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Estimation of Linear Shape Deformations and its
Medical Applications

Zoltan Kato, Attila Tanacs, and Csaba Domokos

Abstract

In this report, we present the main results of our work suggabby the OTKA K-75637 grant during January
2009 — March 2012. The main achievement of the projectfidlg functional automatic shape registration method
with the following properties:

o it doesn’t need established point correspondences norgheiiterative optimization algorithms;
« capable of recovering 2D linear and (invertible) projeetshape deformations as well as affine distortions of
3D shapes;

« robust in the presence of geometric noise and various segti@nerrors;

« has a linear time complexity allowing near real-time regisbn of high resolution images.
We made publicly available three demo programs implemgmtin affine 2D, 3D and planar homography registration
algorithms. Furthermore, we have also developed a protosgftware for aligning hip prosthesis X-ray images,
which has been transfered to collaborating radiologistéuidher exploitation and validation for potential app@lion
in everyday health care.

Our results have been presented at top conferences of tiddigl ICCV ECC\) as well as in leading journals
(e.g. IEEE Transactions on Pattern Analysis and Machinelligence Pattern Recognition One of the MSc
students working on the project received the second prigheNational Scientific Student Conferen@@TDK).
Csaba Domokos successfully defended his PhD de@emiha cum laudeand his work on solvingffine puzzle
has been awarded the prestigidttila Kuba Prizeof the Hungarian Association for Image Processing and Pattern
Recognition More details about our results can be found at the projeatispages:

« http://www.inf.u-szeged.hu/ipcg/projects/AFFSHAPIEh
« http://www.inf.u-szeged.hu/ipcg/projects/AffinePiehtml
« http:/lwww.inf.u-szeged.hu/ipcg/projects/diffeoskapml

. PROBLEM STATEMENT AND PROPOSED APPROACH

In this project, we considered the estimation of linear ¢fammations aligning a known binary shape and its
distorted observation. The classical way to solve thisstegfion problem is to find correspondences between
the two images and then compute the transformation parasnieten these landmarks. We developed a unified
framework where the exact transformation is obtained asttétion of either a polynomial or a linear system of
equations without establishing correspondences. Thengalyes of the proposed solutions are that they are fast,
easy to implement, have linear time complexity, work with@ndmark correspondences and are independent of
the magnitude of transformation.

Let us denote the points of themplateand theobservatiorby x,y € P? respectively i(e. we use homogeneous
coordinates).A is the unknown non-singular linear transformation that waentvto recover. We can define the
identity relation as follows

Ax=y & x=A"ly Q)

If we can observe some image featuregy(gray-level of the pixels) that are invariant under the tfamsation A
then the following equality also holds

g(x) = h(Ax) & g(A"ly) = h(y). )
Furthermore, the above equations still hold wherirsariant functionw : R™ — R" is acting on both sides of the
equations. Indeed, for a properly chosen
wx) = wAly), and (3)
w(g(x)) = w(h(Ax))=w(h(y)). (4)
The basic idea of the proposed approach is to generate erimeginly independent equations by making use of

the relations in Eq. (1)—(4). Furthermore, we can get ridhef need for point correspondences by integrating both
sides of the equations over the corresponding segmentedidem
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The main challenge of the proposed approach is to find a waymstrict a direct method to estimate linear
deformations without making use of feature correspondenceomplex optimization algorithms. In this project,
we propose two ways to tackle this fundamental problem.

[I. SOLUTION VIA A POLYNOMIAL SYSTEM
The first one [1], [3] makes use of Eq. (3) and constructs aesysif polynomial equations

[t = o [watyyiy. )

Obviously, the choice af's is crucial as our goal is to construct a system which can lvedalt is easy to see that
a polynomial system, which is certainly straightforwardstve, is obtained whew(z) = x*. From a geometric
point of view, forw(z) = = Eq. (5) simply matches the center of mass of tdvaplateand observationwhile for
w(x) = [2%, 2%, 1]7 Eq. (5) matches the center of mass of the shapes obtainecebyotilinear transformations.
In the 2D affine case, we have to solve a system of polynomiagdtians of the following form, where,; denotes
the unknown elements of the inverse transformation

