
 1

Részletes zárójelentés
K72611

A kutató munka tervezett ütemtervéhez képest változtatást igényelt a megfelelő
dekompozíciós algoritmus kidolgozásának a vártnál hosszabb kutatási időigénye. A pályázat
megfogalmazásakor ugyanis feltételeztük, hogy dekompozícióra, mint NP-teljes problémára
könnyebben tudunk a céljainknak megfelelő megoldást kidolgozni gráfelméletből és a
hardver/szoftver partícionálásból ismert algoritmusok módosítása révén. Az előre megadható
szegmens-szám és kapacitás, a kommunikációs időigények, valamint a felhasználandó
processzorok főbb tulajdonságainak figyelembe vehetősége az alkalmazott genetikus
algoritmus célfüggvényének megfelelő kialakítására vonatkozó kutató és kísérleti munka
révén megoldhatónak bizonyult. Ugyanakkor bebizonyosodott, hogy az eredetileg elképzelt
módon nem lehet garantálni, hogy a keletkező szegmensek között ne alakulhassanak ki
visszacsatolások, azaz formálisan hurkok, ami a teljes módszer hatékonyságát jelentősen
csökkentette volna. A szegmenshurkok ugyanis előre nem látható mértékben eleve korlátozták
volna a pipeline újraindítási idő előre megadhatóságát a magas szintű szintézis során. Ezáltal
a kutatási terv egyik fő célkitűzése és a szakirodalmi eredményekhez képesti egyik
legfontosabb újdonsága került volna veszélybe. Ennek a kutató munka során 2010 júniusában
felmerült nehézségnek a leküzdése pótlólagos algoritmus-kutatást és kísérleti munkát
igényelt. Az ebből fakadó időcsúszás mérséklése érdekében az eredetileg tervezetthez képest
több párhuzamos hallgatói és doktoranduszi munkára volt szükség. Mindaddig, amíg nem
találtunk megoldást, a részeredményeink nemzetközi konferenciákon történő publikálását nem
tudtuk a kutatási tervben elképzelt módon megkezdeni. Fentiekből következően ugyancsak
késedelmet szenvedett a teljes kutatási eredményt képező módszer és keretrendszer
publikálása rangos nemzetközi folyóiratban. Miután megtaláltuk a megoldást, már
célszerűbbnek találtuk, ha erre a folyóiratcikkre összpontosítunk. A megoldás lényege az,
hogy az NP-teljes jellegű dekompozíciót megelőzően mindazokat a szegmensképző vágási
lehetőségeket szisztematikusan meghatározzuk, amelyek nem okoznak szegmenshurkokat.
Ezek közül a vágási lehetőségek közül is csak azokat kapja meg a genetikus algoritmus
bemenetként, amelyek szegmensközi kommunikáció szempontjából a legkedvezőbbek. Így a
genetikus algoritmus csak ezek közül a kedvező vágási lehetőségek közül tud választani az
eredetileg kidolgozott költségfüggvény szerint. A megoldás részletes leírása az 1. Melléklet.
„Mapping into a Cutting Matrix (CM)” című fejezetében található. Ez a dokumentum
képezte a közvetlen alapját a teljes kutató munkát összefoglaló azonos című publikációnknak,
amelyet a szűkebb szakterület egyik legrangosabb folyóiratához (ACM Transactions on
Design Automation of Electronic Systems) küldtünk meg 2012. szeptember 19-én. Jelenleg
bírálati szakaszban van.
(Thank you for your recent manscript submission to ACM TODAES.
The Editorial Assistant will shortly transmit your paper to the Editor-in-Chief, who then assigns it to an Associate Editor. (If the paper is a
revision of a previously submitted paper, it will automatically be assigned to the previous Associate Editor.)
The Associate Editor will be responsible for handling the review process for your paper -- and should be your primary point-of-contact for
any questions you may have regarding your submission and the review process. Once the AE has been assigned, you will be able to locate
their name and contact information on the website under "Status".
Please refer to your paper number in any future correspondence.)

Amint az a kutatási tervben és a részjelentésekben is hangsúlyozottan szerepel, a célul kitűzött
módszer és keretrendszer meghatározó része a dekompozíciós eljárás, amelynek egyik újnak
tekinthető eredménye a kialakuló szegmenseket megvalósító processzor egységek közötti
kommunikáció előzetesen becsült időigényének a figyelembe vehetőségének módja a
dekompozíció során. Ez különösen fontos olyan célrendszerekre történő alkalmazások esetén,
amelyekben a processzorok közötti információcserének valamilyen szabványos sínrendszeren
kell történnie. Ilyenkor nagy segítség a tervezés során, ha a különböző leggyakrabban

 2

alkalmazott sínrendszerekre egységes becslési módszer áll rendelkezésünkre. A becslési
módszerrel kapcsolatos vizsgálatainkat és eredményeinket foglaltuk össze a 2. Mellékletben
leírt cikkben, amelyet 2012. október 12-én küldtünk a Periodica Polytechnica folyóirathoz,
ahol jelenleg bírálati szakaszban van.

A kutatás eredményeként kifejlesztett tervező keretrendszer hatékonyságát jelentős mértékben
befolyásolja a megoldandó feladatot leíró programban lévő ciklusok kezelésének módja a
magas szintű szintézis fázisában. A tervező rendszerünk jelenlegi változatában a ciklus-
kezelésnek egy egyszerú könnyen megvalósítható módját alkalmaztuk. Nyilvánvaló azonban,
hogy a ciklusok lappangási idejének csökkentése révén csökkenthető a rendszer pipeline
újraindítási idejét korlátozó hatás. A cikluskezelés algoritmusának kifejlesztése szerepel a
jelen kutatás folytatási céljai között is. Ezzel kapcsolatos a 3. Melléklet, amelynek alapján
folyóiratcikket készítünk elő.

A kísérleti példákon és benchmark-feladatokon kiértékelt rész-algoritmusokon kívül a kutatási
tervben célul tűztük ki, hogy az elkészült tervező keretrendszert meglévő, lényegében intuitív
módon kialakított többprocesszoros rendszerek újratervezése révén is összehasonlító
értekelésnek vetjük alá. Ilyen meglévő rendszernek a

[1] GORACZKO, Michel ; LIU, Jie ; LYMBEROPOULOS, Dimitrios ; MATIC, Slobodan ;
PRIYANTHA , Bodhi ; ZHAO, Feng ; FIX , Limor (Bearb.): Energy-optimal software partitioning
in heterogeneous multiprocessor embedded systems.. In: DAC : ACM, 2008. - ISBN 978-1-
60558-115-6, p-p. 191-196

[2] M. Brandstein and H. Silverman. A robust method for speech signal time-delay estimation
in reverberant rooms. In ICASSP, page 375. IEEE Computer Society, 1997.

publikációkban leírt, hangforrás lokalizációt megoldó rendszert választottuk. A feladat C
nyelvű leírásából az alábbi adatfolyam gráfot (SHSDG) generáltunk.

 3

Mivel a feladat sok fix iterációs számú hurkot tartalmaz, ezeket egy előfeldolgozó
segítségével „kiterítettük”. Az így módosított SHSGH az iterációs hurkok megszüntetése
révén jelentős mértékben elősegíti a párhuzamos végrehajtást és a pipeline szervezést.
A dekompozíciós eljárásunk eredményeként az alábbi, az eredeti megvalósításhoz [1] hasonló
eredményre jutottunk.

 4

Ebből a megoldásból kiindulva azonban még a keretrendszerünk részét képező PIPE magas
szintű tervező eszköz segítségével nagyobb átbocsátási képességű pipeline feldolgozás
alakítható ki az előre megadható kívánt újraindítási időre való tervezés révén.
Néhány ehhez hasonló újratervezési feladat befejezése után az eredményekből levonható
következtetések alapján folyóiratcikket készítünk elő.

Budapest, 2012. november 26.

 Dr. Arató Péter
 az MTA rendes tagja
 Kutatásvezető

 5

1. Melléklet

Synthesis of a Task-dependent Pipelined

Multiprocessing Structure

P. Arató∗, D. A. Drexler, G. Kocza, G. Suba

July 24, 2012

Abstract

This paper presents a method for designing a special multiprocessing
structure for making the pipeline function possible as a special paral-
lel processing even if there is no efficiently exploitable parallelism in the
task description. The starting point of this synthesis method is the task
description assumed to be given by a program written in a high level lan-
guage (e. g. C, Java, etc). The next step is a decomposing algorithm
for generating proper segments of the task-describing program. The de-
sired number of the segments and the main properties of the processor
set implementing the segments can be given as input parameters for the
decomposition algorithm. The estimated communication time-demand is
also taken into consideration. For constructing a beneficial pipeline struc-
ture, the high-level synthesis (HLS) methodology of pipelined datapaths is
applied. The HLS methods attempt to optimize by executing the schedul-
ing and allocation steps applied on the task-oriented input dataflow graph
generated from the graph of the segments produced by the decomposition.
Therefore, the resulted multiprocessing structure is not a uniform proces-
sor grid, but it is shaped depending on the task to be solved, i.e. it can be
called a task-dependent multiprocessing or multi-core structure. In order
to show the whole method as a framework, a specific HLS tool is applied,
which generates an optimized simple arbitration-free bus system between
the processing units. In this structure, there is no need for extra soft-
ware to organize the communication, if the processing units can transfer
input-output data directly. For illustrating and evaluating the method,
the step-by-step solution is shown for two tasks as experimental results.

Keywords: program code decomposition, pipelined multiprocessor sys-
tems, high-level synthesis hardware/software co-design, system-level syn-
thesis

∗Budapest University of Technology and Economics, Department of Control Engi-

neering and Information Technology, H-1117, Budapest, Magyar tudósok krt 2., IB321,

Phone: +36-1-463-2196, emails: arato@iit.bme.hu, drexler@iit.bme.hu, koczagbr@gmail.com,

sugergo@iit.bme.hu

1

1 Introduction

If a task-describing program has no efficiently exploitable parallelism (it can be
called an essentially serial or a sequential one), then speeding up its execution
would not be efficient by applying a uniform parallel processing architecture.
In such cases, the execution speed could be increased by applying a higher per-
formance single processing unit, but this would still exclude pipelining to speed
up processing large amount of data. However, many practical tasks require
and can capitalize the pipelining which is a special case of parallel process-
ing. For constructing a beneficial pipeline structure, the high-level synthesis
(HLS) methodology of pipelined datapaths can be applied. Based on proper
decomposed parts (segments) of the serial program, a dataflow-like graph rep-
resentation can be formed as the input for a HLS tool. Depending on the desired
pipeline throughput (in other words: on the desired value of the restart time
determined by the frequency of being able to receive new input data), the HLS
methods attempt to optimize by executing the scheduling and allocation steps
applied on the task-oriented input dataflow-like graph generated from the graph
of the segments produced by the decomposition. Therefore, the resulted multi-
processing structure is not a uniform processor grid, but it is shaped depending
on the task to be solved by the initial serial program, i.e. it can be called
a task-dependent multiprocessing or multi-core (TDMP) structure designed for
pipelined data processing. In Figure 1, the main design steps of the whole
method are illustrated as a framework. In the first step, a Sructure Descrip-
tion Graph (SDG) is generated from the serial task-describing program (SP).
In this paper, it is assumed that SP is written in programming language C. By
choosing another high level language for task-description, the SDG generating
step may be affected, but the whole design method as a framework remains
applicable. As the SDG represents all hierarchy levels of SP, a reduced SDG
is formed by restricting it to a single (usually to the highest) hierarchy level.
Based on this Single Hierarchy Level SDG (SHSDG), a mapping algorithm is
presented for constructing a cutting matrix (CM) to designate all such allowable
cutting places which may result in beneficial segments by the decomposition.
A cutting place in the SHDSG is considered not allowable, if it would cause a
loop in the graph formed by the segments as nodes. The decomposition (i.e.
an advantageous selection from the allowable cutting places) for generating the
segments is then performed by applying a genetic algorithm. The desired num-
ber (P) of the resulting segments can be given as an input parameter for the
decomposing algorithm. The main properties of the available set of processing
units for implementing the segments and the communication time-demand can
also be taken into consideration during the decomposition and in selecting from
the set of processing units given in advance. The selected processing units and
the communication structure between them represent already a TDMP struc-
ture enabling also the pipeline function. However, the throughput (i.e. the
applicable shortest pipeline restart time) is predetermined by the properties of
the processing units implementing the segments and by the communication time
between them. To increase the throughput (i.e. to decrease the applicable short-

2

est pipeline restart time), an HLS tool may be used by forming its dataflow-like
input graph based on the segments as nodes. In this case, the segments are not
assigned to processing units before having the result generated by the HLS tool.
In order to show the whole method, the specific HLS tool PIPE [1] is applied in
this paper, but other tools could be substituted by modifying the input graph,
if it is necessary. The output of this HLS tool is a structure consisting of rede-
fined and replicated processing units communicating on a simple arbitration-free
bus system. In this structure, there is no need for extra software to organize
the communication, if the processing units can transfer input-output data on
the buses directly. The desired value of the restart time (Rd) can be given as
an input parameter for the HLS tool PIPE. If the constraints caused by the
communication time-demand or loops exclude applying Rd, then the shortest
possible restart time (Rp) can also be calculated and implemented by PIPE. For
illustrating and evaluating the whole synthesis method the step-by-step solution
of two task is shown as experimental results. The modularity of the method
permits that some algorithms developed and demonstrated in this paper (de-
composition, forming the input for the HLS tool and the tool PIPE itself) may
be replaced by other algorithms and tools depending on the properties of the
target system and on the special requirements of the application.

