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Modern robust fuzzy c-means clustering techniques 

 

This three-year individual postdoc research project aimed at both theoretical and practical advances in the 

field of clustering algorithms. Results are reported in the following sections.  

 

A UNIFIED THEORY OF FUZZY C-MEANS ALGORITHMS WITH IMPROVED AND 

SUPPRESSED PARTITION 

Suppressed fuzzy c-means clustering (s-FCM) [1] was introduced with the main goal to reduce the 

execution time of the very popular fuzzy c-means clustering algorithm [2] without significantly damaging 

the quality of the produced partition. During its iterations, s-FCM manipulates with the partition given by 

FCM’s optimal formula, by proportionally suppressing the lower memberships for each input datum, and 

giving all suppressed parts to the highest one, while keeping the probability constraint imposed by FCM, 

thus bringing the partition closer to the hard one. Suppression was found successful in terms of 

efficiency, but the authors left several doors wide open.  

Within the bounds of this research project, we resolved two important problems concerning s-FCM. 

Firstly, based on a previous own study [3], we introduced a wide series of generalized suppressed fuzzy c-

means algorithms (gs-FCM), and showed their advantages in sense of accuracy and efficiency. We showed 

that gs-FCM clustering models also suppress the multimodality of the probabilistic membership functions 

produced by FCM, thus enabling the algorithm to find clusters of lower cardinality, without being merged 

with larger ones. 

Secondly, we have found the objective function gs-FCM clustering models minimize, thus proving the 

optimality of all suppressed c-means clustering algorithms. These clustering models are strongly related to 

the so-called FCM with improved partition [4], but are definitely distinct ones. Being optimal algorithms 

and easy to implement, further on efficient and accurate, generalized suppressed fuzzy c-means clustering 

models will surely have several successful applications [5].  

The fuzzy c-means (FCM) algorithm usually produces fuzzy membership functions that are highly 

multimodal, especially when the number of clusters is high. This adverse effect needs compensation. The 

easiest way would be to reduce the fuzzy exponent (m) of the algorithm [2], but that eliminates the 

fuzziness. To maintain the fuzzy nature of the algorithm, a series of modified methods have been 

introduced, which in each iteration of the alternating optimization scheme manipulate with the partition 

given by FCM. The so-called FCM with (generalized) improved partition virtually reduces all distances 

between a given cluster prototype and all input vectors by the same value, causing a rise of the largest 

membership degree in the detriment of lower ones [4]. The suppressed FCM [1], and our generalizations 

versions [5], proportionally suppress lower fuzzy membership values and give the suppressed parts to the 

largest one. In the article [6] we introduced a unified theory of such algorithms and showed the relation 

among these algorithm families. We have also validated and compared these above mentioned algorithms 

using an image color reduction framework [7].  

The algorithm unification theory presented in [6] is suitable for a more detailed description together with 

a survey of application papers applying such algorithms that could become a nice journal article in the 

future. 
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FUZZY-POSSIBILISTIC PRODUCT PARTITION – THEORETICAL ADVANCES AND 

APPLICATIONS 

The fuzzy-possibilistic product partition (FP3) is a novel way of combining probabilistic and possibilistic 

factors into the c-means clustering framework, which we first introduced in [8]. At that early stage it 

confirmed the aim it was designed for: it can fully suppress the effect of outliers, it can treat outlier data 

the same way as gravity systems, which are not influenced by distant objects. During the first year of the 

research, the FP3 c-means (FP3CM) clustering model underwent a series of tests using various data and 

various cluster types. We tested the algorithm’s behavior in case of small and large vector datasets, in 

various circumstances from scalar to multi-dimensional environments, and in case of special shaped 

clusters as well. We have developed an application of the FPPP c-means algorithm to the detection of 

clusters of ellipsoidal shape [9]. Numerical tests revealed that the fuzzy-possibilistic product partition is 

more robust than previous algorithms in this environment, suppressing the effect of distant outlier data. 

According to the tests, FP3CM is indeed a reliable, robust, accurate clustering model, which produces fine 

partitions in the presence or absence of outliers as well.  

The FP3CM clustering algorithm was employed in a blind speaker recognition problem, and it proved 

better than its counter-candidates [10]. 

However, an adverse phenomenon was discovered concerning the FP3CM algorithm, namely its 

sensibility to initial cluster prototypes. The problem occurs when an input vector coincides with a cluster 

prototype. In such cases, the vector in question attracts one cluster to itself and no other vectors are 

accepted there. This problem was recently solved by a slight modification of the objective function. The 

modification was validated with a long series of tests. A manuscript in this matter is expected to be 

submitted to IEEE Transactions on Fuzzy Systems by the end of May 2016.   

