
According to our original proposal our research is focused on the following areas: 

• General theory of composite beams, 
• Local buckling analysis of thin walled beams, 
• Vibration of composite floors supported by beams. 

Later we included in our research the  

• investigation of RC columns strengthened with composite materials and the vibration 
of arches and columns; 

and – with permition – Bernat Csuka  and Tamas Ther joined our team. 

In all four areas we fulfilled our goals, as it will be discussed below. It must be admitted, 
however that the whole research budget was not spent, the reason is that some of the conference 
participations were financed by other sources, and the PI – because of other commitments – had 
much less time for international travelling.  

The most important achievement of our research is the new beam theory (first topic), this will 
be discussed in detail, then the other topics are presented briefly. The details can be found in 
the referred articles. 

GENERAL THEORY OF COMPOSITE BEAMS. 

When composite beams and columns are designed the stresses and strains are calculated, and 
the buckling loads and the natural frequencies are determined. In the analysis the cross sectional 
properties (the beam’s stiffness matrix) must be known. Its calculation can be more complex 
for composite beams than for isotropic ones, because of the substantial differences in their 
response to external loads. The behaviour of isotropic and composite beams is illustrated below 
with the example of a thin walled I-beam.  

When an isotropic beam is subjected to tension or bending the cross sections remain plane 
(Figures 1a and b), while under torsion cross sections warp (Figure 1c).  

 

Figure 1. Deformation of an isotropic I-beam subjected to (a) tension, (b) bending and (c) 
torque 

In the presence of structural constrains the problem of torsion is more complex and – for a  built 
in I-beam – can be illustrated as the loading of the flanges by a force couple (Figure 2a). Due 
to these loads the flanges undergo bending deformations (when the shear deformations of the 
flanges are neglected, Figure 2a) and shear deformations (Figure 2b). Note that for long beams 
the shear deformations of the flanges are negligible. For isotropic beams the tension, bending 
and torsion are uncoupled. 



 

Figure 2. Deformations of a built-in isotropic I-beam subjected to torsion when (a) the shear 
deformations of the flanges are neglected and (b) due to the shear deformations of the flanges 

 

Figure 3. Possible deformations of a composite I-beam subjected to tension. (a) the warping 
of the cross section, (b) the tension-torsion coupling and (c) the shear deformation of the 

flanges 

 

Figure 4. a) Example of an I-beam with unbalanced flanges. (b) Under pure tension there is 
no twist, however, the cross sections warp. (c) When one end is fixed, the beam subjected to 

tension will twist. 

For thin-walled composite beams the following phenomena may occur which are significantly 
different from the behaviour of isotropic beams: the cross section may warp under pure tension 
or pure bending (the first one is illustrated in Figure 3a), there are tension-torsion, tension-
bending and bending-torsion coupling (the first one is illustrated in Figure 3b), there is a 
tension-shear coupling in the flanges as illustrated in Figure 3c. 

We further illustrate the difference between isotropic and composite beams when both tension-
shear coupling (Figure 3c) and structural constrains are present. We consider the example of 
an I-beam with unbalanced flanges (e.g. the fibers in the upper flange are in the +45°, while the 
fibers in the lower flange are in the -45° direction, Figure 4a). Under pure tension the flanges 
undergo shear deformation (the cross section warps), however, there is no twist along the beam 
(Figure 4b) and there is no tension-twist coupling. When one end is built-in and the other end 
is free, under tension the rotation of the beam will be significant due to constrained warping 
(Figure 4c). Note that this effect is significant also for long beams. 

Isotropic beam theories and the corresponding computer codes can take into account all the 
effects explained in Figures 1 and 2 except the shear deformation due to torsion and structural 
constraint (Figure 2b), note, however, that for isotopic beams this effect is negligible. 

Anisotropic beam theories (and the corresponding  computer codes) can handle the warping of 
the cross sections (Figure 3a), which means that cross sections do not remain plane under pure 
tension and bending, and also the coupling among tension, torsion and bending, however they 
do not include 

- the shear deformation of the flanges due to restrained warping (Figure 2b), 
- the tension-shear coupling in the flanges ( Figure 3c). 



We emphasize that for composite beams the restrained warping induced shear deformations are 
important and – except for long beams – can not be neglected [1]. In addition, when tension-
shear coupling is present (Figure 4b and c) theories which do not include this effect may lead 
to unacceptable results even for long beams. 