!A!/wk = le/y1+Qk2/y2+Qk3/17 (6)
A 2 2 2, 2 2, 2 7
|A| [ G [ vi+ o | 5+ ais | 1+ 2amar2 | v1y2 +201ak3 | y1 + 2062ak3 | 2, (7)
IAI/u’vi = q/?él/yi”+q;§2/y§’+q;§3/1+3q;31qkz/y%yz+3Qi1qk3/y%+3q/§zqm/y§

+ 3Qk1q1%2/y1y§ +3Qk2ng/y2 +3Qk1qz3/y1 +GQk1Qk2Qk3/y1y2- (8)

The above system of equations can be readily solved eithex thiyect solver founck.g.in Matlab [1] or by a
classical LSE solver like theevenberg-Marquardalgorithm [2].

A. Registration of 3D Objects

The extension of the polynomial method to 3D objects [2]4§4ielatively straightforward. However, numerical
implementation has to be carefully designed. Thereforé¢h bo 2D and 3D we examined two different types of
solution methods: iterative least-squares solutions arettdanalytical solutions.

o In case of a direct method, limited number of equations camde (according to the degree of freedom
of the n-dimensional affine transformation), while an it approach allows for an overdetermined system,
which may give more stability.

« Direct methods may provide many hundreds or even thousahgessible solutions, many (or even all) of
them may be complex thus a solution selection scheme hasusdzbto produce only one real solution from
these. Iterative methods can provide only one real solubanhthe search may fall into local minima. To avoid
such local minima, usually a sophisticated search strateggcessary.

« Direct methods can provide full affine solutions only, in €ad iterative methods restrictions to lower degree
of freedom transformations are easy to impose.

We found that the direct approach gives more stable redultghe iterative one is more precise. It is also possible
to combine the two approaches: The direct approach provigeitialization of the iterative one.

Another issue is discretization error, which might be maittirly problematic in 3D. For that purpose, we extended
our method by investigating the case when the segmentatiinad is capable of producirigzzy objed instead of
a binary result in both 2D and 3D. It has been shown that tharmmédtion preserved by using fuzzy representation
based on area coverage may be successfully utilized to iregsecision and accuracy of our equations [2], [3].
The result of a series of synthetic tests showed that fuzasesentation yields lower registration errors in average.

B. Affine Puzzle

The affine puzzle problem can be formulated as follows: Gadrinary image of an object (the template) and
another binary image (the observation) containing thenmiegts of the template, we want to establish the geometric
correspondence between these images which reconstrectothplete template object from its parts. The overall
distortion is a global nonlinear transformation with théldawing constraint (see Fig. 3):
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Fig. 1. Registration of pelvic CT data: superimposed regéxt 3D bone models (top row), and bone contours of the ezgisttemplate
(yellow) overlayed on a CT slice of the observations (bottaw). § errors are 14.2%, 19%, and 27.87%. The first two cases shod goo
alignment. Even the third one can be regarded as a fast,ecagmoximation.

Fig. 2. Registration of thoracic CT data: superimposedstegéd 3D bone models. Perfect alignment is not possibletaldle relative
movements of the bone structure. Affine alignment resuktsusied as a good starting point fag.lymph node detection.

« the object parts are distincit€. either disconnected or separated by segmentation),

« all fragments of the template are available, but

« each of them is subject to a different affine deformation, taedpartitioning of the template object is unknown.
The proposed solution [5] consists in constructing andisgha polynomial system of equations similar to Eq. (6)—
(8), which provides all the unknown parameters of the aligntnWe have quantitatively evaluated the proposed
algorithm on a large synthetic dataset containing 2D andr8Bges. The results show that the method performs
well and robust against segmentation errors. The methothéas validated on 2D real images of a tangram puzzle
(see Fig. 4) as well as on volumetric medical images appbesutgical planning (see Fig. 5).

A:\ 2‘)
A B

Fig. 3. Affine puzzle: reconstructing the complete temptatigect from its deformed parts.
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Fig. 4. Solutions of the Tangram puzzle (the average alignmetime of an image was about 50 sec. in Matldlgp: Observationsare

taken by digital cameraviiddle: Solutions, found in the Tangram manuBbttom: The scannedemplatesilhouettes with overlaid contours
of aligned fragments.