 

THE CASE OF FUZZY LOCAL INFORMATION C-MEANS CLUSTERING 

In the last decade, a large set of automated image segmentation algorithms were published, which 

integrated local information into the fuzzy c-means clustering model, to enable the basic FCM to deal 

with several kinds of high frequency noises [11,12]. The fuzzy local information c-means (FLICM) 

introduced by Krinidis and Chatzis [12] proposed a certain fuzzy local factor added to the objective 

function of FCM, and an optimization scheme (OS) which led to fine image segmentation. However, 

after a deeper investigation, we have discovered that the FLICM objective function is not optimized by 

the OS given in [12]. Consequently, we have elaborated the correct optimization algorithm and a deep 

study of the FLICM algorithm, finally proposing several ways of improvement [13]. 

 

C-MEANS CLUSTERING MODEL IN APPLICATIONS WITH LARGE DATA 

Large data requires special processing methods, mostly because of storage space and runtime limitations. 

The runtime of conventional FCM clustering is directly proportional with the number of input data, as 

long as it is possible to load the whole dataset. Our solution to reducing execution time is achieved by 

aggregating identical or similar items in the input dataset before handing them to clustering. In order to 

show the advantage of such solutions, we have developed a framework for image color reduction that can 

employ a wide range of clustering algorithms. In paper [14] we have introduced a color aggregation and 

selection scheme that, combined with fuzzy or hard c-means algorithm, produces fine-quality images with 

reduced number of colors in very short time. Further on, we have shown the advantages of the above 

solution using several FCM algorithm versions with improved partition [7]. As different parts of the 

image are treated independently of each other, the process is highly parallelizable, predicting further 

improvement in efficiency via GPU implementation. 
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EFFICIENT MARKOV CLUSTERING – WITH APPLICATION IN BIOINFORMATICS 

Markov clustering (MCL) is a useful tool in protein sequence grouping [15] that works on a probabilistic 

directional graph modeled by a column stochastic matrix. Protein sequence databases have been growing 

very progressively lately. There is need for efficient clustering methodology which can deal with 

sequences in order of millions of items, which requires efficient computing with (possibly sparse) matrices 

with a million rows and columns. Our initial efforts were limited to dealing with the SCOP95 database, 

which contains 11944 proteins, the processing of which required 2-4 hours depending on the algorithm 

parameters. At the end of the research project, the Markov clustering of the SCOP data set is performed 

in 0.4-5 seconds, while a million-protein network is clustered in 100-120 minutes. This improvement was 

achieved in several steps: 

1. In paper [16] we proposed an uncoupling technique to eliminate unnecessary workload of the 

algorithm. After having the first 5-7 iteration performed, the graph gets fragmented into isolated 

subgraphs, which can be separated as they have no further effects upon each other. This way the 

computation in further iterations continues on a large set of very small matrices, thus achieving 1000 

times shorter execution times for late iterations, and 20-50 times shorter overall runtime for the whole 

process, compared to the conventional or naive formulation of MCL. We demonstrated the efficiency of 

the proposed implementation using the whole SCOP95 database and its carefully selected subsets. This 

acceleration does not affect the accuracy of the algorithm at all. 

2. In paper [17] we proposed a sparse matrix model that implements the columns of the stochastic matrix 

using lists of records that store only the non-zero elements, and includes a special “push back” feature to 

insert elements to the end of the list. The latter accelerates the so-called expansion operation within the 

main loop of the Markov clustering. Eliminating the computation with zeros, we achieve quicker 

implementation of the first 7-10 loops of the Markov clustering process. The overall runtime is reduced 

100-300 times. If we combine this solution with the previous one (first iterations performed by sparse 

matrix, later ones via uncoupling), 300-1000 times shorter overall runtime is achievable [18]. 

3. We introduced a so-called sparse supermatrix (SSM) model, which stores nonzero elements of the 

sparse matrix in arrays, together with its transposed value. This data structure allows us to perform 

extremely high speed Markov clustering, reducing the overall runtime of processing the whole SCOP95 

dataset from over 24 hours to 15-40 seconds [19]. This solution still needed a dense matrix during the 

expansion operation, which limited the memory-efficiency of the algorithm. 

4. We introduced a reformulated MCL solution that does not need a dense matrix when computing the 

expansion of the similarity matrix. The operations are executed in such an order, that the second power 

of the huge matrix is computed row by row, thus needing only a buffer that covers a single row of the 

dense matrix. All other data can be stored in a sparse format, allowing for a much efficient memory 

management. The limits of processable data sizes (on the same computer) have grown by an order of 

magnitude, while runtimes (on the same data set) have reduced 2-3 times [20]. A protein network of 250 

thousand nodes can fit in the memory of an upper class personal computer.  

