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Abstract

In this report, we present the main results of our work supported by the OTKA K-75637 grant during January
2009 – March 2012. The main achievement of the project is afully functional automatic shape registration method
with the following properties:

• it doesn’t need established point correspondences nor the use of iterative optimization algorithms;
• capable of recovering 2D linear and (invertible) projective shape deformations as well as affine distortions of

3D shapes;
• robust in the presence of geometric noise and various segmentation errors;
• has a linear time complexity allowing near real-time registration of high resolution images.

We made publicly available three demo programs implementing our affine 2D, 3D and planar homography registration
algorithms. Furthermore, we have also developed a prototype software for aligning hip prosthesis X-ray images,
which has been transfered to collaborating radiologists for further exploitation and validation for potential application
in everyday health care.

Our results have been presented at top conferences of the field (e.g. ICCV, ECCV) as well as in leading journals
(e.g. IEEE Transactions on Pattern Analysis and Machine Intelligence, Pattern Recognition). One of the MSc
students working on the project received the second price ofthe National Scientific Student Conference(OTDK).
Csaba Domokos successfully defended his PhD degree (Summa cum laude) and his work on solvingaffine puzzles
has been awarded the prestigiousAttila Kuba Prizeof theHungarian Association for Image Processing and Pattern
Recognition. More details about our results can be found at the project’swebpages:

• http://www.inf.u-szeged.hu/ipcg/projects/AFFSHAPE.html
• http://www.inf.u-szeged.hu/ipcg/projects/AffinePuzzle.html
• http://www.inf.u-szeged.hu/ipcg/projects/diffeoshape.html

I. PROBLEM STATEMENT AND PROPOSED APPROACH

In this project, we considered the estimation of linear transformations aligning a known binary shape and its
distorted observation. The classical way to solve this registration problem is to find correspondences between
the two images and then compute the transformation parameters from these landmarks. We developed a unified
framework where the exact transformation is obtained as thesolution of either a polynomial or a linear system of
equations without establishing correspondences. The advantages of the proposed solutions are that they are fast,
easy to implement, have linear time complexity, work without landmark correspondences and are independent of
the magnitude of transformation.

Let us denote the points of thetemplateand theobservationby x,y ∈ P
2 respectively (i.e. we use homogeneous

coordinates).A is the unknown non-singular linear transformation that we want to recover. We can define the
identity relation as follows

Ax = y ⇔ x = A−1y. (1)

If we can observe some image features (e.g.gray-level of the pixels) that are invariant under the transformationA
then the following equality also holds

g(x) = h(Ax) ⇔ g(A−1y) = h(y). (2)

Furthermore, the above equations still hold when aninvariant functionω : Rn → R
n is acting on both sides of the

equations. Indeed, for a properly chosenω

ω(x) = ω(A−1y), and (3)

ω(g(x)) = ω(h(Ax)) = ω(h(y)). (4)

The basic idea of the proposed approach is to generate enoughlinearly independent equations by making use of
the relations in Eq. (1)–(4). Furthermore, we can get rid of the need for point correspondences by integrating both
sides of the equations over the corresponding segmented domains.
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The main challenge of the proposed approach is to find a way to construct a direct method to estimate linear
deformations without making use of feature correspondences or complex optimization algorithms. In this project,
we propose two ways to tackle this fundamental problem.

II. SOLUTION VIA A POLYNOMIAL SYSTEM

The first one [1], [3] makes use of Eq. (3) and constructs a system of polynomial equations
∫

ω(x)dx =
1

|A|

∫

ω(A−1y)dy. (5)

Obviously, the choice ofωs is crucial as our goal is to construct a system which can be solved. It is easy to see that
a polynomial system, which is certainly straightforward tosolve, is obtained whenω(x) = xi. From a geometric
point of view, forω(x) ≡ x Eq. (5) simply matches the center of mass of thetemplateandobservationwhile for
ω(x) = [xi1, x

i
2, 1]