The remainder of this paper is organized as follows. As the crucial part of
the proposed method is to find a proper segmentation of the initial program SP,
Section 2 summarizes some related works in the field of program decomposi-
tion. Section 3 presents the basic rules for generating the structure description
graphs (SDG and SHSDG). In Section 4 the mapping algorithm for constructing
the cutting matrix (CM) is described as a preprocessing step for the decompos-
ing algorithm. The proposed genetic decomposing algorithm is presented in
Section 5. In Section 6, experimental results demonstrate the whole method by
solving two tasks step-by-step. On these examples it is shown how to modify the
graph of segments for generating the input of the HLS tool PIPE. The resulting
TDMP architectures and the arbitration-free simple bus systems provided by
the extended version of PIPE are also illustrated in this section. Conclusion
and further research are summarized in Section 7.

2 Related Work

The TDMP architecture can be considered as the nearest approach to the
application-specific multiprocessing structures (ASMP) [2], [3], [4], where the
properties of the processing units and the communication time between them
are taken into consideration essentially with intuition by analysing the task.
Thus, the selection from the available processing units and the task assigning to
them are not algorithmized. The desired pipeline restart time is also not an in-
put parameter in the ASMP design. Since this paper aims to present a method
for designing a TDMP structure by performing the above synthesis steps as far
as possible algorithmically already in the task distribution phase, therefore the
most comparable related research results are in the fields characterized by pro-

3

Generating the

Structure Description

Graph (SDG, SHSDG)

Mapping into a

Cutting Matrix (CM)

Decomposition

Generating the input for

HLS tool PIPE

HLS tool

PIPE

Serial program (SP)

(Task description)

Task-dependent

multiprocessing structure

(TDMP) Rd for pipelining

is predetermined

Task-dependent

multiprocessing structure for

pipelining with Rd or Rp

(TDMP)

SP

SDG, SHSDG

CM

segment graph

EOG

Rp

possible

shortest restart

time

Communication time

demand between the

processing units

Desired

restart

time (Rd)

Desired number of

program segments
 Processing unit set

for implementing

the segments

Figure 1: The main steps of the method

4

gram decomposition, program slicing, code segmentation and special splitting
algorithms in hardware-software co-synthesis. In this paper, the decomposition
-as the base of the synthesis method- fulfills the requirements as follows:

• The task describing program is assumed to be basically serial (sequential)
i.e. efficiently exploitable parallelism is not necessarily found in it.

• The desired number of code segments resulting from the decomposition
can be given in advance and the effect of fewer segments can also be
evaluated.

• The available set of processing units and the main properties of them can
be taken into consideration in the decomposition algorithm.

• From the resulted graph of segments, the input to a HLS tool can be
generated in formal steps.

In the following overview, the above requirements are also considered. There is
a wide spectrum in the literature of separating a program code into segments
on various purposes. Program slicing is usually used for debugging, program
analysis, program understanding, code reusing, software maintenance, program
integration, program differencing etc., as shown in [5, 6, 7]. The algorithms
of program slicing do not necessarily result in an executable program. Pro-
gram distribution covers the disassembling of a program and reassembling it
in another way preserving its executability and functionality. For example, in
reverse engineering [8], this method can be applied to increase the software per-
formance [9] by changing the execution order of the software segments. In the
field of hardware-software partitioning, the aim is to improve the performance
by implementing the separated parts in software and hardware units respectively
[10, 11, 12, 13, 14, 15, 16, 17].

Most of the methods start with a graph representation of the program to be
decomposed. The graph representation idea comes from Ottenstein [18, 19] by
introducing the program dependence graph. There are very few solutions which
mention the way how the graph representation is made from the program to
be decomposed. One of the few examples is [13], where the method of [20] is
applied for graph generation and the input of the algorithm can be a program
written in C, C++ or SpecC. Besides, [13] puts emphasis on finding parallelism
in the code, but there is no way to specify the number of the segments or the
properties of the processing units. Many program distribution algorithms at-
tempt to find exploitable parallelism. Busherian [8] uses an actor model of the
object oriented program, and looks for concurrency among actors by instruction
scheduling without considering the properties of the units or the desired num-
ber of the segments. Hoffmann et. al. [21] pointed out that parallelizing can
be achieved by finding spatiotemporal patterns in the code. They apply task
and data partitioning in time and space. Influencing the number of resulting
segments is not aimed. Johnson et. al. [22] parallelize the program along its
threads and apply a min-cut based algorithm for finding the nearly optimal dis-
tribution of the task graph. It is possible here to give the set of the processing

5

units, but the desired number of segments is not a parameter. Knudsen et. al.
[12] support the procedure of hardware-software co-design by decomposing into
hardware and software parts. Their dynamic programming algorithm aims to
minimize the hardware area with a global execution time constraint, and the
execution time with a total hardware area constraint. The algorithm detects
the non-overlapping sequences. The properties like execution times, communi-
cation times are estimated, and exploiting the parallelism in the code is also
targeted. Deniziak [23] aims to find the cheapest system architecture satisfying
the given time constraint. Execution times and system costs can be given or
estimated. The method starts from the program architecture and applies the
iterative improvements of the sub-optimal solutions to gain processing speed
with time constraint. Watson et. al. [10] exploit parallelism by considering the
switching cost between the units and solving a multistage optimization prob-
lem. The set of the target processing units can be given. Subramanian et. al.
[24] look for parallelism by using a compiler controlled program analysis. Their
method is very efficient, but the result is based basically on finding exploitable
parallelism. In contrary, Spacey et. al. [25] aim to start from a program without
any exploitable parallelism and to give the set and the properties of the target
processing units. The number of segments is obtained as a result also in this
case. Wolf et. al. [11] and Mann et. al. [26, 27, 28] focus on the desired number
of segments. Wolf et al. start from a system graph and reduce the number of
nodes only if it is necessary to obtain the given time constraint. The properties
of the processing units can also be given. Thus, these methods are the nearest
approach to the basic objectives of the method presented in this paper.

3 Generating the Single Hierarchy Level Struc-
ture Description Graph (SHSDG)

For constructing the SHSDG, the structural arrangement of the task-describing
program SP is to be analyzed. Let the elements of the program structure be
called modules. Modules can be statements, function calls or control structures
(e.g. ‘if’ condition, ‘for’, ‘while’ loops, etc.) in the program.

Modules can be divided into two groups: separable or not separable ones.
A module is considered not separable, if it does not contain any other modules
or it is a loop. Modules contained by the standard library in the high level
programming language applied for SP (e.g. operator ‘=’, any mathematical
operation, etc.) are also handled as not separable ones even if it contains other
modules. Otherwise, the modules are handled as separable ones.

Modules are executed one by one essentially after each other in a basically
serial (sequential) program. This sequence of modules represents an execution
order. Modules are connected by data links. By observing the data links step-
by-step from the inputs to the outputs of the program, a data passing order can
be defined. The data passing order and the execution order can be different. In
the data passing order feedbacks can occur. A feedback is the data passing order

6

leading back to the input of a module already passed. Feedbacks are always
inherent parts of a loop.

As a result of the program decomposition, segments are to be generated.
A segment is a set of program modules which are assigned to a common pro-
cessing unit (e.g. software or hardware). Based on the above definitions and
considerations the Structure Description Graph (SDG) can be constructed for
an SP. In Figure 2, the SDG of a hypothetical SP is shown as an example.
Arrows represent the data links and nodes represent the modules among which
both separable and not separable ones occur. Modules m3, m5, m9, m14 are
separable, because

d(m3) = {m1,m2}

d(m5) = {m8,m9}

d(m9) = {m6,m7}

d(m14) = {m10,m11,m12,m13},

where d(mi) denotes the set of modules that are directly called in mi, i.e. the
set of the direct sub-modules of mi. For example, m7 is also a sub-module of
m5, but not a direct one. If d(mi) is not separable, then formally d(mi) = mi

can be written. In this sense, m1, m2, m4, m6, m7, m8, m10, m11, m12, m13, are
not separable. If the set d(mi) contains mk, then mi is the direct host module
of mk, formally: h(mk) = mi. In Figure 2:

h(m1) = h(m2) = m3

h(m8) = h(m9) = m5

h(m6) = h(m7) = m9

h(m10) = h(m11) = h(m12) = h(m13) = m14.

If mi has no direct host, then formally h(mi) = mi can be written. In Figure 2:

h(m3) = m3

h(m4) = m4

h(m5) = m5

h(m14) = m14.

Based on the relations d(m), h(m) and on the data passing order, hierarchy
levels (Hn) can be defined. The first hierarchy level (H1) consists of the set
of modules, for which h(mi) = mi. The n-th hierarchy level (Hn) consists of
the set of modules determined by the union of all sets d(mi) for all mi-s on
the (n− 1)-th hierarchy level. Formally: ∪n−1[d(mi)], where ∪n−1 denotes the
union of the sets on the n− 1-th hierarchy level.

In Figure 2, the hierarchy levels are as follow:

H1 : {m3,m4,m5,m14}

H2 : {m1,m2,m4,m9,m8,m10,m11,m12,m13}

H3 : {m1,m2,m4,m6,m7,m8,m10,m11,m12,m13}

7

m
1

m
2

m
4

m
6

m
7

m
8

m
10

m
11

m
13
 m
12

m
14

m
9

m
5

m
3

Figure 2: A Structure Description Graph (SDG)

8

According to the above definition, H3 is the highest hierarchy level, because
further separable modules do not exist. It is obvious that the number of modules
on the n-th hierarchy level is always greater than or equal to the number of
modules on the (n − 1)-th level (|Hn| ≥ |Hn−1|). Besides the hierarchy levels,
generally other sets of modules may exist, which also represent correct data
passing orders. For example, the set {m1, m2, m4, m6, m7, m8, m14}, represent
a correct data passing order, but it is a mixture from different hierarchy levels.
If the decomposing algorithm requires checking each data link in the SDG for
attempting to find the optimal cutting places in creating the segments, then
the calculations should be executed obviously on the highest hierarchy level.
Otherwise, some data links would be hidden from checking and evaluation.
However, there might be such special requirements or limitations that prefer
to consider lower (even mixed) hierarchy levels in checking the data links. As
the SDG represents all hierarchy levels of SP, a reduced SDG can be formed by
restricting it to the desired single (usually to the highest) hierarchy level. The
decomposing algorithm performs separating the modules into segments based on
this Single Hierarchy Level SDG (SHSDG). For example, an SHSDG generated
from the SDG in Figure 2 for the 2nd hierarchy level is shown in Figure 3.

