di�erent points in the
plane, S(k, l), such that for any e ∈ ER(k, l)∪EB(k, l) there is a unitdisk that contains exactly the
points that correspond to the elements of e. The dual of this construction for k = l will give an
indecomposable, k-fold covering of a �nite point set. The realization is also done by induction.

In the realization, for each edge we select (and �x) a realizing unitdisk, and depending on the
type of the realized edge, we partition these discs into two collections, CR(k, l) and CB(k, l). For any
k and l, we will have for some small ε(k, l) > 0 that (omitting the parameters k and l whenever
it leads to no confusion) d(C,C ′) < ε if C and C ′ both belong to CR or both belong to CB, while
2− ε < d(C,C ′) < 2 if one is in CR, the other in CB. (This means that from �far�, the two families

2



CR(k, 1)

CB(k, 1)

(a) Starting step

CR(2, 2)

CB(2, 2)

(b) H(2, 2) magni�ed

p (root)

P (k − 1, l)

P (k, l − 1)CR(k − 1, l)

CR(k, l − 1)

CB(k − 1, l)

CB(k, l − 1)

(c) Induction step

Figure 1: The construction
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Figure 2: 10 points such that every two-coloring gives disc with 3 points of same color. Numbers
next to discs indicate contained points. In the construction obtained by induction for H(2, 3), the
point 0 would not be present.



look like two touching discs.) Moreover, also the points of S(k, l) will be no further from each other
than ε. Informally, it is also maintained that the segments connecting the centers of discs from
di�erent collections are almost vertical and CR is �above� CB. It is easy to see that if k = 1 or l = 1,
then we have such a collection of unitdisks (see Figure 1(a)).

In the induction step, we place p into the origin, (0, 0), place S(k − 1, l) nearby (−ε/3,−ε2/10)
and S(k, l − 1) nearby (ε/3, ε2/10), where ε > 0 is to be determined (see Figure 1(c)). A simple
calculation shows that if ε is small enough but much bigger than ε(k−1, l) and ε(k, l−1), then this
construction indeed realizes H and satis�es the properties that we required. We omit the details,
just prove that for example if C ∈ CR(k − 1, l) and s ∈ S(k, l − 1), then s /∈ C but p = (0, 0) ∈ C.
The coordinates of the center of C are

(
− ε/3± ε(k− 1, l), 1− ε2/10± ε(k− 1, l)

)
, so the distance

of p from C is (ε/3)2 + (1 − ε2/10)2 + o(ε2) < 1. On the other hand, the coordinates of s are(
ε/3 ± ε(k − 1, l), ε2/10 ± ε(k, l − 1)

)
, thus the square of its distance from the center of C is

(2ε/3)2 + (1− 2ε2/10)2 + o(ε2) > 1.
See Figure 2 for an illustration of a version of the construction, which have been modi�ed to ease

visibility. It gives 10 points such that in any two-coloring there is a unitdisk that contains exactly
three of the points and all of them have the same color.
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