According to our original proposal our researcfoised on the following areas:

* General theory of composite beams,
* Local buckling analysis of thin walled beams,
* Vibration of composite floors supported by beams.

Later we included in our research the

* investigation of RC columns strengthened with cosigomaterials and the vibration
of arches and columns;

and — with permition — Bernat Csuka and Tamas jidieed our team.

In all four areas we fulfilled our goals, as it Wile discussed below. It must be admitted,

however that the whole research budget was not gherreason is that some of the conference
participations were financed by other sources thadPl — because of other commitments — had
much less time for international travelling.

The most important achievement of our researcheésiew beam theory (first topic), this will
be discussed in detail, then the other topics ezsgnted briefly. The details can be found in
the referred articles.

GENERAL THEORY OF COMPOSITE BEAMS.

When composite beams and columns are designedrésses and strains are calculated, and
the buckling loads and the natural frequencieslatermined. In the analysis the cross sectional
properties (the beam’s stiffness matrix) must bevikm Its calculation can be more complex
for composite beams than for isotropic ones, bexafishe substantial differences in their
response to external loads. The behaviour of ipatrand composite beams is illustrated below
with the example of a thin walled I-beam.

When anisotropic beam is subjected to tension or bending the cresgoss remain plane
(Figures 1la and b), while under torsion cross saestwarp (Figure 1c).

(a)

Figure 1. Deformation of an isotropic I-beam subjected totéasion, (b) bending and (c)
torque

In the presence of structural constrains the proldétorsion is more complex and — for a built
in I-beam — can be illustrated as the loading efftanges by a force couple (Figure 2a). Due
to these loads the flanges undergo bending def@nsafwhen the shear deformations of the
flanges are neglected, Figure 2a) and shear defmmsgFigure 2b). Note that for long beams
the shear deformations of the flanges are negégibbr isotropic beams the tension, bending
and torsion are uncoupled.
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Figure 2. Deformations of a built-in isotropic I-beam subgsgtto torsion when (a) the shear
deformations of the flanges are neglected andyb)td the shear deformations of the flanges

(©)

Figure 3. Possible deformations of a composite I-beam sudijeict tension. (a) the warping
of the cross section, (b) the tension-torsion cogpand (c) the shear deformation of the
flanges

Figure 4. a) Example of an I-beam with unbalanced flangesUtimer pure tension there is
no twist, however, the cross sections warp. (c) Nee end is fixed, the beam subjected to
tension will twist.

For thin-walledcomposite beams the following phenomena may occur which are sigaiiily
different from the behaviour of isotropic beam thoss section may warp under pure tension
or pure bending (the first one is illustrated ilgutie 3a), there are tension-torsion, tension-
bending and bending-torsion coupling (the first amellustrated in Figure 3b), there is a
tension-shear coupling in the flanges as illustrateFigure 3c.

We further illustrate the difference between ispitcand composite beams when both tension-
shear coupling (Figure 3c) and structural constraire present. We consider the example of
an I-beam with unbalanced flanges (e.qg. the fibetise upper flange are in the +45°, while the

fibers in the lower flange are in the -45° direntiéigure 4a). Under pure tension the flanges
undergo shear deformation (the cross section wanpsjever, there is no twist along the beam
(Figure 4b) and there is no tension-twist couplMthen one end is built-in and the other end
is free, under tension the rotation of the beanh lpgl significant due to constrained warping

(Figure 4c). Note that this effect is significatdaafor long beams.

Isotropic beam theories and the corresponding computer coaiesake into account all the
effects explained in Figures 1 and 2 except tharstieformation due to torsion and structural
constraint (Figure 2b), note, however, that fotapac beams this effect is negligible.

Anisotropic beam theories (and the corresponding computers¢@a@® handle the warping of
the cross sections (Figure 3a), which means tlosscections do not remain plane under pure
tension and bending, and also the coupling amamgjde, torsion and bending, however they
do not include

- the shear deformation of the flanges due to restchwarping (Figure 2b),
- the tension-shear coupling in the flanges ( Fidoe



We emphasize that for composite beams the restraragoing induced shear deformations are
important and — except for long beams — can notdggected [1]. In addition, when tension-

shear coupling is present (Figure 4b and c) theaviech do not include this effect may lead

to unacceptable results even for long beams.