5.  Another memory efficient solution was proposed in [21], which stores only the upper diagonal half of 

the similarity matrix and executes MCL operations adapted to that data format. This change enabled us to 

cluster protein sequence networks of a million nodes with a personal computer.  

6. Our ultimate version of the efficient MCL algorithm combines the above solution with the matrix 

splitting technique [16]. This is the algorithm that can cluster a protein sequence networks of a million 

nodes in 100 minutes. A manuscript describing this solution was recently submitted to Computer 

Methods and Programs in Biomedicine (Elsevier) journal.  
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7. Large sized protein sequence data sets, together with ground truth concerning their hierarchical 

grouping are difficult to find. That is why we have developed a synthetic data generator procedure, to 

provide large and huge sized test data for highly efficient sparse-matrix based Markov clustering 

algorithms. Being created according to the structure and properties of the SCOP95 protein sequence data 

set [22], the synthetic data act as a collection of proteins organized in a four-level hierarchy and a 

similarity matrix containing pairwise similarity values of the proteins. An ultimate high-speed Markov 

clustering algorithm was employed to validate the synthetic data. Generated data sets have a healthy 

amount of variability due to the randomness in the processing, and are suitable for testing graph-based 

clustering algorithms on large-scale data [23]. 

 

APPLICATION IN INFECTION CONTROL 

As a member of the internationally recognized Hand-in-Scan team, I was involved in the development of 

an education system that can help avoid hospital infections. My role was the development of image 

segmentation methods. Some of the procedures built within the Hand-in-Scan device are based on c-

means clustering algorithms developed within this project. A relevant recent result of the Hand-in-Scan 

team was showing the imperial role of instant visual feedback in the education of correct hand rubbing 

technique [24].  

 

BRAIN TUMOR DETECTION AND SEGMENTATION      

The c-means clustering algorithms developed within this project were involved in brain tumor detection 

and segmentation based on multispectral magnetic resonance images. We built an environment in which 

c-means clustering algorithms were employed in semi-supervised learning mode: the best parameters 

obtained for learning data were applied to test data. The outcome was considerably better than in case of 

non-supervised learning [25, 26]. To obtain even better recognition, we recently turned to a supervised 

learning method, namely the random forest technique.   

 

APPLICATION FUZZY LOGIC IN BLOOD GLUCOSE CONTROL 

PhD student Péter Szalay was employed in the project during this second year to provide an application 

of the fuzzy technology in a real-life problem, namely the blood glucose control. The application 

consisted in handling the drift of available sensors, which bias the signal causing the controller to drive 

the glucose concentration out of the safe region even in the case of frequent calibration. A linear-

quadratic-Gaussian controller was employed on a widely used diabetes model and enhanced with an 

advanced sparse-grid quadratic filter and a fuzzy inference system-based calibration supervisor. The 

proposed controller reduced both hypoglycemic and severe hyperglycemic episodes for all virtual patients 

in the case of extreme meal intake and sensor drift [27]. 

 

BONE IMPLANT IMAGING   

BSc student Eszter Iklódi was employed in the project to develop another image processing application 

for the algorithms introduced within this project. This framework handles micro CT images (volumes) of 

high resolution, created by dentists during experiments with bone implants. The goal of the project was to 

localize and separate thin and thick bone plates based on geometrical and morphological criteria. 

Segmentation was based on c-means clustering. Publications in this topic will follow. Eszter Iklódi will 

keep on working on this matter during her MSc studies.  
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TEST ENVIRONMENT FOR C-MEANS CLUSTERING 

MSc student Bernát Gábor was employed in the project to help the development of a test framework, 

which will enable us to run enormous amounts of tests in a well-organized manner, using the variety of 

clustering models created and input data of various kinds and sizes (including huge data). The test 

framework is under construction, will be finished by the end of the second research year. The test 

framework is developed in c++ programming language and is planned to be platform independent. 

 

PUBLICATIONS 

Results were reported in five peer-reviewed journal articles (PATTERN RECOGNITION LETTERS, 

NEUROCOMPUTING, COMPUTERS IN MEDICINE AND BIOLOGY, JOURNAL OF HOSPITAL INFECTION, 

ACTA POLYTECHNICA HUNGARICA), and a couple more follow. Out of the 17 conference papers 

published, 10 were presented at highly ranked (CORE A) conferences (ICONIP, FUZZ-IEEE, IEEE 

EMBC, CINC).   
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