T Eq. (5) matches the center of mass of the shapes obtained by the nonlinear transformationsω.
In the 2D affine case, we have to solve a system of polynomial equations of the following form, whereqki denotes
the unknown elements of the inverse transformationA−1

|A|

∫

xk = qk1

∫

y1 + qk2

∫

y2 + qk3

∫

1, (6)

|A|

∫

x2k = q2k1

∫

y21 + q2k2

∫

y22 + q2k3

∫

1 + 2qk1qk2

∫

y1y2 + 2qk1qk3

∫

y1 + 2qk2qk3

∫

y2, (7)

|A|

∫

x3k = q3k1

∫

y31 + q3k2

∫

y32 + q3k3

∫

1 + 3q2k1qk2

∫

y21y2 + 3q2k1qk3

∫

y21 + 3q2k2qk3

∫

y22

+ 3qk1q
2
k2

∫

y1y
2
2 + 3qk2q

2
k3

∫

y2 + 3qk1q
2
k3

∫

y1 + 6qk1qk2qk3

∫

y1y2. (8)

The above system of equations can be readily solved either bya direct solver founde.g. in Matlab [1] or by a
classical LSE solver like theLevenberg-Marquardtalgorithm [2].

A. Registration of 3D Objects

The extension of the polynomial method to 3D objects [2]–[4]is relatively straightforward. However, numerical
implementation has to be carefully designed. Therefore, both in 2D and 3D we examined two different types of
solution methods: iterative least-squares solutions and direct analytical solutions.

• In case of a direct method, limited number of equations can beused (according to the degree of freedom
of the n-dimensional affine transformation), while an iterative approach allows for an overdetermined system,
which may give more stability.

• Direct methods may provide many hundreds or even thousands of possible solutions, many (or even all) of
them may be complex thus a solution selection scheme has to beused to produce only one real solution from
these. Iterative methods can provide only one real solution, but the search may fall into local minima. To avoid
such local minima, usually a sophisticated search strategyis necessary.

• Direct methods can provide full affine solutions only, in case of iterative methods restrictions to lower degree
of freedom transformations are easy to impose.

We found that the direct approach gives more stable results,but the iterative one is more precise. It is also possible
to combine the two approaches: The direct approach providesthe initialization of the iterative one.

Another issue is discretization error, which might be particularly problematic in 3D. For that purpose, we extended
our method by investigating the case when the segmentation method is capable of producingfuzzy objects instead of
a binary result in both 2D and 3D. It has been shown that the information preserved by using fuzzy representation
based on area coverage may be successfully utilized to improve precision and accuracy of our equations [2], [3].
The result of a series of synthetic tests showed that fuzzy representation yields lower registration errors in average.

B. Affine Puzzle

The affine puzzle problem can be formulated as follows: Givena binary image of an object (the template) and
another binary image (the observation) containing the fragments of the template, we want to establish the geometric
correspondence between these images which reconstructs the complete template object from its parts. The overall
distortion is a global nonlinear transformation with the following constraint (see Fig. 3):



OTKA K–75637 FINAL REPORT; MAY 4, 2012 ZOLTAN KATO, ATTILA TANÁCS, AND CSABA DOMOKOS 3

Fig. 1. Registration of pelvic CT data: superimposed registered 3D bone models (top row), and bone contours of the registered template
(yellow) overlayed on a CT slice of the observations (bottomrow). δ errors are 14.2%, 19%, and 27.87%. The first two cases show good
alignment. Even the third one can be regarded as a fast, coarse approximation.

Fig. 2. Registration of thoracic CT data: superimposed registered 3D bone models. Perfect alignment is not possible dueto the relative
movements of the bone structure. Affine alignment results are used as a good starting point fore.g. lymph node detection.

• the object parts are distinct (i.e. either disconnected or separated by segmentation),
• all fragments of the template are available, but
• each of them is subject to a different affine deformation, andthe partitioning of the template object is unknown.

The proposed solution [5] consists in constructing and solving a polynomial system of equations similar to Eq. (6)–
(8), which provides all the unknown parameters of the alignment. We have quantitatively evaluated the proposed
algorithm on a large synthetic dataset containing 2D and 3D images. The results show that the method performs
well and robust against segmentation errors. The method hasbeen validated on 2D real images of a tangram puzzle
(see Fig. 4) as well as on volumetric medical images applied to surgical planning (see Fig. 5).

Fig. 3. Affine puzzle: reconstructing the complete templateobject from its deformed parts.
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Fig. 4. Solutions of the Tangram puzzle (the average alignment runtime of an image was about 50 sec. in Matlab).Top: Observationsare
taken by digital camera.Middle: Solutions, found in the Tangram manual.Bottom: The scannedtemplatesilhouettes with overlaid contours
of aligned fragments.

template obtained by
mirroring intact bone

observation realignedbone fragments

Fig. 5. Bone fracture reduction (CPU time in Matlab was 15 sec. for these 1 megavoxel CT volumes).