In this paper, the SP is assumed to be written in C language as an example.
Although, the SP could be written in another imperative or functional language
(e.g. Java, Haskell, Erlang), it is focused only on C in the next section by pre-
senting a specific method how to generate the SHSDG from SP.

Generating the SHSDG from C code

The GNU Compiler Collection (GCC) is a widely used open source compiler
from C to machine code. This compiler can be applied for making the generating
procedure easier. The compiler has three main parts: the frontend receiving
the C source code and producing an intermediate representation (IR) called
Generic [29], the middle end producing the register-transfer language (RTL),
and the backend producing the desired machine code for the target CPU. It is
advantageous to use a reduced subset of the Generic IR, called GIMPLE [29],
where the expressions are given in a single-static assignment (SSA) form [30].
The reasons of this choice are as follow:

• Using the GCC is beneficial in any case, because the difficult processing
of the source code can be performed automatically without any additional
efforts (compiler steps: lexer, parser, syntax-analyses, and AST creating).

• The RTL would provide already a hardware-based representation, but this
hardware would always be a CPU, which would be a very strict limitation.

• The Generic (the output of the frontend) is the first language indepen-
dent IR, but it is not simple enough, because a large amount of so called
syntactic sugar still remains in the code.

• Therefore, GIMPLE as the simpler IR seems to be more beneficial to use.

9

m
1

m
2

m
4

m
6

m
7

m
8

m
10

m
11

m
13
 m
12

Figure 3: The SHSDG generated on the 2nd hierarchy level of the SDG in
Figure 2

The GIMPLE code consists of the same C functions as the source code.The
functions are divided into blocks. Every block is an acyclic dataflow graph, and
inside a block there are no control flows, the expressions can be evaluated just
considering the data dependency. However, a control flow cannot be avoided
for determining which block should start in each situation. At completing the
execution of a block, it is always determined which block should start. Therefore,
control lines appear between the blocks besides data links.

In GIMPLE, the function headers have the same parts as in C (return type,
name and parameter list). The function bodies begin with the local variable
declarations followed by the GIMPLE instructions [31]. The translations of
these language elements will be discussed in the following.

The elements of the function parameter list are handled as virtual input
nodes (modules). The advantage of these virtual nodes is that the interfaces

10

of a module can be determined easily from the SHSDG model. Moreover, if
an input parameter is used by more than one expression, a virtual input node
can ensure that only one data link goes into the module (node) representing
the input parameter. The outputs of functions (and of the program as well)
are also handled as virtual nodes. This guarantee that the output nodes of the
graph will have only such outputs that point out of the graph. This feature will
be beneficial for the cutting matrix generation algorithm described in Section
4. The execution time of the virtual nodes could be 0, but the tool PIPE [1]
can not handle the zero duration time. Therefore, the execution time of these
virtual nodes is assumed to be 1. Of course, this causes a minimal increase in
the latency, but the pipeline restart time is not affected.

All local variables will be converted to data links between modules (these
will not generate any modules at all).

The most of the considerations during the translating procedure are required
by the GIMPLE instructions. The correspondence between the SHSDG ele-
ments and the GIMPLE instructions are as follows:

• gimple_label : it defines a block in the GIMPLE code, and a block is
translated into a separable module (the GIMPLE instructions inside a
block require the same handling).

• gimple_goto: it is a jump instruction appearing in the case of a loop,
branch or an explicit goto element of a C code. The direction of the
jump can be forward or backward (a backward jump goes to a source code
line that it has processed before, and the jump is forward otherwise). A
backward jump results always in a loop (for, while, etc.) handled as a
not separable module, because the current version of the applied HLS tool
PIPE can not handle the separation of the body of a loop.

• gimple_assign: it represents atomic operations (+, -, *, <), therefore not
separable module is to be generated in SHSDG.

• gimple_cond : it represents a branching condition evaluation, and it de-
termines the next block to start. It is an atomic operation translated into
a not separable module in SHSDG.

• gimple_phi : it refers to joining the outputs of different blocks. The trans-
lation of this instruction results in a not separable multiplexer (MUX)
module [1] in SHSDG.

• gimple_call : it represents a function call. The function can be user defined
or a part of a library. A user defined function is translated into a separable
module in SHSDG by inlining. A library function is translated into a not
separable module in SHSDG.

• gimple_return: it is the last GIMPLE instruction of a function. The
translation into SHSDG results in a virtual output node similarly to the
virtual input node discussed earlier (the execution time is also 1 here).

11

Since the SP is assumed to be written in C language, it is not necessary to
bother with the following C++ or assembly-related elements of the GIMPLE
structure (e.g. gimple_catch, gimple_try, and gimple_asm).

The main advantage of the GCC-supported generating method is that there
is no need to deal with the C source code. Thus, it is not necessary to handle
language elements that are difficult to process: macros, header files, various
syntactic sugars (for cycle, do-while cycle and some special operators e.g. „?:”,
etc.).

Nevertheless, two very important C language elements, the pointer and the
global variables have to be mentioned. A pointer used in a function parameter
list represents a pass by reference argument. Therefore, this situation should
be represented by applying two data links in the SHSDG: one for the input and
one for the output direction. A pointer can refer to a statically or a dynamically
allocated memory. In this paper, the dynamical case cannot be handled since the
size of the referenced memory block cannot be derived in compile time, but this
information should be known for calculating the communication cost for the
algorithm in Section 5. Thus, avoiding the pointers with dynamical memory
reference is a restriction in writing the SP. Pointers referencing to statically
allocated memory are allowed, because the size of the referenced memory block
can be derived in compile time according to the pointer analyses techniques
[32, 33, 34].

The other problematic elements, the global variables can be removed by
applying the variable-classification step described in [35].

Handling of conditional branches

For the modules in the branches, the data passing order cannot be specified
by the data links only. Obviously, the actual values on the control lines also
influence the data passing order. Therefore, the control lines produced by the
condition calculation are also to be taken into consideration besides the data
links for handling the conditional branches as separable modules during gener-
ation of the SHSDG.

The influence of the control lines on the data passing order can be illustrated
by the control-flow graph (CFG). The CFG of a conditional branching is shown
in Figure 4. a., where dotted arrows represent only the control lines prescribing
the control-flow precedence of the modules. The condition evaluation (A) mod-
ule (gimple_cond) and the modules in the branches (Bi-s and Ci-s) constitute
the module set of the conditional branch. In Figure 4. a., only the execution
order of the modules is indicated by the dotted arrows. The correspondence
between the CFG and the SHSDG is illustrated in Figure 4. b., where only the
assumed data passing order is indicated between the modules. The control lines
(dotted) from A to all of the modules in B and from A to all of the modules
in C have to be added as additional single bit data links in the SHSDG. These
additional data links are not indicated in Figure 4. b. in order to maintain
the simplicity of the figure. In SHSDG generation, these single bit data links
are to be handled as additional input data to each module of the conditional

12

B
1

B
2

...

B
n

A

B

C
1

C
2

...

C
m

C

B
1

B
3

...

B
n

A

B

C
1

C
2

...

C
m

C

C
3

...

data

data

control

F
T

if (A) {B
1
 ... B
n
} else {C
1
 ... C
m
}

data

...

B
2

data

data

control

a.)
 b.)

Figure 4: The control flow graph and the SHSDG of the conditional branches;
a.) the control of „if” conditional branch b.) SHSDG substitution of „if” control
structure

branches in order to activate its operation. These extra single bit data links can
ensure the aternative execution of the branches, what may be beneficial in the
allocation phase of the HLS tool.

There may be statements in the SP which are not involved in any kind
of data passing only in precedence. Such statements are for example printing
statements. In such cases, the control links are also considered formally as single
bit activating data links when generating the SHSDG.

4 Mapping into a Cutting Matrix (CM)

The aim of the decomposition is to construct the decomposed parts of the pro-
gram by distributing nodes of the SHSDG into segments. During the distri-
bution, efforts have to be made for forming a structure having only one way
communications between the resulted segments. It is important, because bidi-
rectional data links in both directions between segments would form segment
loops which are not advantageous in the further design steps. In Figure 5. a.,
a SHSDG and its resulted segment structure is shown, where the modules are
distributed by cuttings (dotted lines) so that data links arise between the seg-
ments (thick edges) in both directions. Such not allowable cuttings in SHSDG
should be avoided by the decomposition algorithm. It is the same problem that

13

I

II

III

A

B

C

III
I

II

C

B

A

a.)
 b.)

Figure 5: Illustration of allowable and not allowable cuttings

occurred in [11], where the not allowable cuttings are called as ‘illegal parti-
tions’. In Figure 5. b., the same SHSDG is distributed into segments having
no data links in both direction between them. Therefore, no loops would arise
with the segments A, B, and C.

The preparatory step of the decomposition algorithm is to find all advanta-
geous allowable cuts (cutting places) and to map them into a Cutting Matrix
(CM). Generating the CM is performed by the algoritm CMGEN. After this
preparatory step, the aim of the decomposition algorithm is to select from the
allowable cuts by attempting to optimize according to some parameters given
in advance. This can be performed by an algorithm shown in the next section.
In this section, the algorithm CMGEN is described. The algorithm is similar to
finding the minimal cut or the maximal flow in a weighted graph [36, 37, 38, 39].
While these algorithms are dedicated for distributing the graph into two seg-
ments, CMGEN is able to prepare the distribution into more segments generated
by allowable cutting places only.

The algorithm allows considering the communication burden (time-demand)
between segments during the mapping procedure by assigning proper weights
to the data links. It permits that always those allowable cuts are chosen for
mapping into the CM which have the smallest weight, if there are more possi-

14

bilities. Weights may characterize the data quantity to be transferred on the
data links, but the weight definitions and assignment can be changed depending
on the various implementations of the communication between the processing
units in the target system. Definitions and main steps of algorithm CMGEN
are summarized in Figure 7, based on the illustration in Figure 6.

The algorithm uses the following definitions. Let those nodes of the SHSDG,
which have no predecessor or successor nodes, be called input nodes and output
nodes, respectively. For example, an input node is node m1 and an output is
node m12 in Figure 3. Let A and B denote disjoint subsets of all nodes in
SHSDG. Let two disjoint subsets (X and Y) be generated in B according to the
following properties:

• Subset X contains all nodes of B which send data only to nodes of set A.

• Subset Y contains all nodes of B which send data to nodes both of sets B

and A.

• The remaining nodes of B are assumed to send data only to the nodes of
set B.

Let the following notations be introduced:

• xi and yj denote the elements of sets X and Y , respectively

• w(xi) denotes the sum of weights of all data links having the drain node
xi

• w(xi → A) denotes the sum of weights of all data links having the source
node xi

• w denotes the sum of weights of all data links from set B to set A

• tk denotes the estimated execution time of ak, where ak is an element of
set A

• TA denotes the estimated execution time of the actual node set A. It is
defined as the sum of all tk-s.

