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Scientific report 
 

Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines 

whose neural functions are increasingly recognized. Three separate genes encode TGF-β1, -

β2, and -β3 (Lawrence, 1996; Roberts, 1998). TGF-βs affect cell proliferation, differentiation, 

and extracellular matrix formation in a variety of tissues (Burt and Law, 1994) by means of 

serine-threonine kinase domain-containing TGF-β receptors (Arighi et al., 2009; Attisano and 

Wrana, 2002). In the normal brain, TGF-β1 immunoreactivity is present in the epithelial and 

meningeal cells of the choroid plexus (Unsicker et al., 1991). We recently the expression of 

TGF-β1 in some restricted brain regions by in situ hybridization histochemistry (Vincze et al., 

2010).  TGF-β2 and -β3 were constitutively present in several brain regions as, confirmed at 

the mRNA and protein levels and their expression patterns greatly overlapped (Vincze et al., 

2010). In the cerebral cortex, TGF-β2 expression was very intense in layer V Layers III and 

IV also contained TGF-β2 and –β3, respectively, while TGF-βs were absent in the caudate 

putamen (Vincze et al., 2010). Evidence of their involvement in the development and 

plasticity of the nervous system as well as their functions in peripheral organs suggested that 

they exhibit neuroprotective functions, too. Indeed, TGF-β expression is induced following a 

variety of types of brain tissue injury but the available knowledge was scarce as to the 

induction of specific subtypes and the mechanisms of induction. In the framework of the 

proposal, we presented evidence that endogenous TGF-β1, -β2 and -β3 are expressed in brain 

tissue following a ischemic lesion. However, significant differences exist between the spatial 

and temporal patterns of expression of TGF-β subtypes. The induction of TGF-β1-3 was 

examined in the rat after focal ischemia at 3h, 24h, 72h and 1 month after transient (1h) or 

permanent (24h) middle cerebral artery occlusion (MCAO) model of focal ischemia (Fig. 1) 

and in early postnatal mice following unilateral ligature of the carotid artery, an experimental 
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model of neonatal ischemia, using in situ hybridization histochemistry and quantitative 

analysis. 

 

 

Fig. 1. The time course of TGF-β protein expression following MCAO.  The numbers of cells 

within 200 x 400 m areas (0.08 mm
2
) of coronal brain sections in cortical layer II were 

counted immediately outside the lesion (dark gray) and 1 mm medial to the border of the 

lesion within the infarct area (light gray). The number of autoradiography grains was counted 

above the TGF-β-positive cell nuclei, indicated by autoradiography grain accumulation. 

Sections from at least 3 brains of the following groups of animals were included in the 

analysis: sham-operated rats 24 h following MCAO, rats at 3 h and 24 h following 1 h 

MCAO, rats with a permanently occluded middle cerebral artery 24 h following MCAO, and 

rats at 72 h and 1 mo following 1 h MCAO. A-C: The number of cells expressing TGF-β1, -

β2, and -β3 in 0.08 mm
2
. D-F: The number of autoradiography grains proportional to the 

mRNA levels of TGF-β1, -β2, and -β3 in single cells. Values at different time points were 

compared using one-way ANOVA followed by Bonferroni´s multiple comparisons tests for 

consecutive time points. The star symbol (*) indicates time points between which the number 
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of TGF-β-expressing cells or the mRNA level of the particular subtype of TGF-β in single 

cells significantly (p < 0.05) changed. 

 

 

Double labeling with different markers was used to identify the localization of TGF-β 

mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs 

following MCAO (Fig. 2 and Table 1).  

