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In this project, we applied parametric and nonparametric methods to find
the underlying structure of large, undirected simple or edge-weighted graphs.

In Section 1, we describe the parametric models we investigated (some of
them we newly introduced) and the algorithms developed for parameter esti-
mation. In Section 2, we consider nonparametric statistics (multiway cuts and
normalized modularities, some of them we newly introduced), and estimate the
constant of the volume-regularity of cluster pairs via the modularity spectra,
hence extending the expander mixing lemma to several clusters. Testability
issues are also considered. In Section 3, related work, conference trips, and in-
volvement of students in the applications are discussed. In the References we
only include the publications to which we directly refer in this report.

1 Parameter estimation in random graph mod-
els

We investigated two types of parametric random graph models, and gave algo-
rithms for the maximum likelihood estimation of the parameters. Both models
are capable to find hidden partitions of a simple graph’s vertices for given num-
ber of clusters. About the number of clusters we can tell more in the next
section.

1.1 EM algorithm for estimating the parameters of the
block model

The so-called stochastic block model (introduced by Holland, later investigated
by Bickel,Karrer,Rohe) is a generalization of the classical Erdés—Rényi model
for several clusters. We formulated it in terms of mixtures so that to apply
the EM algorithm for parameter estimation, which has not been applied to this
situation yet. Our statistical sample was the adjacency matrix of the underly-
ing simple graph, and considered it as an incomplete data specification, since
the cluster memberships were missing. Therefore, it was straightforward to use
the Expectation-Maximization (briefly, EM) algorithm proposed by Dempster,
Laird, Rubin. This special application for mixtures is sometimes called collab-
orative filtering (Hofmann, Puzicha, Ungar, Foster). Roughly speaking, we had
a mixture of binomial distributions, and above the binomial parameters we also
estimated the parameters of the polynomially distributed latent membership
vectors. According to the general theory of the EM algorithm, in exponential
families (as in the present case), convergence to a local maximum is guaran-
teed. The algorithm was published in an extended abstract of the ASMDA’11
conference, see [6].

1.2 Parameter estimation in the o, 7, and k — $ models

In the previous stochastic block model, within and between any pair of the
vertex-clusters, edges came into existence with probability depending only on
their endpoints’ cluster memberships. However, there are more sophisticated
models where the edge probabilities are not constant within the blocks. In



the one-cluster case, in [10], we investigated the following random graph model
where the degree sequence is a sufficient statistic. (In fact, with different pa-
rameterization, this model was also introduced by Chatterjee, Diaconis, and
Sly, but in [10] we also gave an algorithm for the maximum likelihood estima-
tion of the parameters together with the proof of its convergence.) We have a
simple random graph on n vertices, and for the probability p;; that vertices i

and j are connected we have that 152_, = a5 (i # j), and edges come into
ij
existence independently (but not with the same probability), where aq, ..., ay,

are positive parameters. Instead of the odds, the log-odds (or logits) are used
in the equivalent model of Chatterjee at al.: In lf—gu = B;+ B, (i # j) with real
parameters (i, ..., 3,. We are looking for the maximum likelihood estimates of
the parameters o’s or 8’s based on the observed simple graph as a statistical
sample. (It may seem that we have a one-element sample here, however, there
are (72’) independent random variables in the background.)

We proved that in the above random graph model the degree sequence is
a sufficient statistic. Further, if the degree sequence of the observed graph is
an inner point of the polytope defined by the Erdés—Gallai conditions, then we
proved that the maximum likelihood equation has a unique solution. We also
recommended an algorithm and proved that the iteration of it converges to this
unique solution.

This kind of an exponential model traces back Rasch and was used for psy-
chological and educational measurements, later market research. The frequently
cited Rasch-model involves categorical data, mainly binary variables, therefore
the underlying random object can be thought of as a contingency table. We
extended the Rasch- model to bipartite graphs with parameter sets 51, ..., Gm
and 71, ...,7, in the following way: In 1521»]' =0i+v (i€ A, je€ B), where A
and B are disjoint independent sets of the underlying bipartite graph’s vertices,
and the edges between A and B come into existence independently.