The above properties and notations are illustrated in Figure 6. The CM is
generated according to Figure 7. Initially, set A contains the output nodes only
and set B contains the rest of the nodes. This situation is represented in CM by
mapping all output nodes into the first row indicating that this cut generates
two segments by cutting at the input data links of all output nodes. This cutting
is always trivially allowable because the output nodes have no output data links
to other nodes. Further on, each node xi is relocated one by one from X to A.
Since set X contains nodes sending data only to A, all nodes of the actual A
send data only inside A. If there would be a node that has both outputs leading
out of the graph, and outputs that are inputs to other nodes inside the graph,
the algorithm would create a not allowable cut. However, these type of nodes
can not exist in the SHSDG, because fictive output nodes are inserted during the

15

x
i

X

B

A

T
A

a
k
, t
k

Y

w(x
i
)

w(x
i
->A)

w

Figure 6: Illustration for the CMGEN algorithm

16

Input:
G directed graph

Output:
Matrix containing possible cutting places

Definitions:
G : set of nodes of the input graph
A,B : subsets of G where B = G−A

k : outputs of the graph
X ∈ B, {X}B−>A : all nodes of B which send data only to nodes of set A

Y ∈ B, {Y }B−>A : all nodes of B which send data to both nodes of set B

and A

w(xi → A) : sum of weights of all data links having the source node xi

w(xi) : sum of weights of all data links having the drain node xi

tk : estimated execution time of ak, ak ∈ A

TA : Σ(tk), ak ∈ A

z : cycle parameter, indicates the row numbers in the matrix
∆w(xi) = w(xi−>A)− w(xi)
w : denotes the sum of weights of all data links from set B to set A

CMGEN algorithm:
1 A← {k}
2 put {k} into the 1st row of the matrix
3 z = 2
4 while(B 6= 0)
5 {
6 A← {xi}, where xi ∈ X and for any xj ∈ B: ∆w(xi) ≥ ∆w(xj)
7 count TA = Σ(tk)
8 put z into row z of the matrix
9 put xi into row z of the matrix
10 put TA into row z of the matrix
11 z ++
12 }

Figure 7: The definitions and main steps of algorithm CMGEN

17

generation procedure as described in Section 3. Therefore, the cuts formed by
relocating nodes from X to A are always allowable ones. The relocated node is
mapped into the next row of CM. Thus, each row of CM represents an allowable
separation of SHSDG into two segments. After each relocation, sets A, B, X, Y ,
and all weights are actualized and recalculated. If the actual set X contains more
nodes, then the selection of xi for relocating is made by considering the effect on
the communication burden between the segments generated by the relocation
step. This effect can be characterized by evaluating the change in the value of
w after relocating xi. The aim is to relocate always that xi which results in the
greatest decrease in the new value of w. According to the notations, w(xi → A)
reduces the value of w, because after the relocation xi will be already in set
A. In contrary, w(xi) increases the value of w, because all data links having
the drain node xi will appear between the set B and A, i.e. between segments.
Thus, the change of w caused by relocating xi can be expressed as follows:

wnew = wold − w(xi → A) + w(xi),

where wold and wnew are the values of w before and after the relocation, respec-
tively. By introducing ∆w(xi) = w(xi → A)− w(xi),

wnew = wold −∆w(xi).

Thus, that xi should be selected, for which ∆w(xi) is the greatest. (In the case
of identical greatest ∆w(xi) values, the selection might be arbitrary at such
simple weight definition).

By continuing the above selection, relocation and recalculation steps, set B

will become empty sooner or later, because all outputs of the graph are put into
set A at the initialization step of algorithm CMGEN. Therefore, the algorithm
relocates each node into set A sooner or later. At this point, the algorithm for
mapping into CM ends. Each row represents an allowable cut in SHSDG and
the actual contents of sets A and B define the two segments separated by this
cut. Because of the above selection strategy for relocating, CM generally does
not contain all allowable cuts. Namely, also an allowable cut would be obtained
by relocating a node xi having not the maximal value of ∆w(xi). In this case,
the order of xi-s would change in CM, and so the content of separated segments
may also be affected. However, such allowable cuts do not appear in CM, if the
relocating is always performed according to the maximal value of ∆w(xi).

The structure of CM generated by the algorithm CMGEN is illustrated in
Figure 8. The first column contains row numbers, the second column identifies
the node which is selected for relocation from set X to set A in that step,
the third column contains the estimated execution times of the actual set A

resulted by summing the execution times of all nodes in A. This is a worst
case estimation, since the decreasing effect of the possible parallel or alternative
node executions (e.g. conditional branches) are not considered at this point for
the sake of simplicity. Of course, more accurate estimation could be done by
considering possible parallel or alternative node executions.

As a summary, the properties of the CM are as follow:

18

�

�

���

�

���

���

�

���

���

�

�
���

	
� ���
������	
��

���������

����
��
	

�����

�	
���������

�	
�����

���

�	
�����

�	
�������

�	
�����

�	
�������

�	
�����

�	
�����

���
���

���

������

��

��

����

��

����

��

��

�
�
�
�

�����	���

�����	���

�����	���

�����	���

���
���

���
���

Figure 8: The structure of the cutting matrix (CM) and an illustration for the
segmentation

• Each row of the CM represents an allowable cutting place.

• The first row identifies all output nodes of SHSDG.

• Input nodes can occur in any rows except in the first one.

• A cut (a row) in CM identifies a decomposition of SHSDG by distributing
its nodes into two segments composed by the nodes in rows above (set A)
and by the nodes below (set B) this cut, respectively.

By the help of the CM, the distribution of the SHSDG into segments can
be performed. In the next step of the decomposition algorithm, an optimal
selection from the advantageous allowable cutting places is attempted. The
desired number of the resulting segments (P) can be given in advance. It means
that P sets of rows should be generated in CM. In Figure 8, P = 4 is assumed,
so three rows of the CM as cutting places are to be determined. An assumed
decomposition result is illustrated by the thick horizontal lines in Figure 8 as
selected cutting places. The nodes contained by the four segments are assigned
by the selected three cutting places. An algorithm for selecting the cutting
places is described in the next section.

19

5 The decomposition algorithm

Various practical conditions may be formulated to influence the decomposition
procedure. One of the practical aims can be to prescribe the desired maximal
number (P) of segments as an input parameter for the decomposition algorithm.
Let S : {s1, s2, . . . , sk} denote the set of segments resulted by the decomposition
algorithm. Besides k = P , the algorithm may propose a segmentation in which
k < P , if the same or more beneficial solution can be achieved by generating
less segments. The k > P case is not considered, since there always must be
an upper limit for the number of segments. Usually this upper limit is defined
by the number of available processing units for the implementation. Just this
could be the reason why P may be prescribed as input parameter in advance.

In order to attempt an optimal segmentation in some sense, a cost function
should be constructed that enables to apply a global optimization algorithm.
Applying global optimization algorithms (e.g. ant colony optimization [40] or
genetic algorithm [41]) is not unfamiliar in partitioning problems, especially in
hardware software codesign. The cost function should be defined by considering
the purpose of the segmentation and the properties of the target system. In the
decomposition algorithm proposed in this paper, two alternatives for the cost
function are shown as examples.

The first alternative is to consider the processing units in which the segments
will be implemented. Different processing units may have different communica-
tion speed, execution speed and capacity. Let a single unique identifying integer
from the set {1, 2, . . . , P} be assigned to each processing units that is available
to implement the segments. Hereby, the assignment of available processing units
to segments can be formally represented by the assignment identifying set of in-
tegers U : {u1, u2, . . . , uP }. For example, if segment si is assigned to processing
unit 2, then ui = 2. Each processing unit is characterized by the following
attributes: the speed of execution, the maximal execution time of the segment
the can be allocated into the processing unit (also called the capability of the
processing unit), and the communication cost between each pair of processing
units. Identical types among the available processing units are represented by
identical attributes. For attempting to find an optimal solution, the most ad-
vantageous processing unit should be selected for each segment. The algorithm
presented in this paper does not assign more segments to the same process-
ing unit. Otherwise, the graph of the segments might be affected, even loops
might arise in the resulted architecture similarly to the not allowed cuts. Thus
ui = uj cannot occur. In the second alternative, only the segmentation is per-
formed without assigning the segments to processing units. This alternative is
more suitable for applying a HLS tool after the segmentation in order to allo-
cate the segments for establishing advantageous pipeline architecture. In this
case, the optimization is attempted by choosing a Pareto-optimal solution that
varies between fast communication and fast execution of the segments. The two
alternatives outlined above and the relation between P and k represent four
cases:

20

• Case 1: Segmentation and assignment to processing units, k = P only.

• Case 2: Segmentation and assignment to processing units, k < P also
allowed.

• Case 3: Segmentation only, k = P only.

• Case 4: Segmentation only, k < P also allowed.

The decomposition algorithm proposed in this paper is illustrated for these four
cases as a framework. The first step is to formulate a proper cost function for
attempting to find the optimal segmentation in each of the four cases. As an
example, let the cost function (f) be introduced as follows:

f =
P−1
∑

i=1

(

G−1
ui

Ti +max
j

(

Cui→uj
Comi→j

)

+ σ (i, ui)

)

+G−1
uP

TP + σ (P, uP)

where

• ui: is the identifying integer of the processing unit assigned to segment si

• Gui
: is the processing speed of the processing unit identified by ui,

• Ti: is the execution time of segment si,

• Cui→uj
: is the communication cost between processing units identified by

ui and uj ,

• Comi→j : is the communication burden (number of bits transferred in the
examples) between segments si and sj ,

• σ (i, ui): is an overfill function for the processing unit identified by ui

assigned to si.

Further on, all values of execution time, processing speed and communication
time are handled as relative values without considering the dimensions. Note
that the sum in the cost function goes from 1 to P − 1, since P − 1 cuts are to
be found for creating P segments. The capability of the processing unit is used
to set a certain limit to the segment assigned to the processing unit. In this
example, this measure is defined by the maximum value of the total execution
time of the segment assigned to a given processing unit. Note that other limits
may also be introduced instead of this, e.g. maximal memory size. Let the total
execution time of segment si be denoted by Ti. Thus, an overfill function can
be defined as follows:

σ (i, ui) = ǫ (Ti − Capui
)
(

eα(Ti−Capui) − 1
)

where Capui
is a threshold defined for each processing unit ui referred to as

the capability of the processing unit, and α is an appropriately chosen constant,

21

while ǫ (·) stands for the Heaviside function. The Heaviside function provides
the zero overfill function value, if the execution time of the segment to be imple-
mented in ui is under the limit defined by Capui

, but increases exponentially, if
this limit is exceeded. The function σ (i, ui) could also be defined as an ideal one
that provides zero, if the execution time of si is less than or equal to Capui

, and
provides an infinite value, if the the execution time of si exceeds this limit. The
function used here approximates this ideal function by a continuous change. The
parameter α determines the approximation distance between the ideal function
and the continuous one. The greater the α is, the closer the function is to the
ideal one. The reason of using a continuous function is to help the convergence
of the gradient-like optimum search algorithms.

The cost function basically considers the execution times of the resulting
segments that highly depend on the speed of the processing units in which the
segments are implemented. The communication cost is added to the execution
time inspiring the fact that the communication affects the execution time of the
whole SP. The third component in the cost function represents the size-limits
of the segments for avoiding useless solutions.

Minimizing the above cost function results in minimal latency, since it is the
sum of relative time values for all segments. The minimization of the pipeline
restart time will be attempted by the HLS tool, as it is shown in the further
sections.

In this paper, the optimization is attempted to be solved by applying a
Single-population Genetic Algorithm (SGA) with real population as an example.
Each individual is composed of 2P − 1 genes, as follows:

[

c1 c2 . . . cP−1 u1 u2 . . . uP

]

The first P − 1 genes determine the place of the cuts (the rows of the CM), i.e.
ci determines where segments si and si+1 are separated. The values of ci are
chosen from the set {1, . . . , J −1}, where J is the number of rows of the cutting
matrix CM. Note that P has to be chosen such that P ≤ J must hold. This
may be a limit in prescribing the value of P and it turns out only at this stage.
The set of nodes contained in a segment are determined by the second column
of the CM that contains the relocated nodes. The first segment is composed
of the nodes that are between the 1st row and the c1-th row of CM (c1 = e in
the example in Figure 8), the second segment is composed of the nodes that are
between (c1 + 1)-th row and c2-th row of CM (c2 = r in the example in Figure
8), and so on. The last segment is composed of the nodes that are between
the (cP−1 + 1)-th row and the J-th row of the cutting matrix. The process
of creating segments requires that 1 ≤ c1 < c2 < . . . < cP−1 < J must hold.
Each of the last P genes determines a processing unit ui, in which segment si
is implemented, respectively. As the formal representation of the identifying
integers, the value of ui is chosen from the set {1, 2, . . . , P}, and ui 6= uj must
hold for all i 6= j, and so the last P genes are permutations of the elements of
the integers 1, 2, . . . , P .

