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GERGELY HARCOS

We have made progress in three different, but interrelated topics: bounds for automorphic L-functions,
bounds for automorphic forms, and bounds for prime gaps. In the first two topics we collaborated with
Valentin Blomer (Gottingen), Péter Maga (Budapest), and Djordje Mili¢evi¢ (Bryn Mawr), while in the
third topic we collaborated with the Polymath8 team led by Terence Tao. The results appear in the
research papers [BH14, BHM 16, BHMM, Pol4a, Po14b] and in the surveys [Hal4a, Hal4b]. We have
also contributed to a physics project [WLITH15] and a retrospective article [Pol4c] on the PolymathS8
project. A detailed account of the results is provided below.

1. BOUNDS FOR AUTOMORPHIC L-FUNCTIONS

The first result within the project is an extension of our Burgess-like subconvexity bound in [BHO8]
to cusp forms of arbitrary nebentypus.

Theorem 1 ([BH14]). Let f be a primitive (holomorphic or Maaf3) cusp form of archimedean parameter
W, level N and arbitrary nebentypus, and let y be a primitive character modulo q. Then for Rs =1/2
and for any € > 0 the twisted L-function satisfies
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if f is holomorphic, and

1

1 1 13 1 7.1 11
L@ .5) <e (Isl* (14 DNV, ) g +1s]? (14 1) PNE (V. q) ¥ ) (8] (14 ) Ng)®
otherwise.
In combination with the convexity bound, this yields the clean inequality
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Another corollary is the hybrid subconvexity bound
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but this has been superseded, at least in the (|s| g)-aspect, by Munshi [Mu14] and Wu [Wul4].

2. BOUNDS FOR AUTOMORPHIC FORMS

Our second result provides good bounds for the sup-norm of certain automorphic forms on the hy-
perbolic 3-space .73, extending the earlier results on the hyperbolic plane .7#2. For the latter we recall
that the matrix group GL,(R) acts transitively by hyperbolic isometries on .7, which leads to the iden-
tification 72 = Z(R)\ GL,(R)/ O,(R). Then, concerning the Hecke congruence subgroup I'g(N) of
SL;(Z) and the Laplace operator A on .72, Templier [Te15] proved the following state-of-the-art result.

Theorem 2 ([Tel5]). Let N € Z be square-free, and let ¢ : To(N)\H#? — C be an L*-normalized

Hecke—Maass cusp form. If A¢ = A @, then ||9||., <e¢ (MN|)£}»2% IN|3.
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Here and later, L?>-normalized is always meant with respect to the invariant probability measure. By
comparison, the trivial (or easy) bound would be ||¢]|., < (A|N])€A7|N|z.

Analogously, GL,(C) acts transitively by hyperbolic isometries on .23, which leads to the iden-
tification #3 =2 Z(C)\ GL,(C)/U,(C). Then, concerning the Hecke congruence subgroup I'o(N) of
SL;(Z]i]) and the Laplace operator A on 73, we can state our result as follows.

Theorem 3 ((BHM16]). Let N € Z[i] be square-free, and let ¢ : To(N)\H#> — C be an L*-normalized
Hecke-Maass cusp form. If AQ = A9, then ||9]|.. <e (A|N|)€ min(A 7z |N|, AZ|N]|3).

Here the trivial (or easy) bound reads |||, < (A|N|)A2|N|. A nice feature of this theorem is that,
separately in the eigenvalue and the level aspects, it is as strong as Theorem 2 for the surface case. In
particular, in the level aspect we have a Weyl-type saving on %> and .73, exactly as on the spheres .72
and .73 by the work of Blomer-Michel [BM13]. We note that in the hybrid aspect, Theorem 3 gives
19|, <& (A|N|)EA5|N|5 by interpolation. It is also likely that the ideas of Saha [Sal4, Sal5] can be
applied to remove the restriction that N is square-free, although the resulting exponents will be larger
(but still non-trivial).

The proof of Theorem 3 involves delicate geometric and Diophantine arguments, in addition to the
automorphic input. A key observation is that, identifying ./ with the half-space {z+rj: z€ C, r > 0}
inside the Euclidean space of quaternions H = R + Ri + R j + Rk, the supremum of |¢ (P)| is attained at
a point P = z+rj € 3 such that the lattice Z[i] + Z[i]P C H has favorable properties. For example,
we can ensure that in any ball of radius R the number of lattice points is < 1+ R?|N| + R*r~2, where
also 7> |N|~!. Very recently we managed to extend this crucial ingredient to Hecke-Maass forms over
any number field in place of Q(i), hence it seems that the Weyl-type saving in the level aspect holds in
general. This result will appear in our future work [BHMM].

3. BOUNDS FOR PRIME GAPS

The Polymath8 project was initiated shortly after the sensational result of Zhang [Zh14] that a cer-
tain positive integer occurs as a prime gap infinitely often. Zhang’s proof builds crucially on the
earlier breakthrough of Goldston—Pintz—Y1ldirim [GPY(09] that established the existence of relatively
very small prime gaps, which in turn relied on the classical work of Selberg [Se91] and Bombieri—
Vinogradov [Bo65, Vi65]. In fact Zhang proved a stronger result.

Theorem 4 ([Zh14]). There exists a positive integer k with the following property. If 7€ is an admissible
k-set, then for infinitely many positive integers n, the translated set n+ ¢ contains at least two primes.