In this research we present an analysis of thin-walled composite beams, taking into account 
restrained warping induced shear deformation and the tension-shear coupling. We will 
summarize only the basic idea of the method to calculate the stiffness matrix of composite 
beams, the details of the analysis is presented in [2]. 

Beam theories give the relationships between the displacements of the beam axis, generalized 
strains, internal forces and loads. These relationships are given by the strain-displacement 
relationships (geometrical equations), material law (constitutive equations) and the equilibrium 
equations. These are written as: 

 uΘε ˆ= , MεN = , NΘp *ˆ= ,                                                 (1) 

 

Figure 5. The stress resultants (internal forces). 

 

Figure 6. Illustration of Saint Venant torque, restrained warping induced torque and 
bimoment on an I-beam. 

where u , ε ,N , p  are the vectors of the displacements, generalized strains, internal forces and 

loads, respectively. M  is the (symmetric) stiffness matrix, while Θ̂  and *
Θ̂  are operator 

matrices. For the spatial case the minimum number of internal forces is six due to the six stress 
resultants (Figure 5): the axial force, the two transverse shear forces, the two bending moments 
and the torque. (By neglecting the shear deformations the shear forces can be eliminated, but 
for composites – as it is discussed in [1]  – this is not recommended.) It is well known that for 
open section beams the theory including these six forces only is inaccurate, and the torque must 
be divided as Saint Venant and restrained warping induced torque: ωTT +SV  (Figure 6), where 

the latter one is the derivative of the bimoment (or moment couple), xMT ∂∂= /ωω . The 

constitutive equations of this theory – often referred to as Vlasov’s theory – are given in the top 
part of Table 1. In this theory six displacements must be taken into account: u , v and w  are the 
displacements of  the axis, ψ  is the rotation of the cross section about the beam’s axis and yχ

, zχ  are the rotation of the cross sections about the z and y axes. For cross sections made of 

isotropic or orthotropic materials only some of the elements in the stiffness matrix are zero [1], 
which are denoted by stars in Table 1. 
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Torsional-warping shear deformation theory
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Table 1. Constitutive equations for the spatial problem (Stars in the orM  matrix show the 
nonzero elements in the stiffness matrix of an orthotropic beam.) 

Shortcomings of the classical theory. It is well known that composite structures undergo higher 
shear deformation than structures made of conventional materials, and hence the shear 
deformation should not be neglected. For restrained warping the torsional shear deformations 
must also be taken into account. This is illustrated in Figure 2 for an orthotropic I beam. 
According to Vlasov’s theory, when an I beam is subjected to torsion there is no shear 
deformation of the flanges (Figure 2a), when, in fact, the shear deformation (illustrated in 
Figure 2b) may be significant. This effect can be modelled by the torsional-warping shear 
deformation theory, which is developed in this OTKA project. It can be argued that for longer 
beams this effect is negligible. This may be true for orthotropic beams, but not for anisotropic 
ones, as it was shown in Figure 4. 

Torsional-warping shear deformation theory. 

To understand the torsional-warping shear deformations, first we consider the case when a beam 
deforms only in a plane (e.g. in the x-y plane). In the classical beam theory [3], (when the shear 
deformation is neglected), the displacements of the axis in the x- and y directions  (u and v)  are  
used  to  calculate the strains and deformations of any point of the cross section. When the shear 
deformation is taken into account, according to Timoshenko’s beam theory (see Kollár and 
Springer [1] for composite beams), three displacement functions of the axis are required: the 
displacement along and perpendicular to the axis (u and v) and the rotation of the cross section 
( yχ ).  

When a beam is subjected to torsion, in the classical (Vlasov or Wagner) theory only the 
rotation of the cross section (ψ ) about the beam’s axis is used [3], [4] to calculate the 

displacements of any point of the cross section. When the axial warping is constrained, an open 



section beam carries the torque load mainly by the bending and shear of the flanges, as 
illustrated in Figure 2 for a symmetrical I-beam. Note, however, that according to Vlasov’s 
theory the shear deformations of the walls (Figure 2b) are neglected. To overcome this 
shortcoming, analogously to Timoshenko’s beam theory, we introduced [5] a new displacement 
function (in addition to the rotation of the cross section, ψ ): the rate of twist due to warping (

Bϑ ). In other words, the rate of twist ( x∂∂ /ψ ) consists of two parts, one when the shear 

deformation is zero and one when the warping is zero: 

SB ϑϑψ +=
∂
∂

x
.                                                   (2) 

We must give credit to Wu and Sun [6], who suggested first the introduction of this new 
function. 