—

template obtained by . .
Lo observation realignedbone fragments
mirroring intact bone

Fig. 5. Bone fracture reduction (CPU time in Matlab was 15 $ecthese 1 megavoxel CT volumes).

Fig. 6. Homography registration results on traffic signse Tirst row shows théemplates while below them the correspondiogservatios
with the overlaid contour of the registration results.
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C. Planar Homography

Perspective images of planar scenes are usual in percagtiman made environments. In such cases, a planar
scene and its image are related by a plane to plane homograghyknown as a plane projective transformation.
Estimating the parameters of such transformations is aafeshtal problem in computer vision with various
applications.

Let us denote the homogeneous coordinates oftéhgplateand observationby x’ = [}, x5, 24]7 € P? and
y' = [y}, vh, 5] € P2, respectively. Planar homography is then a linear trangdtion in the projective plang?

y=Hx & x = H_ly' , 9)

whereH = {H;;} is the unknowrs x 3 transformation matrix that we want to recover. As usualitil®@mogeneous
coordinatesy = [y1,12]” € R? of a homogeneous poingt’ are obtained by projective division

Yy Huxy+ Hpxo + Hiz
y1 = == = x1(x)
Y3 Hzyxq + H3zowe + 1

/
Y Hojxy + Hagxo + Has
yp = 2= = x2(x) , (10)
Y3 Hzyxq + H3zpwe + 1

where y; : R? — R. Indeed, planar homography is a linear transformation & phojective planeP?, but it
becomes nonlinear within the Euclidean plake The nonlinear transformation correspondingdds denoted by
xR = R? y(x) = [Xl(X),XQ(X)]T and the Jacobian determindut | : R? — R is given by

8X1 8X1

H|
[N =] 8 |= : (11)
* g;(l g;(z (Hzyxy + Hagrg +1)°
and Eq. (5) becomes
[ty = [w(x0) 12,60 dx. 12)

The resulting system of equations can be easily solved inlghst squares sense by the Levenberg-Marquard
algorithm [6], [7]. Some examples of traffic sign registoatiresults are shown in Fig. 6.

[1l. SOLUTION VIA A LINEAR SYSTEM USING COVARIANT FUNCTIONS

The second solution to our 2D affine registration problem [8] is based on Eq. (4). The advantage of this
approach is that it yields a linear system of equations wigamumerically much more stable. The key idea is to
construct acovariant functionpair satisfying Eq. (2). Once this is achieved, we can set lipear system using
Eg. (4) to solve for the unknown transformatigh. Since we do not have any radiometric information, this is
a quite challenging task as we have to define these functiasedbon the only available geometric information.
For example, we can consider the points of thmplateas a sample from a normally distributed random variable
X ~ N(u,X). It is well known, that for any linear transformation, wh&h= A X thenY has also a normal
distribution

XY ~N, %)= NAp ASAT), (13)

furthermore 1

P(y) = WP(X% (14)

wherep’ andp are the Gaussian density functions. It is clear thand p’ are covariantand the Jacobian can
also be computed ds\| = /|>’|/|X|. Obviously, the above relation is only valid whek is positive definite.
The parameters of the probability densiti®$.:,Y) and N (', X’) can be easily estimated as the sample means
and covariancesi.6. the mean and covariance of the point coordinates). From angeim point of view, the
mean valueg: and i’ represent the center of mass of tleenplateand observationrespectively, whileX and ¥’
capture the orientation and eccentricity of the shapese Nt the densitieg’ andp can be further reduced to
the corresponding Mahalanobis distangeand i

g(x) = (x =)= (x—p) and h(y)=(y - )y - u). (15)
New equations can then be generated by making use of apgi@ipriariant functionsw : R — R. Thus we get

/xw(g(x))dx = /xw(h(Ax))dx = |Kl|/A1y(,u(h(y))dy. (16)
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Runtime (sec.) ¢ (pixel) § (%)