In the standard genetic algorithm applied in this paper, only the recombi-
nation and mutation operators have to be changed to suit the problem. The

22

recombination of these individuals requires a careful treatment. The first P − 1
genes are recombined using standard intermediate recombination, however the
last P genes cannot be generated by this method, since the last P genes need to
be the permutations of the finite series 1, 2, . . . , P , i.e. the identifiers of the pro-
cessing units. If intermediate recombination were applied, then the result would
not necessarily be a permutation of that series. Therefore, the recombination
of the last P genes is done by creating two offsprings with the same genes at
the first P −1 position, but different genes at the last P position inherited from
both parents. Then, another group of offspring is created by adding random
permutations at the last P genes. The best offspring is chosen according to the
cost function. The mutation operator acts similarly. The first P − 1 genes are
mutated in standard manner, however the last P genes are mutated by creating
a random permutation of the series 1, 2, . . . , P .

The minimal value of the cost function is the upper limit of the latency of the
best individual, if the capability limits of the processing units are not exceeded.
Namely, the latency is the sum of the execution and communication times.

The decomposition framework presented above is suitable for handling each
of the four cases. For example, a simple modification in the procedure can make
it suitable for Cases 2 and 4, when the result may contain less than P segments,
if the minimization of the cost function were more beneficial in this way. In
order to ensure this feature of the optimization process, the value of zero can be
assigned to any of the last P genes of the individuals. The zero value of a gene
in one of the last P places means that the segment is not realized at all, thus it
does not exist. This zero value can be interpreted as a fictive processing unit,
with zero processing speed (G0 = 0), zero communication cost (C0→uj

= 0), and
infinite capability threshold (Cap0 = ∞). During the optimization procedure,
this zero assignment can be attempted and evaluated for any number of genes
at the last P places of the individuals to simulate as if the corresponding ci
genes were neglected as cutting places.

In Cases 3 and 4, the result of the segmentation serves as input for a HLS
tool. Therefore, the types and the properties of the processing units will be
determined by the allocation result of a HLS tool. The cost function applied
above for a general case can be fitted easily to these cases by defining formally the
same type for each processing unit. The speed and the communication burden
of this single type processing unit determine the trade-off between optimizing
the minimal execution time of a segment and the communication time between
segments. The capability of the single type processing unit serves as an upper
bound on the maximal execution time of a segment in this case.

6 Experimental results

The main steps and design cases of the method described in the previous sections
are illustrated on an example C code used in audio synthesis. The program con-
sists of three functions, the main function and two other user defined functions.
The nodes associated to the commands of the program code are denoted in the

23

comments. Pure variable declarations are handled as the inputs of the program.
Thus the program code (called SP in the previous sections) is as follows:

#include<stdio.h>

#include<math.h>

// //Node 11 //Node 12 //Node 13

void genSweep(float *buffer,long numSamples,int sampleRate,...

//Node 14 //Node 15

float minFreq,float maxFreq){

float start=2.0*3.14*minFreq; //Node 16

float stop=2.0*3.14*maxFreq; //Node 17

float tmp1=log(stop/start); //Node 18

long s=0; //Node 19

while(s < numSamples) //Node 20

{

float t;

t=(float)s/numSamples;

float tmp2;

tmp2=exp(t*tmp1)-1.0;

buffer[s]=sin((start*(float)numSamples*tmp2)/...

((float)sampleRate*tmp1));

s++;

}

// Node 21 is a fictive out node

}

// //Node 22 //Node 23 //Node 24

void fadeInOut(float *buffer, long numSamples, int sampleRate,...

//Node 25

float fadeTime)

{

long numFadeSamples=fadeTime*sampleRate; //Node 26

if(numFadeSamples > numSamples) //Node 27

// Node 28 for branch node

{

numFadeSamples=numSamples; //Node 29

}

long s=0; //Node 30

while(s < numFadeSamples) //Node 31

{

float weight;

weight=0.5*(1-cos(3.14*s/(numFadeSamples-1)));

buffer[s]=buffer[s] * weight;

buffer[numSamples-(s+1)]=buffer[numSamples-(s+1)]*weight;

s++;

}

24

//Node 32 is a fictive out node

}

// //Node 4 //Node 1 //Node 2

float* top_module(float *buffer, int sampleRate, float duration,..

//Node 5 //Node 6 //Node 7

float minfreq,float maxfreq, float fadetime) {

long numSamples=duration*sampleRate; //Node 3

genSweep(buffer,numSamples,sampleRate,minfreq,maxfreq);//Node 8

fadeInOut(buffer,numSamples,sampleRate,fadetime); //Node 9

return buffer; //Node 10

}

// main function for the test on CPU

int main() {

float buffer[1];

top_module(buffer, 1, 1, 440, 4400, 10);

for (int i=0; i<1; i++)

{

printf("%f\n",buffer[i]);

}

}

The SHSDG belonging to the highest (in this case the 3rd) hierarchy level is
shown in Figure 9. The labels in the nodes consist of two rows: the first one
is the identifying index of the node, and the second one refers to the estimated
execution time of the node. In this simple illustration, the estimated execution
times are assumed to be 1 for each node which does not represent a loop. The
nodes representing loops (nodes 20 and 31) are assumed to have the estimated
execution times determined by the sum of execution times of the nodes forming
the loop (as if the loops were executed only once). Of course, this simplified
estimation is made only for demonstrating formally the steps of the synthesis
framework presented in this paper. Realistic estimations might be elaborated
by considering the type and character of the loop. Such considerations and the
loop handling are crucial in high level synthesis [1], [42], [43], [44]. To develop
loop rules dedicated specifically to the synthesis method presented in this paper
is one of the aims for further research. In this particular case, the number
of loop cycle depends on input variables duration and sampleRate, these are
assumed to be 1. The execution time of both loops is 4j (since there are 4 nodes
in the loop), where j = duration ∗ sampleRate. In this example j = 1. This
simplification would be justified, if the loop in the C code is assumed to get all
the data in the buffer array variable, and each loop cycle is executed on a single
element of the array independently. In this case, the whole buffer array can be
loaded and handled in pipeline mode. In consequence, the whole program would
be executed for each element of the buffer. Thus, some program parts (which
should be executed only once for a specific buffer array) would be executed

25

multiple times (e.g. nodes 5, 6, 14, 15, 16, 17, 18 in Figure 9). However, this
solution implies that the size of the buffer array does not affect the structure of
the resulting system, but it determines the pipeline restart time.

The Cutting Matrix resulting from the SHSDG can be seen in Figure 10. The
first column of the matrix (num) contains the identifying indices of the cutting
places. The ci genes in the genetic algorithm refer to these indices. The second
column contains the nodes that are actually relocated to the set containing
the nodes above a given index in the matrix. The third column contains the
cumulated estimated execution times of the nodes forming the segment above
the cutting place. These cumulated estimated execution times are recalculated
at each step by adding the estimated execution time of the node defined in the
second column. For the sake of simplicity, it is a worst case estimation, since it
does not consider the possible parallel or alternative node executions.

Further on, some results are shown in the four design cases defined in the
previous section.

Case 1

Let two different types of processing units be assumed, and they will be called
hardware and software. Thus, this problem is analogous to the well-known
hardware-software splitting. Let the relative properties (represented by integers)
of the units be assumed as follows:

• The processing speed of the software is Gs = 1

• The processing speed of the hardware is Gh = 6

• The communication cost between hardware and software is Ch→s = 3

• The communication cost between two hardware is Ch→h = 2

• The communication cost between two software is Cs→s = 5

• The capability of the software is Caps = 15

• The capability of the hardware is Caph = 10

The decomposition is done first with k = P , using 3 software and 3 hardware
units, i.e. P = 6. The result of the decomposition is represented by an ad-
jacency half matrix in Figure 11. Each row and each column is labeled by a
segment si. The number in the cell corresponding to sj and to sk represents
the number of bits that need to be transferred from segment sj to segment sk.
The communication cost between the processing units is not indicated in the
adjacency half matrix.

26

Figure 9: The SHSDG of the program code on the highest hierarchy level

27

num relocated node Estimated
execution times

1 10 1
2 32 2
3 31 6
4 30 7
5 29 8
6 22 9
7 21 10
8 28 11
9 23 12
10 26 13
11 25 14
12 7 15
13 24 16
14 20 20
15 19 21
16 11 22
17 4 23
18 12 24
19 3 25
20 2 26
21 13 27
22 1 28
23 18 29
24 17 30
25 16 31
26 15 32
27 6 33
28 14 34
29 5 35

Figure 10: The Cutting Matrix of the SHSDG in Figure 9

s2 32
s3 48 0
s4 0 0 32
s5 32 0 64 0
s6 0 0 144 0 0

s1 s2 s3 s4 s5

Figure 11: The adjacency half matrix of the decomposition result with P = k =
6, 3 hardware and 3 software units

28

���������

���������������
�� ���	

��
�������

�	
������

������������������������������
�����

�� ����	�

��
��������

��������������
�� ���	

�

��������

�	
������

�
�� ���	�

������

��

���������

���������
������
�������
�
 ���	

�����

���

�!���

�	
������

�����
�� ���	�

������
�

��

������

��

Figure 12: The result of the decomposition for Case 1, using 3 software and 3
hardware units

The resulting segments contain the following nodes (with execution times
Ti):

s1 = { 10 32 31 30 29 22 21 28 23 26 } T1 = 13
s2 = { 25 7 } T2 = 2
s3 = { 24 20 19 11 } T3 = 7
s4 = { 4 } T4 = 1
s5 = { 12 3 2 13 1 } T5 = 5
s6 = { 18 17 16 15 6 14 5 } T6 = 7

Segments 1, 2 and 4 are implemented in software, and segments 3, 5 and 6 are
implemented in hardware processing units. The best value of the cost function
delivered by the decomposition algorithm is f = 508. The result of the decom-
position is also depicted as a directed graph in Figure 12. The segments are the
nodes of the graph. The labels of the nodes consist of three rows. The first row
is the name of the processing unit type implementing the segment. The second
row is the list of SHSDG nodes allocated into the segment, and the last row is
the execution time divided by the relative processing speed of the processing
unit implementing the segment.

29

s2 48
s3 32 64
s4 0 144 0

s1 s2 s3

Figure 13: The adjacency half matrix of the decomposition result with k < P =
6 (3 hardware and 3 software units), the result consists of 3 hardware and 1
software units.

Case 2

In this case, k < P is also allowed. Let the number and types of processing
units be assumed as in Case 1. Let the cost function be modified by an extra
+λk term, where λ > 0 is a parameter for quantifying how small number of
segments would be favored by the user. By executing the decomposition for
various values of parameter λ, the user may tune the result according to several
requirements in the target system. Thus the cost function used in Case 2 (and
also in Case 4 later on) is

f =

k−1
∑

i=1

(

G−1
ui

Ti +max
j

(

Cui→uj
Comi→j

)

+ σ (i, ui)

)

+G−1
uk

Tk + σ (k, uk) + λk

where the indices go from 1 to k instead of 1 to P and the extra +λk term is
added.

For example, let the effects of λ = 90 be examined. The result of the
decomposition is 4 segments, 3 of them implemented in hardware, and one of
them in software units. The adjacency half matrix is shown in Figure 13.