In summary, in this theory seven displacements must be taken into account:u ,   v ,   w ,   ψ , 

yχ , zχ , Bϑ , where u , v and w  are the displacements of  the axis, ψ  is the rotation of the 

cross section about the beam’s axis, yχ , zχ  are the rotation of the cross sections about the z 

and y axes, and Bϑ  is the rate of twist due to warping. This theory was developed for 
orthotropic open [5] and closed [7] section beams, the stiffeness matrix is given in Figure 7.  

 

Figure 7. Stiffness matrix of Vlasov-, Timoshenko- and torsional-warping shear deformation 
theory. 

The new element in the stiffness matrix is the rotational shear stiffness ωS . For a few cases 

analytical expressions are given for the calculation of the stiffnesses of orthotropic composite 
thin walled beams including the rotational shear stiffness [5],[7]. 

For anisotropic beams there are 8 × 8 elements of the (symmetric) stiffness matrix if the 
torsional-warping shear deformation theory is used. There are several methods, which can be 
used to determine the stiffnesses of a beam [2], [8-14]. 

Method of Solution 

The basic idea of calculating the stiffenesses is as follows. The displacements are assumed in 
the form of sine (or cosine) functions: xαsin , xαcos  ( L/πα = ). Then the strains, internal 
forces and loads are determined. Each contains either sine or cosine functions only. Now the 
average strain energy per unit length of the structure is determined for the beam model and also 
for the 3D model. Both are function of 1/L. The stiffness matrix M  is determined from the 
condition that the coefficients of the Taylor series expansions of the strain energies are equal. 
The key of the solution is that for trigonometrical functions the differential equation system can 



be replaced by ordinary (matrix) equations: If xαsin , xαcos  ( L/πα = ) is differentiated with 
respect to x  the result is a trigonometrical function multiplied by α . As a consequence, for 
trigonometrical displacements the differential equation system Equation (1) can be replaced by 
ordinary equations, where the coefficient matrices contain α . The details of the solution are 
given in [2]. 

We developed a computer code, designated as BEAMSIN to calculate the stiffnesses of thin 
walled anisotropic beams. The code is based on the 3D analytical solution of beams presented 
in [2]. When the stiffnesses are known the displacement can be calculated either numerically 
(FE) or analytically [2]. Here only the results of one example [2] are presented for an I-beam 
cantilever with unbalanced flanges subjected to a tensile load (Figure 4c) which causes the 
rotation of the cross section. These calculations were compared to the results of a finite element 
(ANSYS) analysis, where shell elements were used. The solutions of the VABS analysis [13], 
[14] are also included. VABS does not contain the restrained warping induced shear 
deformations, hence it cannot predict well the tension – warping-shear coupling. 

 

 

Figure 8. Rotation � of an I-beam cantilever with unbalanced flanges subjected to  tensile 
force (Figure 4c) 

LOCAL BUCKLING ANALYSIS OF THIN WALLED BEAMS 

Local buckling analysis is a major consideration in the design of thin-walled FRP sections. 
Local buckling analyses of members can be performed by modeling the wall segments as 
orthotropic plates and by assuming that edges common to two or more plates remain straight. 
Then the buckling load is determined either (i) „exactly” (assuming that all the wall segments 
buckle simultaneously and the continuity conditions at the plate intersections are satisfied) or 
(ii) approximately, by considering the wall segments as individual plates, which are elastically 
restrained by the adjacent walls (Figure 8) [15-21]. 

When the second method is used (e.g., only one of the wall segments is considered, which is 
elastically restrained by the adjacent walls) the two keys to the solution are (a) to determine the 
elastic restraints caused by the adjacent walls (see [1, 21]), and (b) to calculate the buckling 
load of the plate, whose edges are restrained. 
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Figure 9. Web with restrained edges. The restraining wall segment may have (a) two edges 
attached to adjacent walls or (b) one edge is free 

The buckling analyses of long orthotropic plates with different edge conditions were treated by 
several authors; however closed form expressions were available only for a few cases ([1]).  

Explicit expressions were published for the calculation of the buckling loads of long plates 
subjected to bending or shear (Figure 10), when the long edges are elastically restrained [23]. 
These cases are important for calculating the web buckling of beams subjected to bending or 
transverse loads.  