Fig. 6. Homography registration results on traffic signs. The first row shows thetemplates while below them the correspondingobservations
with the overlaid contour of the registration results.
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C. Planar Homography

Perspective images of planar scenes are usual in perceptionof man made environments. In such cases, a planar
scene and its image are related by a plane to plane homography, also known as a plane projective transformation.
Estimating the parameters of such transformations is a fundamental problem in computer vision with various
applications.

Let us denote the homogeneous coordinates of thetemplateand observationby x′ = [x′1, x
′
2, x

′
3]
T ∈ P

2 and
y′ = [y′1, y

′
2, y

′
3]
T ∈ P

2, respectively. Planar homography is then a linear transformation in the projective planeP2

y′ = Hx′ ⇔ x′ = H−1y′ , (9)

whereH = {Hij} is the unknown3×3 transformation matrix that we want to recover. As usual, theinhomogeneous
coordinatesy = [y1, y2]

T ∈ R
2 of a homogeneous pointy′ are obtained by projective division

y1 =
y′1
y′
3

=
H11x1 +H12x2 +H13

H31x1 +H32x2 + 1
≡ χ1(x)

y2 =
y′2
y′
3

=
H21x1 +H22x2 +H23

H31x1 +H32x2 + 1
≡ χ2(x) , (10)

where χi : R
2 → R. Indeed, planar homography is a linear transformation in the projective planeP2, but it

becomes nonlinear within the Euclidean planeR
2. The nonlinear transformation corresponding toH is denoted by

χ : R2 → R
2, χ(x) =

[

χ1(x), χ2(x)
]T

and the Jacobian determinant|Jχ| : R
2 → R is given by

|Jχ(x)| =

∣

∣

∣

∣

∣

∂χ1

∂x1

∂χ1

∂x2

∂χ2

∂x1

∂χ2

∂x2

∣

∣

∣

∣

∣

=
|H|

(H31x1 +H32x2 + 1)3
, (11)

and Eq. (5) becomes
∫

ω(y)dy =

∫

ω
(

χ(x)
)

|Jχ(x)| dx. (12)

The resulting system of equations can be easily solved in theleast squares sense by the Levenberg-Marquard
algorithm [6], [7]. Some examples of traffic sign registration results are shown in Fig. 6.

III. SOLUTION VIA A LINEAR SYSTEM USING COVARIANT FUNCTIONS

The second solution to our 2D affine registration problem [8], [9] is based on Eq. (4). The advantage of this
approach is that it yields a linear system of equations whichis numerically much more stable. The key idea is to
construct acovariant functionpair satisfying Eq. (2). Once this is achieved, we can set up alinear system using
Eq. (4) to solve for the unknown transformationA. Since we do not have any radiometric information, this is
a quite challenging task as we have to define these functions based on the only available geometric information.
For example, we can consider the points of thetemplateas a sample from a normally distributed random variable
X ∼ N(µ,Σ). It is well known, that for any linear transformation, whenY = AX then Y has also a normal
distribution

X 7→ Y ∼ N(µ′,Σ′) = N(Aµ,AΣAT ), (13)

furthermore
p′(y) =

1

|A|
p(x), (14)

wherep′ and p are the Gaussian density functions. It is clear thatp and p′ are covariant and the Jacobian can
also be computed as|A| =

√

|Σ′|/|Σ|. Obviously, the above relation is only valid whenA is positive definite.
The parameters of the probability densitiesN(µ,Σ) andN(µ′,Σ′) can be easily estimated as the sample means
and covariances (i.e. the mean and covariance of the point coordinates). From a geometric point of view, the
mean valuesµ andµ′ represent the center of mass of thetemplateand observationrespectively, whileΣ andΣ′

capture the orientation and eccentricity of the shapes. Note that the densitiesp′ and p can be further reduced to
the corresponding Mahalanobis distancesg andh

g(x) = (x− µ)TΣ−1(x− µ) and h(y) = (y − µ′)TΣ′−1(y − µ′). (15)

New equations can then be generated by making use of appropriate invariant functionsω : R → R. Thus we get
∫

xω(g(x))dx =

∫

xω(h(Ax))dx =
1

|A|

∫

A−1yω(h(y))dy. (16)
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Runtime (sec.) ǫ (pixel) δ (%)
Polynomial 0.98 0.51 0.15
Linear 1.5 5.42 2.6
Mult. covar. functions 0.33 0.54 0.19

TABLE I
MEDIAN OF REGISTRATION ERRORS ANDCPU TIMES ON A BENCHMARK DATASET OF SYNTHETIC PLANAR SHAPES.