The resulting segments contain the following nodes (with execution times
Ti):

s1 = { 10 32 31 30 29 22 21 28 23 26 25 7 } T1 = 15
s2 = { 24 20 19 11 4 } T2 = 8
s3 = { 12 3 2 13 1 } T3 = 5
s4 = { 18 17 16 15 6 14 5 } T4 = 7

Segment 1 is implemented in software, segments 2, 3, and 4 are in hardware
units. The resulted best value of the cost function is f = 941.1677 in this case.
This value is greater than in Case 1, however the comparison would be realistic
by considering the extra +90k component in the cost function. The impact of
the original components can be compared, if 90k is subtracted from the value of
the cost function obtained in this case, i.e. 941.1677− 90 · 4 = 581.1677, which
is greater than the cost value resulted in Case 1. Thus, Case 1 provides a better
solution, if the effect of less processing units is not considered (see later Figure
18). For example, the decomposition algorithm has been executed in order to
check whether k < P = 3 could offer a smaller value for the cost function. All
of the three processing units are assumed to be hardware type now. The best

30

s2 32
s3 32 16
s4 0 0 32
s5 32 0 64 0
s6 0 0 144 0 0

s1 s2 s3 s4 s5

Figure 14: The adjacency half matrix of the result of decomposition in Case 3

result is obtained with 3 segments, i.e. k = P = 3 in this case. The resulted
cost function value for comparison is 1435 − 90 · 3 = 1165. Thus, k = 4 in the
former case seems to be a better solution, if the price of more processing units
is not considered (see later Figure 18).

Case 3

In this case only segments are created without distributing them into process-
ing units, because the result of the segmentation is assumed to be the input
of a high-level synthesis tool in order to generate the proper allocation for es-
tablishing a pipeline system. The same cost function as the one defined in the
previous section may be used also in this case. Formally only one type of fictive
processing units is assumed. The ratio between the processing speed and the
communication cost properties of this fictive processing unit is a tool to scale
whether the low communication time or the low execution time is preferred. Let
the processing speed of the processing unit be assumed Gs = 1, so the relative
value of the communication cost defines this ratio. In this example the value of
the communication cost is chosen as Cs→s = 2. Let the capability of the fictive
processing unit be Caps = 15. First the case k = P = 6 is considered. The
resulted adjacency half matrix is shown in Figure 14. The resulted best value
of the cost function is f = 419.

The segments contain the following nodes (with execution times Ti):

s1 = { 10 32 31 30 29 22 21 28 23 } T1 = 12
s2 = { 26 25 7 } T2 = 3
s3 = { 24 20 19 } T3 = 6
s4 = { 11 4 } T4 = 2
s5 = { 12 3 2 13 1 } T5 = 5
s6 = { 18 17 16 15 6 14 5 } T6 = 7

The result of the decomposition is depiceted as a directed graph in Figure 19.

Case 4

Now let k < P be also allowed. The cost function is modified by the +λk

term with λ = 90 as in Case 2. The adjacency half matrix of the result is
shown in Figure 15. The value obtained for the cost function is f = 773. In

31

s2 16
s3 64 16
s4 0 0 64

s1 s2 s3

Figure 15: The adjacency half matrix of the result of the decomposition in Case
4

order to compare this result with the value in Case 3, the cost function value
obtained in Case 4 should be modified by subtracting the extra λk term, i.e. it
is 773 − 90 · 3 = 503, that is greater than the result of Case 3. Thus, Case 3
provides a better solution, if the price gain of applying less processing units is
not considered (see later Figure 18).

The segments contain the following nodes:

s1 = { 10 32 31 30 29 22 21 28 23 26 25 7 } T1 = 15
s2 = { 24 } T2 = 1
s3 = { 20 19 11 4 12 3 2 13 1 18 17 16 } T3 = 15
s4 = { 15 6 14 5 } T4 = 4

The effect of the segment weighting factor λ

Most of the parameters in the decomposition algorithm (processing speed, com-
munication cost, etc.) are the properties of the processing units. However,
the role of parameter λ is to influence the algorithm by the user. There is no
straightforward way to determine a proper value for λ weighting the number of
segments during the decomposition, but some experimental considerations for
a justifiable choice are presented in the following. Let the value of λ be varied
from 1 to 196 with step size 5, thus λ = {1, 6, 11, . . . , 196} in Case 4. Since the
decomposition is based on a genetic algorithm with finite generations, the result
may be different at each run. Therefore, the further illustration is based on the
decomposition executed -for example- 18 times for each above value of λ. In
Figures 16 and 17 the mean of the resulted number of program segments (E{k})
and the mean of the cost function values (E{f}) are depicted. Based on these
figures, two trends can be observed by increasing the value of λ: the number of
segments is decreasing, and the value of the cost function is increasing.

The first trend is trivial, since the greater the value of λ is, the less number
of segments is favored in the decomposition. The second trend is also easy to
explain, because increasing λ leads to worse results regarding the original opti-
mality criteria components (execution times and communication costs). This is
also evident in a multicriteria optimization, since the introduction of the new
criterion weakens the effect of the other criteria.

Considering the above trends, the question can be formulated: how to find
a beneficial value of λ and how to consider the effect of k? The mutual effect of
these parameters can be observed by analyzing the results in Figure 18.

32

0 50 100 150 200
3

3.5

4

4.5

λ

E
{k

}

Results from 18 runs

Figure 16: The mean of the number of segments for different values of λ after
18 runs of the decomposition algorithm

0 50 100 150 200
300

400

500

600

700

800

900

1000

1100

1200

1300

λ

E
{f

}

Results from 18 runs

Figure 17: The mean of the cost function values for different value of λ after 18
runs of the decomposition algorithm

33

0 20 40 60 80 100 120 140 160 180 200
300

400

500

600

700

800

900

1000

1100

1200

1300

λ

 C

o
s
t
F

u
n

c
ti
o

n

 S
e

g
m

e
n

t
N

u
m

b
e

r
(×

 2
5

0
)

Results from 18 runs

min {250k}

min {f}

min {f−λ k}

Figure 18: The dashed line depicts the minimal values of the cost function
provided by the solutions for which the number of segments (dots) is minimal.
The solid line demonstrates the minimal values of the cost function decreased
by λk

In this figure, the minimal values of the cost functions (instead of the mean
as in Figure 16 and Figure 17) belonging to the minimal numbers of segments
at a certain value of λ are depicted. The dots indicate the number of segments
obtained from the decomposition algorithm, and their value is multiplied by a
factor of 250 for easy visualization together with the cost values. The trend of
the cost function values is quasi-linear with a significant change at that value
of λ, where the minimal number of segments changes as well (around λ = 40 in
Figure 18). Thus, a beneficial choice seems to be the smallest value of λ, where
the smallest value for the number of segments occurs, since this value may bring
the smallest distortion in the original cost function belonging to Cases 1 and 3.
However, the significant change in the cost function value should be taken into
consideration even in this case, too.

Generating the input for the HSL tool PIPE

The result of the segmentation algorithm in Cases 3 and 4 from the previous
section can serve as an input to any HLS tool after appropriate transformations.
In this section, the use of the HLS tool PIPE [1] is demonstrated.

The PIPE operates on the so called Elementary Operation Graphs (EOGs)
that have some special attributes. A node of the EOG can have at most two

34

inputs and one output. Other properties of EOG elements can be found in [1].
In order to feed the result of the decomposition to the tool PIPE, the resulted
graph of segments must be transformed into an EOG. It is obvious from the
examples in the previous section that the segments resulted after decomposition
may have any number of inputs and outputs, thus the graph of segments need
to be transformed to another graph that is consisted of nodes with at most two
inputs and one output. This implies that a procedure should be formulated to
reduce the number of outputs and inputs of the segment graph elements. This is
done by introducing a special node type called Data Uniting Node (DUN), that
will be considered as an extra EOG node with execution time 1, and that has
two inputs and one output. The function of the DUN is the following: given
two inputs a and b, with number of data bits ba and bb, the output c is the
concatenation c = [a, b] and has number of data bits bc = ba + bb. This means
that the two different data link are united for handling as one data link. Thus
the data link reduction can be performed easily by inserting DUNs into the
proper places of the segment graph. Let the resulted segment graph in Case 3
in Figure 19 be considered. Each node of the graph is a segment, and the first
row of the node label is the segment name, the second row is the list of allocated
SHSDG nodes, and the third row is the excecution time of the segment. This
graph cannot be mapped directly into an EOG. The problems are:

1. Segment 5 has 2 outputs

2. Segment 3 has 3 inputs

3. Segment 3 has 2 outputs

4. Segment 1 has 3 inputs

The solution of the problem caused by more than two inputs can be easily solved
by inserting extra DUN nodes into the graph. However, if there are multiple
outputs, the DUN unit has to be inserted (and implemented) inside the segment.
Thus, the listed problems are solved in Figure 20 as:

1. DUN5 is inserted into segment 5 to unite the two outputs of segment 5
into one output

2. DUN45 is inserted to unite the output of segment 4 and DUN5. Thus,
segment 3 has two inputs, one of them is the output of DUN45, and the
other is the output of segment 6.

3. DUN3 is inserted into segment 3 to unite the two outputs of segment 3.

4. DUN23 is inserted to unite the output of segment 2 and DUN3. Thus,
segment 1 has two inputs, one is the output of DUN5, and one is the
output of DUN23.

These formal transformations can always be performed on any segment graph
resulted by the decomposition method outlined in this paper. Thus, a formal

35

��

���������������
�� ���

	
��
��
��

��

������������������������������
��

�� ����

��

��

����������
�� ���

���

���
����

��

�����
�� ���

������

��

��

������������������������
�� ���

�������

���

�
 ����

��

���������
�� ���

�
������

��

������

��

��

Figure 19: The segmentation result in Case 3 with P = 6

36

��

�����
�� ���

�	

��

�����

�
�� ���

��

��

������������������������
�� ���

���
���

��

���������������
�� �����

���

���
���

�	

���������
�� ���

�
�����

���	�

�
�� ���

��

�

������������������������������
��

�� ����

�	

��

��

��

��

��������������������
�� �����

���

���

������ ���
	����!�

���

���

Figure 20: The transformed graph serving as input to the HLS tool PIPE

37

EOG can always be obtained and it can serve as the input of the HLS tool
PIPE. For the further analysis, PIPE provides a simple measure of complexity
as a function of the desired restart time Rd. The complexity (cx) is calculated
as follows:

cx =

n
∑

i=1

piti,

where pi denotes the processing units in the structure generated by PIPE (seg-
ments, copies of manifold implemented segments, inserted buffers and synchro-
nizing shift registers). DUN units are not considered, because their influence on
complexity does not depend on Rd. The execution time of pi is denoted by ti
and n is the number of processing units.

In Figure 21, this complexity function resulted by the EOG of Figure 20 is
shown for each Rd between 1 and 19. It can be observed that three beneficial
Rd values occur in this case: 4, 8 and 12. Namely, these Rd-s are the shortest at
certain complexity domains. By starting the extended version of PIPE [1] with
each of these beneficial Rd values, the task-dependent multiprocessing (TDMP)
structures are generated communicating on time-shared arbitration-free bus sys-
tems as illustrated in Figures 22, 23 and 24, respectively. The horizontal lines
symbolize the buses numbered with #. Cirles labeled by S or D represent the
segments and DUN units, respectively. Rectangles labeled by bff or sbff sym-
bolize the inserted buffers and the synchronizing shift registers, respectively. In
sbff symbols, the number after the character _ indicates the number of bits
of the synchronizing shift register. Circles enclosed by dotted rectangles are
the simplified representations of manifold implemented segments. The number
of copies [1] are depicted after x. The polygon symbols stand for inputs and
outputs.

Nevertheless, these Rd values could be applicable only if the communica-
tion times are neglectable compared with the execution times of the processing
units, or if the processing units can transfer input-output data directly via the
arbitration-free buses. If it is not the case, then the communication times rep-
resent formally the execution times of fictive extra nodes between the segments.
This may affect the applicability of Rd and the synchronisation. In this case,
the shortest possible restart time (Rp) and the updated synchronisation should
be recalculated by PIPE.