Polynomial 0.98 0.51 0.15

Linear 1.5 5.42 2.6

Mult. covar. functions 0.33 0.54 0.19
TABLE |

MEDIAN OF REGISTRATION ERRORS ANDCPUTIMES ON A BENCHMARK DATASET OF SYNTHETIC PLANAR SHAPES

Theoretically anyinvariant functioncould be applied. For example the following set of functigeve us good
results [8]:x, cos(z), cos(2x), sin(z) andsin(2x) (see Fig. 8 for another function set). In the affine case, we ca
write the linear system in matrix form

Jywi(h(y)  [yawi(h(y)) [wi(h(y)) e J zrwr(g(x))
: : : a2 | = |A] : . (7)
Jyiwn(h(y))  [yown(h(y)) [wn(h(y)) k3 [ zrwn(g(x))

The solution of the above linear system directly provides phrameters of the aligning transformation [8], [9].

A. Compound Objects

When we have objects composed of several parts, yieldingoapgof disjoint shapes when segmented, the
topology of such compound shapes will not change under ttienaof the affine group. Thus we can construct
covariant functions?;(x), S;(y) for each pair of these shape parts and then sum these relgiding [9]

P(x) =) Pi(x)=>_Si(y) = S(y). (18)
i=0 i=0

whereP;(x) = exp ( — 4 (x — p;) 'S (x — M)) are unnormalized Gaussians.

The big advantage of this representation is that we can detfrthe segmented shape used as the integration
domain in Eqg. (16). A clear disadvantage of using the segedeshape itself as the domain [8] is that any
segmentation error will inherently result in erroneousegnals causing misalignment. In the case of compound
shapes, however, it is natural to chose one of the ellipséiseodiensity fitted to the overall shape as the integration
domain (see Fig. 9). An additional benefit is that these dosaie analytical hence the computation of the integrals
used as coefficients in Eq. (17) can be computed efficientla lbjosed form formula.

IV. SEGMENTATION METHOD USED FOR MEDICAL APPLICATIONS

Traumatic hip replacement is a surgical procedure in whiehhip joint is replaced by a prosthetic implant. In
the short term post-operatively, infection is a major cancén inflammatory process causes bone resorption and
subsequent loosening or fracture often requiring revisiomgery. Alignment of a hip prosthesis X-ray images (see
Fig. 7 and Fig. 8) allows for assessing loosening by compasimumber of post-operative X-ray images taken
over a period of time. Since one is looking for deformatiofishe bone surrounding the implant, alignment must
be based on the implant as it is the only imaged part which &anieed to remain unchanged from one image to
the other.

Fast rigid-body registration of bone structuresg(see Fig. 5) is important in image guided surgical planning in
execution for registering pre-operative volumes to imtperative ones.

Rigid registration of thoracic images (see Fig. 2) are ajgplieable fore.g.lymphoma detections and changes
over time using PET-CT scanners. PET images delineate ttadkeupf the contrast agent in organs (lymph nodes),
while the CT modality can be used for registration and molgdioal localization. Here non-rigid registrations are
discouraged since these could change the size of the organs.

A common part of the above applications is the segmentafidaoy structures (or the metallic prosthesis) from
2D X-ray and 3D CT images. We have developed segmentatitmitpees for extracting such image regions with
both crisp [4] and fuzzy [2], [3] representations.
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Fig. 7. Alignment of hip prosthesis X-ray images using a polyial system of equations with functions{z, 2%, z*}. Registration results
are shown as an overlayed contour on the second image.

Fig. 8. Alignment of a hip prosthesis X-ray image using adineystem of equations with functions {z, 2, z*/3}. Registration result
is shown as an overlayed contour on the second image.

