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We have made progress in three different, but interrelated topics: bounds for automorphic L-functions,
bounds for automorphic forms, and bounds for prime gaps. In the first two topics we collaborated with
Valentin Blomer (Göttingen), Péter Maga (Budapest), and Djordje Milićević (Bryn Mawr), while in the
third topic we collaborated with the Polymath8 team led by Terence Tao. The results appear in the
research papers [BH14, BHM16, BHMM, Po14a, Po14b] and in the surveys [Ha14a, Ha14b]. We have
also contributed to a physics project [WLITH15] and a retrospective article [Po14c] on the Polymath8
project. A detailed account of the results is provided below.

1. BOUNDS FOR AUTOMORPHIC L-FUNCTIONS

The first result within the project is an extension of our Burgess-like subconvexity bound in [BH08]
to cusp forms of arbitrary nebentypus.

Theorem 1 ([BH14]). Let f be a primitive (holomorphic or Maaß) cusp form of archimedean parameter
µ , level N and arbitrary nebentypus, and let χ be a primitive character modulo q. Then for ℜs = 1/2
and for any ε > 0 the twisted L-function satisfies
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if f is holomorphic, and
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otherwise.

In combination with the convexity bound, this yields the clean inequality
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Another corollary is the hybrid subconvexity bound
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but this has been superseded, at least in the (|s|q)-aspect, by Munshi [Mu14] and Wu [Wu14].

2. BOUNDS FOR AUTOMORPHIC FORMS

Our second result provides good bounds for the sup-norm of certain automorphic forms on the hy-
perbolic 3-space H 3, extending the earlier results on the hyperbolic plane H 2. For the latter we recall
that the matrix group GL2(R) acts transitively by hyperbolic isometries on H 2, which leads to the iden-
tification H 2 ∼= Z(R)\GL2(R)/O2(R). Then, concerning the Hecke congruence subgroup Γ0(N) of
SL2(Z) and the Laplace operator ∆ on H 2, Templier [Te15] proved the following state-of-the-art result.

Theorem 2 ([Te15]). Let N ∈ Z be square-free, and let φ : Γ0(N)\H 2 → C be an L2-normalized
Hecke–Maass cusp form. If ∆φ = λφ , then ‖φ‖

∞
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Here and later, L2-normalized is always meant with respect to the invariant probability measure. By
comparison, the trivial (or easy) bound would be ‖φ‖

∞
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1
4 |N| 12 .

Analogously, GL2(C) acts transitively by hyperbolic isometries on H 3, which leads to the iden-
tification H 3 ∼= Z(C)\GL2(C)/U2(C). Then, concerning the Hecke congruence subgroup Γ0(N) of
SL2(Z[i]) and the Laplace operator ∆ on H 3, we can state our result as follows.

Theorem 3 ([BHM16]). Let N ∈ Z[i] be square-free, and let φ : Γ0(N)\H 3→ C be an L2-normalized
Hecke–Maass cusp form. If ∆φ = λφ , then ‖φ‖

∞
�ε (λ |N|)ε min(λ

5
12 |N|,λ 1

2 |N| 23 ).

Here the trivial (or easy) bound reads ‖φ‖
∞
�ε (λ |N|)ελ

1
2 |N|. A nice feature of this theorem is that,

separately in the eigenvalue and the level aspects, it is as strong as Theorem 2 for the surface case. In
particular, in the level aspect we have a Weyl-type saving on H 2 and H 3, exactly as on the spheres S 2

and S 3 by the work of Blomer–Michel [BM13]. We note that in the hybrid aspect, Theorem 3 gives
‖φ‖
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9 |N| 89 by interpolation. It is also likely that the ideas of Saha [Sa14, Sa15] can be

applied to remove the restriction that N is square-free, although the resulting exponents will be larger
(but still non-trivial).

The proof of Theorem 3 involves delicate geometric and Diophantine arguments, in addition to the
automorphic input. A key observation is that, identifying H 3 with the half-space {z+r j : z∈C, r > 0}
inside the Euclidean space of quaternions H=R+Ri+R j+Rk, the supremum of |φ(P)| is attained at
a point P = z+ r j ∈H 3 such that the lattice Z[i]+Z[i]P ⊂ H has favorable properties. For example,
we can ensure that in any ball of radius R the number of lattice points is� 1+R2|N|+R4r−2, where
also r� |N|−1. Very recently we managed to extend this crucial ingredient to Hecke–Maass forms over
any number field in place of Q(i), hence it seems that the Weyl-type saving in the level aspect holds in
general. This result will appear in our future work [BHMM].

3. BOUNDS FOR PRIME GAPS

The Polymath8 project was initiated shortly after the sensational result of Zhang [Zh14] that a cer-
tain positive integer occurs as a prime gap infinitely often. Zhang’s proof builds crucially on the
earlier breakthrough of Goldston–Pintz–Yıldırim [GPY09] that established the existence of relatively
very small prime gaps, which in turn relied on the classical work of Selberg [Se91] and Bombieri–
Vinogradov [Bo65, Vi65]. In fact Zhang proved a stronger result.

Theorem 4 ([Zh14]). There exists a positive integer k with the following property. If H is an admissible
k-set, then for infinitely many positive integers n, the translated set n+H contains at least two primes.