 

 

Fig. 2. TGF-β2 is induced in neurons but not in glial cells 24h after MCAO. A: Double 

labeling of TGF-β2 mRNA (black in situ hybridization signal) and immunoreactivity of the 

microglia marker Iba1 (brown precipitate). The lesion is indicated by star symbols (*) and the 

lesion border is demarcated by black dots. The positions of the high-magnification images in 

layer III and V of the cerebral cortex are indicated by black arrowheads as Aa, and Ab, 
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respectively. Iba1-immunoreactive microglia do not contain TGF-β2 mRNA in either layer of 

the cerebral cortex. B: Double labeling of TGF-β2 mRNA (black in situ hybridization signal) 

and NeuN-immunoreactive neurons (brown precipitate). Almost all TGF-β2 mRNA-

expressing cells contained NeuN immunoreactivity in layer III (Ba), and in layer V (Bb). 

Examples of double-labeled cells are indicated by black arrows. C: TGF-β2 is not expressed 

in astrocytes. TGF-β2 mRNA expressing neurons are indicated by white arrowheads and 

GFAP-immunoreactive neurons are indicated by black arrowheads. There are no double-

labeled cells present. Abbreviations: cc – corpus callosum. Scale bars = 1 mm for A, 50 µm 

for Ab, 200 µm for Ba, 100 µm for Bb, and 100 µm for C. 

 

 

 

 
TGF-β1  TGF-β2  TGF-β3 

layer II layer V CP  layer II layer V  layer II 

         

Number of 

TGF-β cells / 

0.08 mm
2
 

18.3±4.9 16.7±3.5 20.5±4.5  18.3±4.2 17.0±3.9  14.0±4.5 

Immunolabeled 

cells in the % of 

TGF-β cells 

        

NeuN 3.7±2.8 4.7±3.3 5.7±3.9  87,1±3,8 84,8±2,7  81,1±3.5 

GFAP 26.3±2.8 21.6±6.2 22.2±4.4  4.2±2.3 4.0±2.1  9.3±5.8 

Iba1 93.7±3.4 94.0±4.6 96.0±4.1  3.1±2.6 3.5±2.4  6.7±3.4 

Hsp70 7.2±2.2 4.8±3.9 5.5±2.9  76.3±7.4 69.2±8.9  - 

Fos 4.1±2.2 4.7±3.3 5.2±2.7  90.2±3.8 91.9±4.6  - 

ATF-3 8.4±1.9 7.1±2.6 8.5±4.1  2.8±1.9 4.3±2.9  - 

 

Table 1. Data on TGF- β1 is presented in 3 different locations, layer II and V of the cerebral 

cortex and the caudate putamen (CP). Because TGF-β2 is not expressed in the caudate 
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putamen, TGF-β2-expressing cells were only counted in the cerebral cortex. Similarly, data 

on TGF-β3 are provided only for layer II of the cerebral cortex. In the upper row, the total 

number of TGF-β -expressing cells counted in a 400 x 200 m rectangular-shaped area 

immediately outside the lesion is shown. The number of double-labeled cells was also 

counted in the same field, and the calculated ratios were averaged. One-way ANOVA did not 

indicate significant differences between brain regions for any of the markers. 

 

TGF-β1 expression increased 3h after MCAO in the penumbra and was further 

elevated 24h after MCAO. TGF-β1 was present mostly in microglial cells but also in some 

astrocytes. By 72h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also 

appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 

mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, 

and V of the ipsilateral cerebral cortex 24h after MCAO. TGF-β3 was not induced in cells 

around the penumbra. Its expression increased in only a few cells in layer II of the cerebral 

cortex 24h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. 

Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that 

reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos 

or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that 

cortical spreading depolarization, but not damage to neural processes, might be the 

mechanism of induction for TGF-β2. The finding that TGF-β subtypes are expressed in 

separate cell types, and co-localize with different immediate early genes suggest that 

endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the 

brain suggesting that they are involved in distinct spatially and temporally regulated 

inflammatory and neuroprotective processes. Furthermore, these results imply that the 

different subtypes of TGF-βs participate in different aspects of neural tissue protection (Pal et 



 9 

al., 2012). Apart from neuroprotection following ischemia, TGF-βs were suggested to have 

neuroprotective actions in a variety of insults to the nervous tissue including trauma, sclerosis 

multiplex, neurodegenerative diseases, infections, and brain tumors. Different mechanisms 

might play a role behind the neuroprotective actions of different TGF-βs for the different 

disorders (Dobolyi et al., 2012). The anti-inflammatory action of TGF-βs is fully proved. A 

substantial amount of evidence is available to support the role of TGF-βs in scar formation 

including astrogliosis. TGF-β is known to affect cell survival, and an anti-apoptotic effect on 

neurons is supported by a number of experiments. A role of TGF-βs in excitotoxicity has also 

been intensively investigated. Similarly, the available evidence is strong for a role of TGF-βs 

to angiogenesis and their contribution to the vascularization of tumors. Finally, neuronal 

regeneration might also involve TGF-βs (Dobolyi et al., 2012). 

Apart from a role of TGF-βs in brain pathologies, they were also shown to be involved in 

the physiological functions of the nervous system including neuronal differentiation and 

survival, synaptic transmission and plasticity, and neuroendocrine functions (Dobolyi, 2012). 

Our results pointed to a possible role of TGF-βs in maternal alterations (Cservenak et al., 

2011). The expression of TGF-β1 is very similar to that of amylin in the preoptic area 

(Dobolyi, 2011), a brain region whose lesion leads to the elimination of maternal care 

(Numan, 1986). Amylin expression was also induced in maternally behaving (sensitized) non-

lactating but not in non-sensitized nulliparous control females and Fos activation was 

demonstrated in amylin neurons in response to pup exposure in mothers (Fig. 3) suggesting 

that preoptic expression is related to maternal behavioral changes (Szabo et al., 2012). 
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Fig. 3. Fos activation of amylin mRNA expressing neurons in response to pup exposure. A: A 

high density of amylin mRNA expressing neurons (white labeling) can be seen in a dark-field 

photomicrograph of the preoptic area in mother rat. B: The framed area in A is shown in 

bright-field picture at a high magnification. Most amylin mRNA-expressing neurons (situated 

below the black autoradiography dots) contained Fos-immunoreactivity (brown nuclei) in the 

preoptic area 2 h after pup exposure following 22 h separation. A considerable number of 

Fos-immunoreactive but amylin-negative neurons are also visible. Fos-immunoreactive 

neurons were present in the medial preoptic nucleus (MPN), the medial preoptic area (MPA) 

and the ventral part of the bed nucleus of the stria terminalis (BNSTv) with a distribution 

similar to that of amylin-expressing neurons. Additional abbreviations: ac – anterior 

commissure, och – optic chiasm, 3V – third ventricle. Scale bar = 1 mm for A and 100 µm for 

B. 

 

However, we showed that TGF-β1 and amylin are not co-expressed by the same neurons. 

Furthermore, while amylin levels were decreased in mice lacking tuberoinfundibular peptide 

of 39 residues, a marker of neurons with ascending maternal input (Varga et al., 2012), TGF-

β1 expression was not affected. Thus, although TGF-β1 is expected to play a role in central 
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reproductive regulation, it may not be involved in maternal regulations (Dobolyi, 2012).  

Instead, gonadotropin-releasing hormone neurons in the preoptic area known to contain TGF-

β receptors respond directly to TGF-β1 stimulation (Prevot et al., 2000). Indeed, incubation of 

preoptic explants with TGF-β1 caused a significant, dose-dependent decrease in GnRH 

mRNA expression in individual neurons, which was inhibited by addition of the soluble form 

of TGFbeta-RII to the incubation medium (Bouret et al., 2004). These results support that 

TGFbeta1 may directly influence GnRH expression and/or secretion in vivo by acting on the 

perikarya of GnRH neurons (Dobolyi, 2012).  

 

 

 

Budapest, 02-01-2013 

 

 

     Dr. Arpád Dobolyi 
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