Making use of this extension, we generalized the S-model for the k-cluster
case. Given 1 < k < n, we are looking for k-partition (V7,..., Vi) of the
vertices such that vertices are independently assigned to clusters with certain
probabilities (also to be estimated); and given the cluster memberships, vertices
1 € V, and j € V4 are connected independently, with probability p;; such that

for any 1 < a,b < k pair. To estimate the parameters, the EM algorithm can
again be used. More precisely, for the within-cluster edges we use the parameter
estimation of the a- or S-model, hence obtain estimates of 8;,’s (i € V,,) in each
cluster separately (a = 1,...,k); whereas, for the inter-cluster edges we use
the extended Rasch-model to bipartite graphs. Note that here the parameter
Bip for i € V, embodies the affinity of vertex i of cluster V, towards vertices
of cluster Vp; and likewise, B;, for j € V, embodies the affinity of vertex j of
cluster V}, towards vertices of cluster V,,. By the model, this affinities are added
together on the level of the log-odds. This model was introduced as k-8 model
in [11] and is is applicable to social networks, where attitudes of persons in the
same social group (say, a) are the same toward members of another social group
(say, b), though, this attitude also depends on the person in group a, and vice
versa. The model may also be applied to biological networks, where the clusters
consist, for example, of different functioning cells or units of the brain.



2 Nonparametric methods for clustering networks

In this setup, we were interested in finding homogeneous clusters of the vertices,
also making considerations about the optimal number of clusters. To this end,
nonparametric statistics (multiway cuts and modularities) were minimized or
maximized over the k-partitions of the vertices. Under certain balancing con-
ditions, we proved the testability of some of these statistics in the sense of L.
Lovész, B. Szegedy, et al. The estimations were given in terms of the eigenvalues
of unnormalized or normalized Laplacian and modularity matrices. Based on
the spectral gaps between some structural and the other eigenvalues, we were
able to find the optimal number of clusters, and by means of the eigenvectors —
corresponding to the so-called structural eigenvalues — also gave algorithms to
find the optimal partitions. The methods were extended to directed graphs and
rectangular arrays too.

2.1 Modularity spectra and discrepancy

In [4] we defined end extended to edge-weighted graphs the balanced and nor-
malized versions of the the Newman—Girvan modularity that focuses on the di-
agonal blocks and is capable to find clusters of intra-cluster connections larger
than expected under independent attachment of the vertices. We proved that
for given integer k (less than the number of the positive eigenvalues of the nor-
malized modularity matrix) the k-partition of the vertices which maximizes the
normalized modularity can be obtained by applying the k-means algorithm to
the representatives of the vertices based on the eigenvectors corresponding to
the k — 1 largest eigenvalues of the normalized modularity matrix. We demon-
strated through examples that the proper dimension depends on the number of
eigenvalues of positive sign, whereas negative eigenvalues indicate an anticom-
munity structure (lower inter-cluster connections than expected under indepen-
dent attachment of vertices). More generally, in [5], we managed to estimate
the constant of volume-regularity of the cluster pairs by means of the gap in the
spectrum between some structural (large absolute value) and the other eigenval-
ues and the k-variance of the representatives (objective function of the k-means
algorithm). We also extended these concepts to the SVD of binary arrays or
contingency tables, see [1].

We used the general framework of an edge-weighted graph. We defined the
normalized version of the modularity matrix whose spectrum is in the [-1,1]
interval, 0 is always an eigenvalue, and 1 is not an eigenvalue if the underlying
graph is connected (the weight matrix of the edges is irreducible in the edge-
weighted case). In fact, the introduction of this matrix Mp is rather technical,
the expander mixing lemma can better be formulated with it, see [3]. Since
the classical spectral gap of the underlying graph is 1 — |[Mp||, a large spectral
gap indicates small discrepancy as a quasi-random property discussed in Chung,
Graham, Linial, et al. If there is a gap not at the ends of the spectrum, we want
to partition the vertices into clusters so that a relation similar to the above
property for the edge-densities between the cluster pairs would hold. For this
purpose, we used a slightly modified version of the volume regularity’s notion
introduced by Alon, Coja-Oghlan, Han, Kang, R6dl, and Schacht, and defined
so-called a-volume regular cluster pairs, where « is the smallest discrepancy of
the pairs.