As a second example a basically serial program has been analyzed. The
task-describing program is based on the block diagram of an image processing
algorithm used for evaluating mammographic images [45]. Because of the rather
big size of the program and the large amount of data, the SDG has been gener-
ated only from a reduced characteristic version of the program. The SHSDG of
the 1st hierarchy level is shown in Figure 25. Each node represents a separable
function in the code. The upper numbers in the nodes are the identifiers and the
lower numbers represent the executiton times as the necessary number of clock
periods for execution. The decomposition has been done on SHSDG of the 2nd

hierarchy level, i.e. all separable nodes of Figure 25 have been separated. To
save space, this large and complicated SHSDG is not depicted, only the result

38

0 5 10 15 20
0

50

100

150

200

250

300

350

400

Restart time (R)

C
o

m
p

le
x
it
y
 (

C
x
)

Complexity function

115

63

39

Figure 21: The complexity as a function of the desired restart time Rd for the
EOG in Figure 20

S5bff1

in5

in6

S4bff2in4
D45

S6 bff3

in3

sbff1_13

S3 D23

bff4

S1 out

S2

in1

in2

sbff2_3

#1

#2

#3

#4

Figure 22: The TDMP structure obtained for the EOG in Figure 20, if Rd = 12

39

S5

in5

in6

S4bff1in4

D45

S6 bff2

in3

S3

bff4 D23

bff5

S2

bff3

in2

in1

S1 outsbff2_15

sbff2_13

x2

#1

#2

#3

#4

#5

#6

Figure 23: The TDMP structure obtained for the EOG in Figure 20, if Rd = 8

in5 D23

bff9

S1 out

bff1

in6

in2

in3 bff2

in4 bff3 S4

S5

bff4

S6 bff5

D45 bff6

S3

bff7

S2

bff8

in6

sbff1_2

sbff2_2

sbff3_3

sbff4_17

sbff3_5

x3

x2

x2

x2

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Figure 24: The TDMP structure obtained for the EOG in Figure 20, if Rd = 4

40

of the decomposition is illustrated in Figure 26. This result has been obtained
for P = 6 in Case 4 (k < P also allowed). For providing only the segmen-
tation (not assigning the segments to processing units yet), the decomposition
algorithm handles formally fictive processing units of identical type as shown in
Cases 2 and 4. The segmentation resulted in Figure 26 has been obtained by
assuming that the fictive processing units have a processing speed of Gs = 1,
communication cost of Cs = 2, and capability as Caps = 60.

The decomposition resulted in 5 segments. The execution times of the seg-
ments are:

T1 = 48 T2 = 44 T3 = 19 T4 = 47 T5 = 45

The execution times are distributed almost evenly, except for s3. The adjacency
half matrix is in Figure 27. The number of bits to be transferred is beneficially
low at almost all cuts.

In Figure 28, the EOG is shown by inserting the necessary DUN units for
PIPE.

The complexity function provided by PIPE is illustrated in Figure 29. In
this case, Rd = 10 can be considered as a beneficial desired restart time. For
this value, PIPE provided the arbitration-free bus system shown in Figure 30.

For the applicability of Rd = 10 and for calculating an Rp value, the same
analysis of the communication properties is necessary as it was outlined in the
first example.

The decomposition has been executed also with assignment to processing
units in Case 2 for P = 12 (k < P also allowed). Four types of processing units
have been assumed: two software types and two hardware types. The available
set of processing units has been assumed to consist of four units of each type.
The following properties of the processing units have been assumed:

• The processing speed of software type 1 is Gs1 = 1

• The processing speed of software type 2 is Gs2 = 2

• The processing speed of hardware type 1 is Gh1
= 8

• The processing speed of hardware type 2 is Gh2
= 10

• The communication cost between software type 1 and software types 1
and 2 is Cs1→s1 = Cs1→s2 = 10

• The communication cost between software type 1 and hardware types 1
and 2 is Cs1→h1

= Cs1→h2
= 8

• The communication cost between software type 2 and software type 2 is
Cs2→s2 = 8

• The communication cost between software type 2 and hardware types 1
and 2 is Cs2→h1

= Cs2→h2
= 6

41

��
��

������� ������� ������	 ������

��
��

������� ������� ������

�������

	�
��

������� �������� ����������������

�
��

�������	 �������
 ����������������

��
	

��
	

�
	

��
	

��
�	

���
��

���
��

���
��

�����

�	�
��

������

�
�
��

���
��

���

�� ���

�
�
��

���
�

������������

���
��

���
�

��

Figure 25: The SHSDG on the 1st hierarchy level

42

��

�� ����

���	
���
��

��

�� ����

���

��

�� ����

����

��

�� ����

�� ������

��

�� ����

��

�� ��� ��

������ �����

��

Figure 26: The result of the decomposition on the 2nd hierarchy level in Case 4
with P = 6

43

s2 32
s3 0 32
s4 0 0 32
s5 0 0 0 128

s1 s2 s3 s4

Figure 27: The adjacency half matrix of the decomposition shown in Figure 26

• The communication cost between hardware types is Ch1→h1
= Ch1→h2

=
Ch2→h2

= 2

• The capability of each processing unit is Caps1 = Caps2 = Caph1
=

Caph2
= 40

The decomposition algorithm has resulted in eight segments as shown in Figure
31. The label of the nodes consists of two rows. In the first row H1 stands
for hardware type 1, H2 for hardware type 2, S2 for software type 2 processing
units. The number in the brackets is the index of the segment implemented
by the processing unit (i.e segments 1, 3 and 4 are assigned to software type 2
processing units, segments 5 and 6 are assigned to hardware type 1 processing
units, and segments 2, 7 and 8 are assigned to hardware type 2 processing units).
The second row of the labels refers to the relative execution time of the segment
divided by the processing speed of the assigned processing unit.

The resulted execution times obtained for the segments by assigning them
to processing units are:

T1 = 8 T2 = 4 T3 = 13 T4 = 10 T5 = 1.375 T6 = 2 T7 = 3.4 T8 = 4

As it is mentioned in Section 1, such decomposed structures assigned to pro-
cessing units can be considered also as TDMP structures. In most cases, the
pipeline function is also applicable, but the shortest value of Rp is predeter-
mined by the set of processing units and by the communication time between
them. Namely, the assignment of the segments to the processing units gen-
erates already a fixed target system without proper flexibility for scheduling
and allocation by applying a HLS tool. However, the predetermined shortest
value of Rp can be calculated by a HLS tool. For example, the HLS tool PIPE
would provide the value of Rp for the structure in Figure 31 by the following
calculation, if the synchronizing was solved and the properties of the nodes were
satisfying the conditions of the EOG [1]. If the communication time between
the processing units is assumed not to be longer than 10 clock period, then the
maximal busy time (Qmax) is represented by the node S2(3) in the graph [1]:

Qmax =
26

2
+ 10 = 23.

Thus, the shortest Rp = Qmax + 1 = 24 [1].

44

��

�� ����

���	
���
��

��

�� ����

���

��

�� ����

����

��

�� ����

�� ������

�� ��	
��
�� ��������

��

	
���
���� ���

������ ������

�	
�	
�

��

Figure 28: The EOG generated from the graph shown in Figure 26

45

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Complexity function

Restart time (R)

C
o

m
p

le
x
it
y
 (

C
x
)

1161

Figure 29: The complexity as a function of the desired restart time Rd for the
EOG in Figure 28

S3

inputs 1-16

thres

bff3

sbff1_95

S2

bff4

S1

bff5

bff7

S4bff2S5bff1

sigmaG

out

#1

#2

#3

#4

#5

#6

x5

x5

x5

x2

x5sbff2_115

bff6 DUNi1

sigmax

sigmay

Figure 30: The TDMP structure obtained for the EOG in Figure 28, if Rd = 10

46

�����
�� �������

	
��
������

�����
�� �������

���

�����
�� ������

����

�����
�� �������

��
���	�

�� ������

��

�	����

�	����

���
�
�� ������

���

�	����

�� ��� �

��

�
���
�! ������

��

�
���
�� ������

��

���

��

Figure 31: The result of the decomposition on the 2nd hierarchy level in Case 2
with P = 12

47

s2 160
s3 0 64
s4 0 32 32
s5 0 0 0 32
s6 0 0 0 0 32
s7 128 0 0 0 0 32
s8 0 0 0 0 0 0 128

s1 s2 s3 s4 s5 s6 s7

Figure 32: The adjacency half matrix of the decomposition shown in Figure 31

7 Conclusions and further research

The framework presented in this paper for synthetizing a specific (task-dependent)
multiprocessing structure demonstrates that the pipeline function can be real-
ized as a special parallel processing even if there is no efficiently exploitable
parallelism in the task description. Due to its modular structure, the synthesis
method presented in this paper offers an easy way to replace the decomposition
algorithm and the HLS tool by other ones focusing on the actual properties and
requirements of the target system. The problems solved as examples illustrate
the framework character of the method by emphasizing the special consequences
of the applied algorithms and tools. In the present stage, the method may be a
starting point for further developement to adopt it to specific requirements of
various practical applications. In this sense, some aims of further research are
as follow:

• Testing and evaluating the efficiency of various algorithms by considering
typical properties of target systems (e.g. mode of communication between
the processing units, applying IPs or special-purpose processing units).

• Analysing the effect of various more sophisticated weight-assingments and
of more accurate estimation of segment’s execution times (regarding par-
allel or alternative nodes and loops) during the CM mapping and the
decomposition algorithm.

• Developing a loop handling strategy for more realistic module definitions
and execution time estimation by analysing the various loop types (e.g.
cycles, recursions, single- and multirun executions, multirate structures
etc.)

• Redesigning some existing multiprocessor or multicore systems by apply-
ing the method presented in this paper for comparison as benchmarks.

• Testing and evaluating the efficiency of the method, if the task-describing
program is not a basically serial one, but it contains significant parallelism.

• Analysing the effect of forming the SHSDG on lower (or even mixed)
hierarchy levels.

48

• Testing and evaluating the efficiency of applying a functional language for
the task description.

Acknowledgements

The research work presented in this paper has been supported by the Hungarian
Scientific Research Fund OTKA 72611 and by the "Research University Project"
TAMOP IKT T5 P3.

References

[1] P. Arató, T. Visegrády, and I. Jankovits. High-level Synthesis of Pipelined
Datapaths. John Wiley & Sons, 2001.

[2] Ahmed A. Jerraya and Wayne Wolf. Multiprocessor Systems-on Chip. Sys-
tems on Silicon. Morgan Kaufmann Publishers (Elsevier), 2005.

[3] Jiang Xu, Wayne Wolf, Joerg Henkel, and Srimat Chakradhar. A design
methodology for application-specific networks-on-chip. ACM Transactions
on Embedded Computing Systems (TECS), 5(2):263–280, May 2006.

[4] Damien Lyonnard, Sungjoo Yoo, Amer Baghdadi, and Ahmed A. Jer-
raya. Automatic generation of application-specific architectures for hetero-
geneous multiprocessor system-on-chip. In Proceedings of the 38th annual
Design Automation Conference, pages 518–523, 2001.

[5] David W. Binkley and Keith Brian Gallagher. Program slicing. In Mar-
vin V. Zelkowitz, editor, Advances in Computers, volume 43, pages 1 – 50.
Elsevier, 1996.

[6] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121–189, 1995.

[7] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen.
A brief survey of program slicing. SIGSOFT Software Engineering Notes,
30(2):1–36, March 2005.

[8] Omid Bushehrian. Automatic actor-based program partitioning. Journal
of Zhejiang University SCIENCE C, 11(1):45–55, 2010.

[9] J. C. Huang. State constraints and pathwise decomposition of programs.
IEEE Transactions on Software Engineering, 16(8):880–896, 1990.

[10] Daniel W. Watson, John K. Antonio, H. J. Siegel, and Mikhail J. Atal-
lah. Static program decomposition among machines in an SIMD/SPMD
heterogeneous environment with non-constant mode switching costs. In
Proceedings of the Heterogeneous Computing Workshop, pages 58–65, 1994.

49

[11] Junwei Hou and Wayne Wolf. Process partitioning for distributed em-
bedded systems. In Proceedings of the 4th International Workshop on
Hardware/Software Co-Design, CODES ’96, pages 70–76, Washington, DC,
USA, 1996. IEEE Computer Society.

[12] Peter Voigt Knudsen and Jan Madsen. Pace: A dynamic programming al-
gorithm for hardware/software partitioning. In Proceedings of the 4th Inter-
national Workshop on Hardware/Software Co-Design, CODES ’96, pages
85–92, Washington, DC, USA, 1996. IEEE Computer Society.