In this research we present an analysis of thiledatomposite beams, taking into account
restrained warping induced shear deformation arel témsion-shear coupling. We will
summarize only the basic idea of the method toutatle thestiffness matrix of composite
beams, the details of the analysis is presentg?].in

Beam theories give the relationships betweerdit@acements of the beam axis, generalized
strains, internalforces andloads. These relationships are given by the strain-dsghent
relationships (geometrical equations), material jenstitutive equations) and the equilibrium
equations. These are written as:

(

®

Figure6. lllustration of Saint Venant torque, restrained pwag induced torque and
bimoment on an I-beam.

whereu, €,N, p are the vectors of the displacements, genera$irachs, internal forces and

loads, respectivelyM is the (symmetric) stiffness matrix, whil® and @ are operator
matrices. For thepatial case the minimum number of internal forces idsi& to the six stress
resultants (Figure 5): the axial force, the twasngerse shear forces, the two bending moments
and the torque. (By neglecting the shear deformattbe shear forces can be eliminated, but
for composites — as it is discussed in [1] — ihisot recommended.) It is well known that for
open section beams the theory including theseosce$ only is inaccurate, and the torque must
be divided as Saint Venant and restrained warpidgded torqueTgy, +T,, (Figure 6), where

the latter one is the derivative of the bimoment rfdoment couple),T,, =0M ,/0x. The

constitutive equations of this theory — often reddrto as Vlasov’s theory — are given in the top
part of Table 1. In this theory six displacementsstibe taken into account; vandw are the
displacements of the axig, is the rotation of the cross section about therbeaxis andy,

, X, are the rotation of the cross sections aboutrtiiedy axes. For cross sections made of

isotropic or orthotropic materials only some of #giements in the stiffness matrix are zero [1],
which are denoted by stars in Table 1.
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Table 1. Constitutive equations for the spatial problem (Sta the M, matrix show the
nonzero elements in the stiffness matrix of anairtdpic beam.)

Shortcomings of the classical theory. It is well known that composite structures unddnggher
shear deformation than structures made of conveaitionaterials, and hence the shear
deformation should not be neglected. For restramagbing the torsional shear deformations
must also be taken into account. This is illusttate Figure 2 for an orthotropic | beam.
According to Vlasov's theory, when an | beam isjeated to torsion there is no shear
deformation of the flanges (Figure 2a), when, iat,fahe shear deformation (illustrated in
Figure 2b) may be significant. This effect can bedelled by thetorsional-warping shear
deformation theory, which is developed in this OTKA project. It candrgued that for longer
beams this effect is negligible. This may be trredirthotropic beams, but not for anisotropic
ones, as it was shown in Figure 4.

Torsional-warping shear deformation theory.

To understand the torsional-warping shear defoomatifirst we consider the case whdyeam
deformsonly in a plane (e.g. in thex-y plane). In the classical beam theory [3], (whenstear
deformation is neglected), the displacements ot in thex- andy directions ¢ andv) are
used to calculate the strains and deformatioaspfoint of the cross section. When the shear
deformation is taken into account, according to @shenko’s beam theory (see Kollar and
Springer [1] for composite beams), three displacgmanctions of the axis are required: the
displacement along and perpendicular to the axan(lv) and the rotation of the cross section

(Xy)-
When abeam is subjected to torsion, in the classical (Vlasov or Wagner) theory orte t

rotation of the cross sectiony() about the beam’s axis is used [3], [4] to cal®lthe
displacements of any point of the cross sectionef\the axial warping is constrained, an open



section beam carries the torque load mainly bylbeding and shear of the flanges, as
illustrated in Figure 2 for a symmetrical I-beanot® however, that according to Vlasov's
theory the shear deformations of the walls (FigBbg are neglected. To overcome this
shortcoming, analogously to Timoshenko’s beam thewe introduced [5] a new displacement
function (in addition to the rotation of the crasection,¢ ): the rate of twist due to warping (
19'3). In other words, the rate of twisbg /0x) consists of two parts, one when the shear
deformation is zero and one when the warping ie:zer

Y _ 9B 19, @)
o0x

We must give credit to Wu and Sun [6], who suggesiest the introduction of this new
function.