Since generalized random graphs (discussed in Subsection 1.1) can be viewed
as edge-weighted graphs with a special block-structure burdened with random
noise, we were able to give the following spectral characterization of them (in the
submitted book of M. Bolla and the rectangular analogue in [1]). Fixing &, and
tending with n to infinity in such a way that the cluster sizes grow at the same
rate, there exists a positive number 6 < 1, independent of n, such that for every
0 < 7 < 1/2 there are exactly k — 1 eigenvalues of Mp greater than § —n™7,
while all the others are at most n~7 in absolute value. Further, the k-variance
of the vertex representatives constructed by the k — 1 transformed structural
eigenvectors is O(n~27), and the cluster pairs are a-volume regular with any
small o, almost surely. Note that generalized quasirandom graphs, defined by
L. Lovasz and V. T. Sés, are deterministic counterparts of generalized random
graphs with the same spectral properties.

Our main theorem in [5] roughly states the following asymptotic result. As-
sume that n — oo such that there are no dominant vertices, and the eigenvalues
of M p, enumerated in decreasing absolute values, are

1> ] 2 2 o] > € 2 gl 2 - > || = 0.

The partition (Vi,..., Vi) of the vertices is defined so that it minimizes the
weighted k-variance s of the optimum vertex representatives — obtained by
means of the eigenvectors corresponding to pi1, - .., tx—1. Then, with some other
technical assumptions, the (V;, V;) pairs are O(v/2ks +¢)-volume regular (i # j)
and a similar relation holds for the intra-cluster discrepancies.

Note that, provided the underlying graph is connected, 1| = 1 can only be
if 41 = —1, and hence, in the 2-cluster case, our graph is a bipartite expander,
whose spectrum was characterized earlier by N. Alon.

2.2 Spectral clustering of graphs and biclustering of con-
tingency tables

Algorithms, using the results of Subsection 2.1 were introduced to find mini-
mum normalized or regular cuts of edge-weighted graphs. Given a connected
edge-weighted graph, we inspect the largest absolute value eigenvalues of its
normalized modularity matrix. If n is ‘very large’, it suffices to find some lead-
ing eigenvalues. For this purpose fast numerical algorithms are available, e.g.
the Lanczos method. Then select a k such that there is a gap between |u;_1]
and |pg|. We distinguish between the three following cases.

o If py,...,up—1 are all positive, the output of the algorithm will be an
approximation for the minimum normalized k-way cut of the graph with
intra-cluster edge densities significantly higher than the inter-cluster ones
(community structure).

o If py,...,up—1 are all negative, the output of the algorithm will be an
approximation for the maximum normalized k-way cut of the graph with
intra-cluster edge densities significantly lower than the inter-cluster ones
(anticommunity structure).

e If there are both positive and negative ones among p1, . .., ttx—1, the out-
put of the algorithm will be a clustering of the vertices with relatively



homogeneous edge-densities within the clusters and between any pairs of
them (clustering with ‘small’ discrepancy). Some of the clusters or pairs
of the clusters may have low, some of them may have high intra- or inter-
cluster edge-density, as special cases.

Sometimes we want to classify data points, and first we put them into a Gaussian
kernel to obtain the weight matrix of an edge-weighted graph. In this context,
we clarified the role of reproducing kernel Hilbert spaces (in the submitted book
of M. Bolla).