Theoretically anyinvariant functioncould be applied. For example the following set of functionsgave us good
results [8]:x, cos(x), cos(2x), sin(x) and sin(2x) (see Fig. 8 for another function set). In the affine case, we can
write the linear system in matrix form







∫

y1ω1(h(y))
∫

y2ω1(h(y))
∫

ω1(h(y))
...

...
...

∫

y1ωn(h(y))
∫

y2ωn(h(y))
∫

ωn(h(y))











qk1
qk2
qk3



 = |A|







∫

xkω1(g(x))
...

∫

xkωn(g(x))






. (17)

The solution of the above linear system directly provides the parameters of the aligning transformation [8], [9].

A. Compound Objects

When we have objects composed of several parts, yielding a group of disjoint shapes when segmented, the
topology of such compound shapes will not change under the action of the affine group. Thus we can construct
covariant functionsPi(x), Si(y) for each pair of these shape parts and then sum these relations yielding [9]

P (x) ≡

m
∑

i=0

Pi(x) =

m
∑

i=0

Si(y) ≡ S(y). (18)

wherePi(x) = exp
(

− 1

2
(x− µi)

TΣ−1

i (x− µi)
)

are unnormalized Gaussians.
The big advantage of this representation is that we can get rid of the segmented shape used as the integration

domain in Eq. (16). A clear disadvantage of using the segmented shape itself as the domain [8] is that any
segmentation error will inherently result in erroneous integrals causing misalignment. In the case of compound
shapes, however, it is natural to chose one of the ellipses ofthe density fitted to the overall shape as the integration
domain (see Fig. 9). An additional benefit is that these domains are analytical hence the computation of the integrals
used as coefficients in Eq. (17) can be computed efficiently bya closed form formula.

IV. SEGMENTATION METHOD USED FOR MEDICAL APPLICATIONS

Traumatic hip replacement is a surgical procedure in which the hip joint is replaced by a prosthetic implant. In
the short term post-operatively, infection is a major concern. An inflammatory process causes bone resorption and
subsequent loosening or fracture often requiring revisionsurgery. Alignment of a hip prosthesis X-ray images (see
Fig. 7 and Fig. 8) allows for assessing loosening by comparing a number of post-operative X-ray images taken
over a period of time. Since one is looking for deformations of the bone surrounding the implant, alignment must
be based on the implant as it is the only imaged part which is guaranteed to remain unchanged from one image to
the other.

Fast rigid-body registration of bone structures (e.g.see Fig. 5) is important in image guided surgical planning in
execution for registering pre-operative volumes to intra-operative ones.

Rigid registration of thoracic images (see Fig. 2) are also applicable fore.g. lymphoma detections and changes
over time using PET-CT scanners. PET images delineate the uptake of the contrast agent in organs (lymph nodes),
while the CT modality can be used for registration and morphological localization. Here non-rigid registrations are
discouraged since these could change the size of the organs.

A common part of the above applications is the segmentation of bony structures (or the metallic prosthesis) from
2D X-ray and 3D CT images. We have developed segmentation techniques for extracting such image regions with
both crisp [4] and fuzzy [2], [3] representations.
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Fig. 7. Alignment of hip prosthesis X-ray images using a polynomial system of equations withω functions{x, x2, x3}. Registration results
are shown as an overlayed contour on the second image.

Fig. 8. Alignment of a hip prosthesis X-ray image using a linear system of equations withω functions{x, x3, x1/3}. Registration result
is shown as an overlayed contour on the second image.