In summary, in this theory seven displacements medtken into account; v, w, ¢,
Xy Xz 9B whereu , vandw are the displacements of the axis,is the rotation of the
cross section about the beam’s axys,, x, are the rotation of the cross sections aboutthe
andy axes, andg® is the rate of twist due to warping. This theorgswdeveloped for
orthotropic open [5] and closed [7] section beams, the st&f$smmatrix is given in Figure 7.

/ Vlasov theory (5x5) Timoshenko theory (6x6)

Torsional-warping
shear deformation
theory (8%8)
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~

Vlasov & Timoshenko theory (7x7)

Figure 7. Stiffness matrix of Vlasov-, Timoshenko- and torsibwarping shear deformation
theory.

The new element in the stiffness matrix is thetrotel shear stiffness,. For a few cases

analytical expressions are given for the calcutatibthe stiffnesses of orthotropic composite
thin walled beams including the rotational she#ingss [5],[7].

For anisotropic beams there are 8 x 8 elementh@f(sdymmetric) stiffness matrix if the
torsional-warping shear deformation theory is uSdtere are several methods, which can be
used to determine the stiffnesses of a beam [2]4]8

Method of Solution

The basic idea of calculating the stiffenesses iblows. The displacements are assumed in
the form of sine (or cosine) functionsinax, cosax (a =n/L). Then the strains, internal
forces and loads are determined. Each containsresthe or cosine functions only. Now the
average strain energy per unit length of the stneas determined for the beam model and also
for the 3D model. Both are function ofL1/The stiffness matrixM is determined from the
condition that the coefficients of the Taylor serexpansions of the strain energies are equal.
The key of the solution is that for trigonometritiahctions the differential equation system can



be replaced by ordinary (matrix) equationssitiax, cosax (a =n/L) is differentiated with
respect tox the result is a trigonometrical function multigliey a . As a consequence, for
trigonometrical displacements the differential dgurasystem Equation (1) can be replaced by
ordinary equations, where the coefficient matricestain a . The details of the solution are
given in [2].

We developed a computer code, designated as BEAM&G Bdlculate the stiffnesses of thin
walled anisotropic beams. The code is based oBBhanalytical solution of beams presented
in [2]. When the stiffnesses are known the disptaast can be calculated either numerically
(FE) or analytically [2]. Here only the resultsaie example [2] are presented for an I-beam
cantilever with unbalanced flanges subjected tersite load (Figure 4c) which causes the
rotation of the cross section. These calculatioasewompared to the results of a finite element
(ANSYS) analysis, where shell elements were ushd.sblutions of the VABS analysis [13],
[14] are also included. VABS does not contain tlestrained warping induced shear
deformations, hence it cannot predict well the items- warping-shear coupling.
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Figure 8. Rotationy of an I-beam cantilever with unbalanced flangegexibd to tensile
force (Figure 4c)

LOCAL BUCKLING ANALYSISOF THIN WALLED BEAMS

Local buckling analysis is a major consideratiortha design of thin-walled FRP sections.
Local buckling analyses of members can be perfortmeanodeling the wall segments as
orthotropic plates and by assuming that edges camméwo or more plates remain straight.
Then the buckling load is determined either (i)getty” (assuming that all the wall segments
buckle simultaneously and the continuity conditianshe plate intersections are satisfied) or
(i) approximately, by considering the wall segnseas individual plates, which are elastically
restrained by the adjacent walls (Figure 8) [15-21]

When the second method is used (e.g., only onkeoWall segments is considered, which is
elastically restrained by the adjacent walls) the keys to the solution are (a) to determine the
elastic restraints caused by the adjacent walls [ke21]), and (b) to calculate the buckling

load of the plate, whose edges are restrained.



(@) (b)

Figure 9. Web with restrained edges. The restraining wahsnt may have (a) two edges
attached to adjacent walls or (b) one edge is free

The buckling analyses of long orthotropic plategwiifferent edge conditions were treated by
several authors; however closed form expressiome axailable only for a few cases ([1]).