We proved similar results for so-called bicuts of contingency tables when we
want to classify rows and columns simultaneously. We used the factors obtained
by correspondence analysis to find biclustering of a contingency table such that
the row—column cluster pairs are regular, i.e., they have small discrepancy. In
the main theorem of [9] the constant of the so-called volume-regularity is related
to the SVD of the normalized contingency table. Our result is applicable to two-
way cuts when both the rows and columns are divided into the same number of
clusters, thus extending partly the result of Butler estimating the discrepancy of
a contingency table by the second largest singular value of the normalized table
(one-cluster, rectangular case), and partly the result of [5] for estimating the
constant of volume-regularity by the structural eigenvalues and the distances of
the corresponding eigen-subspaces of the normalized modularity matrix of an
edge-weighted graph (several clusters, symmetric case).

We applied the results for directed graphs, the weight matrix of which is
quadratic but not symmetric, and we used in- and out-degrees for the normal-
ization, see [9].

2.3 Testability of minimum balanced multiway cuts and
normalized modularity spectrum with eigen-subspaces

L. Lovasz, B. Szegedy, and coauthors defined the testability of simple graph
parameters and proved equivalent notions of this testability. They also antici-
pated that their results remain valid if they consider weighted graph sequences
with edge-weights in the [0,1] interval and no dominant vertex-weights. To this
end, in [7], we slightly modified the definition of a testable graph parameter for
weighted graphs and proved the testability of some minimum balanced multiway
cut densities.

Furthermore, we proved the testability of the structural eigenvalues and the
corresponding eigen-subspace of the normalized modularity matrix, see [8]. In
view of this, spectral clustering methods can be performed on a smaller part
of the underlying graph and give good approximation for the cluster structure.
For the proofs we used theory of compact operators (normalized modularity
matrix between finite dimensional Hilbert spaces and its continuous general-
ization which is a normalized graphon). In [2] we extended the theory to the
convergence of contingency tables.

3 Related work, conference trips, applications

We gave talks on the following conferences (participation and/or travel was
covered by this OTKA grant). The contents of these talks appeared in pro-
ceedings or in journals later. M. Bolla : COMPSTAT 2010 (Paris), ASMDA



2011 (Rome), EUROCOMB 2011 (Budapest), Applications of Graph Spectra
in Computer Science, CRM, 2012 (Barcelona). V. Csiszar: Prague Stochastics
2010, 41st Probability Summer School, 2011 (St. Flour, France).

The book M. Bolla: Spectral clustering and biclustering (Learning large
graphs and contingency tables) was submitted to the Wiley in January 2013
(based on an accepted proposal and contract). It does contain the number of
this project and is to appear around the end of this July. However, it is not
included in our main publication list.

Papers [8] and [9] were submitted in 2012 (based on an invitation for the
participants of the above EUROCOMB 11 and the Barcelona’s conference).
For invitation, the paper [2] became Project 003371 of the Industry Gateway
database which serves as a platform between researchrs and possible industrial
partners; whereas [3] was included in the Intellectual Archive online multidisci-
plinary journal as Paper 431.2012.06.08.

PhD students of G. Tusnddy: V. Csiszar defended her PhD thesis in 2009 and
P. Hussami in 2011 in topics related to that of the present project. MS Students
of M. Bolla at the BME and CEU (Erik Bodzsar, Lészlé Nagy, Ildiké Priksz,
Zsolt Szabd) were involved in the applications of spectral clustering: they tested
the parametric and nonparametric algorithms on randomly generated and real-
world data in the framework of their diploma thesis. Since September 2012, M.
Bolla has a PhD student (Ahmed Abo-Zaid) with whom they work on extension
of spectral clustering methods to investigate strategic interactions in networks.
In the fall semester 2012 M. Bolla led an Elective Undergraduate Research
course at the Budapest Semester of Mathematics with two students (Max Del
Giudice and Joan Wang) who applied spectral clustering for the directed graph
of immigration-emigration data and obtained interesting results which they are
going to submit to an undergraduate research journal in the US.

There are some rather technical papers in our main publication list, the
topic of which do not directly relate to the topic of the present project, how-
ever, gave useful tools for our proofs. For example, papers of G. Tusnady on
possible refinements of large deviation tail probabilities, of V. Csiszar on the EM
algorithm, and of M. Bolla on some matrix decompositions used in a dynamic
factor analysis algorithm.
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