Here a k-set of integers is called admissible if it does not contain a complete system of residues
modulo any integer m > 2. Theorem 4 should be compared with the famous

Dickson–Hardy–Littlewood Conjecture ([Di04, HL23]). Let H be an admissible k-set. Then for
infinitely many positive integers n, the translated set n+H consists of k primes.

The main focus of the Polymath8 project was to establish Theorem 4 with k as small as possible,
and to examine what it means for the smallest prime gap that occurs infinitely often. The first part of
the project (cf. [Po14a]) improved and refined Zhang’s original analysis, whereas the second part (cf.
[Po14b]) focused on the more effective technique of Maynard [Ma15] and Tao [Ta13]. The table on the
next page summarizes progress along these lines.

The proof of Theorem 4 relies on the existence, for any sufficiently large x > 2, of a probability
measure on the integers x 6 n 6 2x for which the expected number of primes in n+H exceeds one. The
probability measures that are known to work are inspired by the theory of the Selberg sieve [Se91], and
the calculation of the relevant averages leads to the following hypothesis of Elliott–Halberstam [EH70].
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source k = liminf(pn+1− pn)6

Zhang [Zh14] 3.5×106 7×107

Polymath8a [Po14a] 632 4680

Maynard [Ma15] 105 600

Polymath8b [Po14b] 50 246

Hypothesis EH(θ). For any constant A > 0 we have
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This hypothesis holds for any θ < 1/2 by the work of Bombieri–Vinogradov [Bo65, Vi65], while
Elliott–Halberstam [EH70] conjectured it for any θ < 1. The probability measure introduced by May-
nard [Ma15] and Tao [Ta13] utilizes any k times continuously differentiable function f : Rk → R sup-
ported in the simplex ∆k := {(t1, . . . , tk) ∈Rk : t1, . . . , tk > 0 and t1 + · · ·+ tk 6 1}, and for this probabil-
ity measure the expected number of primes in n+H equals, as x tends to infinity,
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This reduces Theorem 4 to choosing θ and f in such a way that the product in (1) exceeds 1.
The probability measures used by Zhang [Zh14] and Polymath8a [Po14a] were restricted in the sense

that they corresponded to auxiliary functions f : Rk → R of the form f (t1, . . . , tk) = g(t1 + · · ·+ tk).
For such special f ’s and the available θ ’s, the product in (1) can get arbitrary close to 1, but it can
never exceed it. Hence Zhang [Zh14] and Polymath8a [Po14a] focused on raising θ slightly above
1/2 at the cost of weakening Hypothesis EH(θ). The weaker version of EH(θ) only concerns xδ -
smooth moduli q for a fixed δ > 0, and only those residue classes a mod q whose reduction modulo any
prime divisor p | q equals one of the nonzero differences within the k-tuple H . This idea goes back
to Motohashi–Pintz [MP08]. In this way, Zhang [Zh14] could achieve any θ < 1/2+ 1/584, while in
Polymath8a [Po14a] we could take any θ < 1/2+7/300. However, the restriction of the moduli q and
the residue classes a mod q also has a negative effect in (1), and this increases the admissible value of
k compared to what would originally follow from (1). In Polymath8a [Po14a] we managed to decrease
this negative effect substantially, partly by relaxing the restriction on q, and this culminated in the value
k = 632 and the existence of a prime gap at most 4680 that occurs infinitely often.

For the more general auxiliary functions f : Rk → R, Maynard [Ma15] discovered that the second
fraction in (1) can be as large as about logk. That is, he proved a version of Theorem 4 in which n+H
contains about (logk)/4 primes infinitely often. In addition, he constructed an example f (t1, . . . , tk) for
k = 105 that only depended on t1 + · · ·+ tk and t2

1 + · · ·+ t2
k , yet it raised the product in (1) above 1. In

Polymathb8 [Po14b] we refined and extended Maynard’s work in various ways, e.g. by enlarging the
support ∆k of f slightly, or by constructing f in terms of more power sums tm

1 + · · ·+tm
k , or by combining

the Maynard–Tao weights with the analysis of Zhang–Polymath8a. As a result, one can now take k = 50
in Theorem 4, and even k = 3 under a generalized Elliott–Halberstam conjecture. Moreover, for large k,
the average number of primes in n+H can be raised from about (logk)/4 to about (157/600)(logk).
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4. A DETERMINANT INEQUALITY

Our final result is a determinant inequality for the split orthogonal group O(n,n), which is useful in
certain quantum Monte Carlo simulations. We recall that the group O(n,n) consists of the 2n×2n real
matrices M satisfying

MT
ηM = η , η = diag(1, . . . ,1︸ ︷︷ ︸

n

,−1, . . . ,−1︸ ︷︷ ︸
n

),

and it has four connected components O±±(n,n) corresponding to the possible signs of the upper left
and bottom right n×n subdeterminants of M (which are never zero). The inequality reads as follows.

Theorem 5 ([WLITH15]). For M ∈ O(n,n) we have

det(I +M)


> 0, M ∈ O++(n,n);
6 0, M ∈ O−−(n,n);
= 0, otherwise.

We record a case particularly important for physics.

Corollary ([WLITH15]). Assume that the n× n real matrices A j ( j = 1, . . . ,k) satisfy ηA jη = −AT
j .

Then we have

det

(
I +

k

∏
j=1

eA j

)
> 0.
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