 

Figure 10. The considered plate (a) and its loads: uniform compression (b), linearly varying 
compression (i.e. bending) (c), shear (d) 

As a consequence, in the analysis of local buckling of FRP members [15] axial loads could be 
treated with sufficient accuracy, however the web buckling of transversely loaded beams could 
be approximated only by neglecting the restraining effects of the flanges [15].  

In this research analysis of the web buckling of transversely loaded beams is developed. The 
results are presented in [22-25]. 

Using these expressions the local buckling analysis of thin walled composite beams given in 
the literature can be extended to all practical cases. In the derivation of the presented 
expressions several approximations were made: 

(1) Rather than considering an assembled section, we modeled the webs and flanges as 
individual orthotropic plates rotationally restrained at their edges. 

(2) In calculating the restraining effect we assumed cylindrical bending. 
(3) The stabilizing effect of tension was neglected. 
(4) We calculated the buckling loads of plates with rotationally restrained edges by 

approximate expressions. 
(5) The distribution of the shear along the web is assumed to be uniform, the shear in the 

flanges is neglected 
(6) The maximum values of the internal forces are taken into account, however, in most 

practical cases they vary along the length 
 
Approximations (2), (3) and (6) are on the safe side, while approximations (4) may cause an 
error less than 7%. Note that approximation (6) may underestimate the buckling load by up to 
10-20%. 
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Approximation (2) can be eliminated by taking into account the effect of the buckling length in 
the calculation of the spring constant, however it requires a rather complex calculation, and 
hence it is not recommended. 

We emphasize that several comparisons were made with the results of finite element and 
analytical calculations, and we found the presented expressions to be reasonably accurate. 

VIBRATION OF COMPOSITE FLOORS SUPPORTED BY BEAMS 

Long-span (reinforced concrete, steel, composite, timber- and timber-concrete) floors may 
show considerable vibration, which may disturb the occupants. The floor is often supported by 
columns and beams, which may reduce the natural frequency even in the range of human 
excitation. In this research a model and simple explicit expressions are developed for the 
calculation of the natural frequency of plates, which take into account the deflections of the 
supporting beams. The floor is modelled as an orthotropic plate, while the effect of the 
supporting beams is taken into account either with Föppl’s expression or by the Rayleigh-Ritz 
method. The results are applied to timber and timber-concrete floors with various 
configurations, and the results are verified numerically and experimentally. The results are 
summarizes in two mayor journal articles [26], [27]. 

INVESTIGATION OF RC COLUMNS STRENGTHENED WITH COMPOSITE 
MATERIALS AND THE VIBRATION OF ARCHES AND COLUMNS 

A new model for FRP confined circular concrete columns based on a sophisticated material 
model is derived. With the aid of this model the effect of the stiffness of the confining material 
on the strength of the structure was investigated. It was found that: (i) in the case of a wide 
parameter range (low stiffness confinement) the stiffness has a minor effect on the concrete 
strength, (ii) in the case of high stiffness confinement a significant gain in concrete strength can 
be reached by taking into account the confinement stiffness, and (iii) in theory the concrete can 
be overconfined (with a lower strength), however this case is not realistic for conventional FRP. 
Based on the new model an analytical expression is derived to determine the (lower limit of) 
strength of confined concrete, and the limit of insufficient conf inement is also derived. The 
results are verified by experiments available in the literature. The results are summarized in 
four mayor journal articles [28-31], and in the PhD thesis of Bernat Csuka.  
 
In Hungary, several churches were built in the XII – XIX centuries with vaults supported by 
arches, many of them were severely damaged by moderate ground motions. It is essential that 
these structures should be evaluated for the expected seismic event. It is well known, that the 
classical analysis used for the design of regular building by the engineers, such as the Response 
Modal Analysis or even the time history analysis of elasto-plastic structures are not applicable 
for masonries, where the “rocking” (opening and closing with impact) plays an important role 
in the nonlinear response of masonry structures.  This is the reason why several researchers 
were investigated this problem either with the discrete element method or with simplified 
analytical solutions taking into account the impact between the elements. In this research, first 
experiments were performed at the laboratory of the Budapest University of Technology and 
Economics for columns made of dry-masonry. The motions have been recorded with a camera, 
and the motions of the bricks have been determined by image-processing. Our preliminary 
results were published in a conference paper [33]. We ate still working in this area, this is the 
PhD topic of Tamas Ther, who will defend his thesis next year. 
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