Here a k-set of integers is called admissible if it does not contain a complete system of residues
modulo any integer m > 2. Theorem 4 should be compared with the famous

Dickson-Hardy-Littlewood Conjecture ([Di04, HL.23]). Let S be an admissible k-set. Then for
infinitely many positive integers n, the translated set n+ ¢ consists of k primes.

The main focus of the Polymath8 project was to establish Theorem 4 with k as small as possible,
and to examine what it means for the smallest prime gap that occurs infinitely often. The first part of
the project (cf. [Pol4a]) improved and refined Zhang’s original analysis, whereas the second part (cf.
[Pol14b]) focused on the more effective technique of Maynard [Mal5] and Tao [Tal3]. The table on the
next page summarizes progress along these lines.

The proof of Theorem 4 relies on the existence, for any sufficiently large x > 2, of a probability
measure on the integers x < n < 2x for which the expected number of primes in n+ ¢ exceeds one. The
probability measures that are known to work are inspired by the theory of the Selberg sieve [Se91], and
the calculation of the relevant averages leads to the following hypothesis of Elliott—Halberstam [EH70].
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source k= liminf(p,41 — pa) <
Zhang [Zh14] 3.5 x10° 7x107
Polymath8a [Pol4a] 632 4680
Maynard [Mal5] 105 600
Polymath8b [Po14b] 50 246

Hypothesis EH(0). For any constant A > 0 we have

max Z 1 1 /‘Zx dt < X
E _ A\ )
g<x® (@a)=1| o2a 0(q) Jx logt log” x
q squarefree p=a (mod q)

This hypothesis holds for any 6 < 1/2 by the work of Bombieri—Vinogradov [Bo65, Vi65], while
Elliott—Halberstam [EH70] conjectured it for any 6 < 1. The probability measure introduced by May-
nard [Mal5] and Tao [Tal3] utilizes any k times continuously differentiable function f : R¥ — R sup-
ported in the simplex Ay := {(t1,...,%) €ERF: #;,....tr > 0and t; +--- 41 < 1}, and for this probabil-
ity measure the expected number of primes in n+ 57 equals, as x tends to infinity,

ok-1r \?

0 ko (7iais)
2 ot )2
Jre (T{m)

This reduces Theorem 4 to choosing 6 and f in such a way that the product in (1) exceeds 1.

The probability measures used by Zhang [Zh14] and Polymath8a [Po14a] were restricted in the sense
that they corresponded to auxiliary functions f : R¥ — R of the form f(t1,...,t) = g(ti +--- +t;).
For such special f’s and the available 0’s, the product in (1) can get arbitrary close to 1, but it can
never exceed it. Hence Zhang [Zh14] and Polymath8a [Pol4a] focused on raising 0 slightly above
1/2 at the cost of weakening Hypothesis EH(0). The weaker version of EH(8) only concerns x°-
smooth moduli ¢ for a fixed 6 > 0, and only those residue classes a mod g whose reduction modulo any
prime divisor p | ¢ equals one of the nonzero differences within the k-tuple . This idea goes back
to Motohashi—Pintz [MPO08]. In this way, Zhang [Zh14] could achieve any 6 < 1/2+ 1/584, while in
Polymath8a [Pol4a] we could take any 6 < 1/2+ 7/300. However, the restriction of the moduli g and
the residue classes a mod ¢ also has a negative effect in (1), and this increases the admissible value of
k compared to what would originally follow from (1). In Polymath8a [Pol4a] we managed to decrease
this negative effect substantially, partly by relaxing the restriction on ¢, and this culminated in the value
k = 632 and the existence of a prime gap at most 4680 that occurs infinitely often.

For the more general auxiliary functions f : R¥ — R, Maynard [Mal5] discovered that the second
fraction in (1) can be as large as about logk. That is, he proved a version of Theorem 4 in which n+ ¢
contains about (logk)/4 primes infinitely often. In addition, he constructed an example f(zy,...,#) for
k = 105 that only depended on #; + - - - 4 and t12 4+ t,f, yet it raised the product in (1) above 1. In
Polymathb8 [Po14b] we refined and extended Maynard’s work in various ways, e.g. by enlarging the
support Ay of f slightly, or by constructing f in terms of more power sums #' +- - -+, or by combining
the Maynard-Tao weights with the analysis of Zhang—Polymath8a. As a result, one can now take k = 50
in Theorem 4, and even k = 3 under a generalized Elliott—Halberstam conjecture. Moreover, for large &,
the average number of primes in n+ .7 can be raised from about (logk)/4 to about (157,/600)(logk).

) +o(1).
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4. A DETERMINANT INEQUALITY

Our final result is a determinant inequality for the split orthogonal group O(n,n), which is useful in
certain quantum Monte Carlo simulations. We recall that the group O(n,n) consists of the 2n x 2n real
matrices M satisfying

M'nM =n, n =diag(1,...,1,—1,...,—1),
n n

and it has four connected components O**(n,n) corresponding to the possible signs of the upper left
and bottom right n x n subdeterminants of M (which are never zero). The inequality reads as follows.

Theorem 5 ((WLITH15]). For M € O(n,n) we have

>0, MeOt(n,n);
det(/I+M){ <0, MeO (n,n);
=0, otherwise.

We record a case particularly important for physics.

Corollary ([WLITH15]). Assume that the n X n real matrices A; (j = 1,...,k) satisfy nA;n = —AJT.
Then we have

k
det | 1+ HeAf > 0.
j=1
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