V. COMPARISON OF THE TWO APPROACHES

The methods have been quantitatively evaluated on a set i than1000 synthetically generated observations
for 60 different shapes. The applied affine transformations wanelamly composed di°, 10°, ..., 350° rotations;
0,0.4,...,1.2 shearings(.5,0.7,...,1.9 scalings, and-20, 0, 20 translations along both axes. The resulting images
are of size~ 1400 x 1400. For evaluation, we have computed two error measures: tbhe Boefficient ag =
% -100%, where/\ denotes symmetric difference, whilg R andO are the pixels of théemplate registered
object andobservatiorrespectively; and = ﬁ > per (A - A)p||, which measures the average distance between
the true A and the estimated transformation. All algorithms were implemented in Matldthese results are
shown in Table I. Based on these numbers, it is clear thatahgpmial solution provides rather good alignments
at the price of~ 1sec. CPU time. The linear system based on a single pair ofriemwdunctions [8] given in
Eq. (15) works well when there are no segmentation errorsdéteriorates quickly when pixels are missing. On
the other hand, the linear system with multiple pairs of ciavd functions given in Eq. (18) clearly outperforms the
polynomial solution in terms of CPU time as well as in robess even for 90% missing pixels [9], this method
still provides acceptable alignments while the polynorsiatem fails over 50% [1]. We also remark, that -like any
other area based method- both approaches are quite sensitdcclusions as it yields large errors in the system
of equations.

In Fig. 7 and Fig. 8, we show registration results of hip gresys X-ray images. These results also confirm
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Fig. 9. Alignment of a traffic sign images using a linear systef equations with multiple shape parts. The first image shthe elliptic
integration domain with the compound covariant functiotefitover theemplate Registration results are shown as an overlayed contour on
the second image.

the higher precision of the polynomial system. While the tipld covariant function approach cannot be applied
on these images since we only have a single shape, Fig. 9 gshevadignment of traffic signes where -due to the
compound shape of these signs- the multiple covariant iometpproach works pretty well.

VI. DISSEMINATION AND FUTURE WORK

Our results have been published in
« two peer-reviewed international journals [1], [7],
« seven top tier peer-reviewed international conferenceqedings [2]-[6], [9], [10],
The project’'s achievements have also been presented atdeiaternational conferences
2009 International Conference on Computer Vision, Internald@onference on Image Processing, Scandinavian
Conferences on Image Analysis.
2010 European Conference on Computer Vision, Internationalf€ence on Image Processing.
2011 International Conference on BioMedical Engineering arfdrimatics.
and national conferences:
2009,2011 Conference of the Hungarian Association for Image Analgsid Pattern Recognition.
Furthermore, Zoltan Kato gave keynote lectures about thjggt's results at the following international conferesice
« International Conference on Signal Image Technology andriret Based Systems (SITI8jovember 2011,
Dijon, France.
« International Joint Conference on Computer Vision, Imggamd Computer Graphics Theory and Applicatipns
February 2012, Rome, Italy.
as well as invited talks at the following international rassh institutes:
o Dept. Electronic Systems and Information Processing, &hsity of ZagrebZagreb, Croatia. May 2011
o Center for Machine Perception, Czech Technical Universityague, Czech Republic. 8 November 2011.
« Department of Image Processing, Institute of Informatitvedry and Automation of the ASCRrague, Czech
Republic. 11 November 2011.
Demo implementations of our most important algorithms arbliply available:
1) Affine Registration of Planar Shapes. JAVA code with adisolver (only runs under Windows). Download
from http://www.inf.u-szeged.hukato/software/affbinregdemo.html
2) Affine Registration of 3D Objects. JAVA code with multirfading & 0.2 sec. CPU time for megavoxel
volumes). Download from http://www.inf.u-szeged hk#to/software/affbin3dregdemo.html
3) Nonlinear Shape Registration without Corresponderdéd# code. Implements planar homography, extension
to other nonlinear deformations is relatively easy. Dowadlérom http://www.inf.u-szeged.httato/software/
planarhombinregdemo.html



OTKA K-75637 FINAL REPORT,; MAY 4, 2012 ZOLTAN KATO, ATTILA TANACS, AND CSABA DOMOKOS 9

The works of Jozsef Nemeth and Zsolt Katona MSc students heea presented at thdational Scientific
Student Conferend®TDK) in 2009, where Jozsef Nemeth obtained the second pricéaad3amokos succesfully
defended his PhD degree in 2011 [1Huma cum laudeand his work on solving thaffine puzzigroblem [5]
has been awarded the prestigidutila Kuba Prizeof the Hungarian Association for Image Processing and Pattern
Recognition

A journal paper about the results presented in Section IsAinder review aPattern Recognitiof12]. An-
other journal paper about Gaussian covariants present&edtion Il will be submitted tomage and Vision
Computing[13].
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