Explicit expressions were published for the caltafaof the buckling loads of long plates
subjected tdoending or shear (Figure 10), when the long edges are elasticaliyrasned [23].
These cases are important for calculating the welklimg of beams subjected to bending or
transverse loads.
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Figure 10. The considered plate (a) and its loads: uniformpm@ssion (b), linearly varying
compression (i.e. bending) (c), shear (d)

As a consequence, in the analysis of local bucldingRP members [15] axial loads could be
treated with sufficient accuracy, however the wablting of transversely loaded beams could
be approximated only by neglecting the restraimfigcts of the flanges [15].

In this research analysis of the web buckling ahsversely loaded beams is developed. The
results are presented in [22-25].

Using these expressions the local buckling analysthin walled composite beams given in
the literature can be extended to all practicalesadn the derivation of the presented
expressions several approximations were made:

(1) Rather than considering an assembled section, wielex the webs and flanges as
individual orthotropic plates rotationally restraghat their edges.

(2) In calculating the restraining effect we assumdahdyical bending.

(3) The stabilizing effect of tension was neglected.

(4) We calculated the buckling loads of plates withatiohally restrained edges by
approximate expressions.

(5) The distribution of the shear along the web is asgito be uniform, the shear in the
flanges is neglected

(6) The maximum values of the internal forces are takém account, however, in most
practical cases they vary along the length

Approximations (2), (3) and (6) are on the safeesighile approximations (4) may cause an
error less than 7%. Note that approximation (6) mwagerestimate the buckling load by up to
10-20%.



Approximation (2) can be eliminated by taking iacount the effect of the buckling length in
the calculation of the spring constant, howeveedguires a rather complex calculation, and
hence it is not recommended.

We emphasize that several comparisons were madethet results of finite element and
analytical calculations, and we found the preseptguessions to be reasonably accurate.

VIBRATION OF COMPOSITE FLOORS SUPPORTED BY BEAMS

Long-span (reinforced concrete, steel, compositehdr- and timber-concrete) floors may
show considerable vibration, which may disturbdbeupants. The floor is often supported by
columns and beams, which may reduce the naturguérecy even in the range of human
excitation. In this research a model and simpleliexmgxpressions are developed for the
calculation of the natural frequency of plates, ahhiake into account the deflections of the
supporting beams. The floor is modelled as an tmpa plate, while the effect of the
supporting beams is taken into account either #itppl’s expression or by the Rayleigh-Ritz
method. The results are applied to timber and trebacrete floors with various
configurations, and the results are verified nuoadly and experimentally. The results are
summarizes in two mayor journal articles [26], [27]

INVESTIGATION OF RC COLUMNS STRENGTHENED WITH COMPOSITE
MATERIALSAND THE VIBRATION OF ARCHES AND COLUMNS

A new model for FRP confined circular concrete ouhs based on a sophisticated material
model is derived. With the aid of this model thieef of the stiffness of the confining material
on the strength of the structure was investigdtedas found that: (i) in the case of a wide
parameter range (low stiffness confinement) thines has a minor effect on the concrete
strength, (ii) in the case of high stiffness coafirent a significant gain in concrete strength can
be reached by taking into account the confinemtgfimess, and (iii) in theory the concrete can
be overconfined (with a lower strength), howevés tase is not realistic for conventional FRP.
Based on the new model an analytical expressioerised to determine the (lower limit of)
strength of confined concrete, and the limit ofuifisient conf inement is also derived. The
results are verified by experiments available i@ literature. The results are summarized in
four mayor journal articles [28-31], and in the Pthsis of Bernat Csuka.

In Hungary, several churches were built in the XIKIX centuries with vaults supported by
arches, many of them were severely damaged by mi@dground motions. It is essential that
these structures should be evaluated for the exgesgtismic event. It is well known, that the
classical analysis used for the design of regulddimg by the engineers, such as the Response
Modal Analysis or even the time history analysi®laisto-plastic structures are not applicable
for masonries, where the “rocking” (opening andsirig with impact) plays an important role
in the nonlinear response of masonry structuresis i the reason why several researchers
were investigated this problem either with the dite element method or with simplified
analytical solutions taking into account the impaetween the elements. In this research, first
experiments were performed at the laboratory ofBtdapest University of Technology and
Economics for columns made of dry-masonry. The omsthave been recorded with a camera,
and the motions of the bricks have been determimednage-processing. Our preliminary
results were published in a conference paper \8&].ate still working in this area, this is the
PhD topic of Tamas Ther, who will defend his thesst year.
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