V. COMPARISON OF THE TWO APPROACHES

The methods have been quantitatively evaluated on a set of more than1000 synthetically generated observations
for 60 different shapes. The applied affine transformations were randomly composed of0◦, 10◦, . . . , 350◦ rotations;
0, 0.4, . . . , 1.2 shearings;0.5, 0.7, . . . , 1.9 scalings, and−20, 0, 20 translations along both axes. The resulting images
are of size≈ 1400 × 1400. For evaluation, we have computed two error measures: the Dice coefficient asδ =
|R△O|
|R|+|O| · 100%, where△ denotes symmetric difference, whileT , R andO are the pixels of thetemplate, registered

object andobservationrespectively; andǫ = 1

|T |

∑

p∈T ‖(A−Ã)p‖, which measures the average distance between

the trueA and the estimated̃A transformation. All algorithms were implemented in Matlab. These results are
shown in Table I. Based on these numbers, it is clear that the polynomial solution provides rather good alignments
at the price of≈ 1sec. CPU time. The linear system based on a single pair of covariant functions [8] given in
Eq. (15) works well when there are no segmentation errors, but deteriorates quickly when pixels are missing. On
the other hand, the linear system with multiple pairs of covariant functions given in Eq. (18) clearly outperforms the
polynomial solution in terms of CPU time as well as in robustness: even for 90% missing pixels [9], this method
still provides acceptable alignments while the polynomialsystem fails over 50% [1]. We also remark, that -like any
other area based method- both approaches are quite sensitive to occlusions as it yields large errors in the system
of equations.

In Fig. 7 and Fig. 8, we show registration results of hip prosthesys X-ray images. These results also confirm
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Fig. 9. Alignment of a traffic sign images using a linear system of equations with multiple shape parts. The first image shows the elliptic
integration domain with the compound covariant function fitted over thetemplate. Registration results are shown as an overlayed contour on
the second image.

the higher precision of the polynomial system. While the multiple covariant function approach cannot be applied
on these images since we only have a single shape, Fig. 9 showsthe alignment of traffic signes where -due to the
compound shape of these signs- the multiple covariant function approach works pretty well.

VI. D ISSEMINATION AND FUTURE WORK

Our results have been published in
• two peer-reviewed international journals [1], [7],
• seven top tier peer-reviewed international conference proceedings [2]–[6], [9], [10],

The project’s achievements have also been presented at leading international conferences
2009 International Conference on Computer Vision, International Conference on Image Processing, Scandinavian

Conferences on Image Analysis.
2010 European Conference on Computer Vision, International Conference on Image Processing.
2011 International Conference on BioMedical Engineering and Informatics.

and national conferences:
2009,2011 Conference of the Hungarian Association for Image Analysisand Pattern Recognition.

Furthermore, Zoltan Kato gave keynote lectures about the project’s results at the following international conferences:
• International Conference on Signal Image Technology and Internet Based Systems (SITIS), November 2011,

Dijon, France.
• International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,

February 2012, Rome, Italy.
as well as invited talks at the following international research institutes:

• Dept. Electronic Systems and Information Processing, University of Zagreb, Zagreb, Croatia. May 2011
• Center for Machine Perception, Czech Technical University, Prague, Czech Republic. 8 November 2011.
• Department of Image Processing, Institute of Information Theory and Automation of the ASCR, Prague, Czech

Republic. 11 November 2011.
Demo implementations of our most important algorithms are publicly available:

1) Affine Registration of Planar Shapes. JAVA code with a direct solver (only runs under Windows). Download
from http://www.inf.u-szeged.hu/∼kato/software/affbinregdemo.html

2) Affine Registration of 3D Objects. JAVA code with multi-threading (≈ 0.2 sec. CPU time for megavoxel
volumes). Download from http://www.inf.u-szeged.hu/∼kato/software/affbin3dregdemo.html

3) Nonlinear Shape Registration without Correspondences.JAVA code. Implements planar homography, extension
to other nonlinear deformations is relatively easy. Download from http://www.inf.u-szeged.hu/∼kato/software/
planarhombinregdemo.html
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The works of Jozsef Nemeth and Zsolt Katona MSc students havebeen presented at theNational Scientific
Student Conference(OTDK) in 2009, where Jozsef Nemeth obtained the second price. Csaba Domokos succesfully
defended his PhD degree in 2011 [11] (Summa cum laude) and his work on solving theaffine puzzleproblem [5]
has been awarded the prestigiousAttila Kuba Prizeof theHungarian Association for Image Processing and Pattern
Recognition.

A journal paper about the results presented in Section II-A is under review atPattern Recognition[12]. An-
other journal paper about Gaussian covariants presented inSection III will be submitted toImage and Vision
Computing[13].
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