[13] Shunsuke Sasaki, Tasuku Nishihara, Daisuke Ando, and Masahiro Fujita.
Hardware/software co-design and verification methodology from system
level based on system dependence graph. Journal of Universal Computer
Science, 13(13):1972–2001, 2007.

[14] Péter Arató, Zoltán Ádám Mann, and András Orbán. Algorithmic aspects
of hardware/software partitioning. ACM Transactions on Design Automa-
tion Electronic Systems, 10(1):136–156, January 2005.

[15] W. Wolf. A decade of hardware/software codesign. Computer, 36(4):38 –
43, April 2003.

[16] Péter Arató, Sándor Juhász, Zoltán Ádám Mann, and András Orbán. Hard-
ware/software partitioning in embedded system design. In Proceedings of
the IEEE International Symposium on Intelligent Signal Processing, pages
197–202, 2003.

[17] M.B. Abdelhalim, A.E. Salama, and S.E.D. Habib. Hardware software
partitioning using particle swarm optimization technique. In Proceedings
of the 6th International Workshop on System-on-Chip for Real-Time Ap-
plications, pages 189 –194, December 2006.

[18] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence
graph in a software development environment. SIGPLAN Not., 19:177–
184, April 1984.

[19] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3):319–349, July 1987.

[20] K. Tanabe, S. Sasaki, and M. Fujita. Program slicing for system level de-
signs in specc. In Proceedings of the International Conference on Advances
in Computer Science and Technology, pages 252–258, 2004.

[21] Henry Hoffmann, Anantl Agarwal, and Srinivas Devadas. Partitioning
strategies: Spatiotemporal patterns of program decomposition. In Proceed-
ings of the 21st IASTED International Conference on Parallel and Dis-
tributed Computing and Systems. International Association of Science and
Technology for Development, November 2009.

50

[22] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Min-cut
program decomposition for thread-level speculation. In Proceedings of the
ACM SIGPLAN 2004 conference on Programming language design and im-
plementation, PLDI ’04, pages 59–70, New York, NY, USA, 2004. ACM.

[23] Stanislaw Deniziak. Cost-efficient synthesis of multiprocessor heteroge-
neous systems. Control and Cybernetics, 33(2):341–355, 2004.

[24] R. Subramanian and S. Pande. Efficient program partitioning based on
compiler controlled communication. In Proceedings of the Fourth Interna-
tional Workshop on High Level Parallel Programming Models and Support-
ive Environments (in conjunction with IPPS 1999). Springer-Verlag, April
1999.

[25] Simon A. Spacey, Wolfram Wiesemann, and Wayne Luk Daniel Kuhn. Ro-
bust software partitioning with multiple instantiation. INFORMS Journal
on Computing, July 2011.

[26] Zoltán Ádám Mann, András Orbán, and Péter Arató. Finding opti-
mal hardware/software partitions. Formal Methods in System Design,
31(3):241–263, December 2007.

[27] Péter Arató, Zoltán Ádám Mann, and András Orbán. Extending
component-based design with hardware components. Science of Computer
Programming, 56(1 - 2):23 – 39, 2005.

[28] Péter Arató, Zoltán Ádám Mann, and András Orbán. Time-constrained
scheduling of large pipelined datapaths. Journal of Systems Architecture,
51(12):665–687, December 2005.

[29] Jason Merrill. GENERIC and GIMPLE: A New Tree Representation for
Entire Functions. In Proceedings of the 2003 GCC Summit. Red Hat, Inc.,
2003.

[30] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

[31] R. M. Stallman and GCC Developer Community. Gnu compiler collection
internals. for gcc version 4.8.0., 2010.

[32] L. Séméria and G. De Micheli. Spc: synthesis of pointers in c application
of pointer analysis to the behavioral synthesis from c. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 1998.
ICCAD 98. Digest of Technical Papers., pages 340 – 346, nov 1998.

[33] Luc Séméria, Koichi Sato, and Giovanni De Micheli. Synthesis of hardware
models in c with pointers and complex data structures. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems - System Level Design,
9(6):743–756, December 2001.

51

[34] Jianwen Zhu and Silvian Calman. Context sensitive symbolic pointer anal-
ysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24(4):516–531, 2005.

[35] Hyeyoung Hwang, Taewook Oh, Hyunuk Jung, and Soonhoi Ha. Conver-
sion of reference c code to dataflow model h.264 encoder case study. In
Proceedings of the Asia and South Pacific Conference on Design Automa-
tion, 2006., pages 152–157, January 2006.

[36] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, USA, 2010.

[37] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the mini-
mum cut in a graph. In Proceedings of the third annual ACM-SIAM sympo-
sium on Discrete algorithms, SODA ’92, pages 165–174, Philadelphia, PA,
USA, 1992. Society for Industrial and Applied Mathematics.

[38] David R. Karger and Clifford Stein. An o(n2) algorithm for minimum cuts.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, STOC ’93, pages 757–765, New York, NY, USA, 1993. ACM.

[39] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity
in multigraphs and capacitated graphs. SIAM Journal on Discrete Math-
ematics, 5(1):54–66, February 1992.

[40] Mouloud Koudil, Karima Benatchba, Said Gharout, and Nacer Hamani.
Solving partitioning problem in codesign with ant colonies. In Proceedings
of the International Work-Conference on the Interplay Between Natural and
Artificial Computation - IWINAC (2)’05, pages 324–337, 2005.

[41] Madhura Purnaprajna, Marek Reformat, and Witold Pedrycz. Genetic
algorithms for hardware-software partitioning and optimal resource alloca-
tion. Journal of Systems Architecture, 53(7):339–354, July 2007.

[42] Martin Palkovic. Enhanced Applicability of Loop Transformations. PhD
thesis, T.U.Eindhoven, 2007.

[43] Harald Devos. Loop Transformations for the Optimized Generation of Re-
configurable Hardware. PhD thesis, Ghent University, 2008.

[44] Martin Griebl and Christian Lengauer. On the space-time mapping of
while-loops. In Parallel Processing Letters, pages 677–688. Springer-Verlag,
1994.

[45] Yufeng Zheng. Breast cancer detection with gabor features from digital
mammograms. Algorithms, 3:44–62, 2010.

52

6

Communication Time Estimation in High Level Synthesis
György Pilászy, György Rácz, Péter Arató

Department of Control Engineering and Information Technology

BME, H-1117, Magyar tudósok krt 2., Building I

Abstract
The high level synthesis (HLS) tools may result in a multiprocessing structure, where the

time demand of the interchip data transfer (briefly the communication) between the

processing units (hardware or software) is determined exactly only after the task-allocation.

However, a realistic preliminary estimation of the communication time would help to shape

the scheduling and the allocation procedures just for attempting to minimize the

communication times in the final structure. Compared to the task-execution times of the

processing units, especially significant communication times are required by the serial

communication interfaces which are frequently used in microcontroller systems. This paper

presents an estimation method by analysing four well-known serial communication interfaces

(SPI, CAN, I
2
C, UART).

Keywords:

communication time estimation, HLS, CAD, microcontroller, multiprocessing,

embedded systems, serial communication interfaces

1. Introduction

In high-level design, the task-specification
can be transformed into some kind of data
flow graphs. Various HLS (High Level
Synthesis) algorithms and tools are
available for optimizing the schedule and
allocation of the graph. [3, 7, 9]. The HLS
framework presented in [7] for
synthesizing a specific (task-dependent)
multiprocessing structure demonstrates that
how important is a realistic preliminary
communication time estimation already in
the decomposition phase. The HLS tools
are rarely dealing with the communication
between the nodes of the data flow graph;
it is generally considered with zero-time
execution. This solution is appropriate
within an intra-FPGA (Field
Programmable Gate Array)
communication, but in case of more than
one IP (Intellectual Property Unit or
Intelligent Processor) it is not always
applicable. In IPs containing
microcontrollers or microprocessors,
generally integrated communication
peripherals are applied. Compared to the
task-execution times of the processing
units, especially significant communication

times are required by the serial
communication interfaces which are
frequently used in microcontroller systems.
If the task-specification allows, each
communication channel (line) can be
represented by an extra node with an
estimated or determined execution time
representing the communication time.
A realistic preliminary estimation of the
communication time would help to
influence the scheduling and the allocation
procedures in order to reduce the
communication complexity between the
processing units in the final structure.

Further on, we present an estimation
method by analyzing four well-known
serial communication interfaces (SPI,
CAN, I2C, UART).

 2. Calculating the communication

time

Various types of serial channels are often
used, because of the small number of pins
and other resource constraints. In the
following sections, we examine the frame
structures of four frequently integrated
serial communication interfaces.

2.1. Analysis of the Serial Peripheral

Interface (SPI)
The SPI implements master-slave type
synchronous communication. It uses three
signals: clock (CLK), serial data input
(SDI) and serial data output (SDO) for data
transmission between the master and slave
unit. A fourth signal called slave select

(SS) is used for the selection of the slave
unit.

CLK

SDO D7 D0

Data transmission

SDI D7 D0

SS

Tbit

Figure 1. SPI data transmission

If more slaves are used, then each slave has
a separate selection line, but in some cases,
the slave units can be chained as well. The
communication is bidirectional. In each
clock period, one bit is transmitted. The
integrated peripherals of the
microcontrollers are usually configurable,
the sampling points (clock polarity) and
the clock phase can be set. In Figure 1, the
SDO output is valid at the rising edge,
while the SDI input is sampled at the
falling edge of the CLK. The smallest unit
of the transmitted data is eight bits. There
are no restrictions on the maximum
number of transmitted data.

Estimation of the SPI transmission time

The SPI is fit for the creation of a point-

to-point link, it is established for the case
when the timing of the data is exactly
known (this is provided by the scheduling
phase of an HLS tool). Then the data
transmission time (Tk) of n bits can be
calculated as follows:
 SSbitk TTbT +⋅= (1)
where b is the number of bits to be
transmitted, the Tbit is the clock period and
the TSS is the sum of the
selection/deselection (enable and disable)

time. Since the enable and disable events
are often scheduled by the clock signal, so
we can use the following simplified
estimation:
 bitSS TT ≅ (2)

Based on (1) and (2) the SPI
communication time can be estimated by
the following formula:

bitk TbT ⋅+=)1((3)

In case of transmitting N number of bytes,
the communication time is the following:
 bitk TNT ⋅+⋅=)18((4)

2.2. Analysis of the I2C interface

The Inter-IC bus was developed in
1992, its application is still widespread in
the microcontrollers [8]. For the
communication, the I2C bus uses a clock
(SCL) and a data signal (SDA) line.

The bus can be a multi-master bus, and
of course several slave units can be
connected. The communication is framed
with well-defined START and STOP
conditions. The transmission of a 7 or 10-
bits address follows the START condition.
The address is followed by the read/write
control bit and the actual data transfer.
Figure 2 shows the structure of such a
frame [4].

SCL

SDA

S

A6 A0 R/W=0 ACK

D7 D0 ACK

P

Addressing

Data transmission

Figure 2. I2C data transmission with 7 bit

addressing

Estimation of the I2C transmission time
Assuming that we fix the time of the

START and STOP bits as one bit period
each, we can state concerning the number
of the bits to be transmitted the following:

 7bit address 10bit address
framing 2 bit 2 bit
address 9 bit 9 + 9 bit
databits N⋅9 N⋅9
Total transmitted
bits

11+ N⋅9 20+ N⋅9

Table 1.

N means the number of bytes in the
message.

Typical I2C bus speeds [4] are shown in
Table 2a.
Speed mode Max. bitrate

[kbit/s]
Bit time (Tbit)
[µs]

Normal 100 10
Fast 400 2.5
Fast + 1000 1
High speed 3400* 0.29
Ultra high
speed

5000* 0.2

Table 2a. Typical I
2
C speeds and bit times

Note:
* The "high speed" modes require special
handling [4].

Interface Tk

I2C-7 bits address
bitTN ⋅+⋅)119(

I2C-10 bits address
bitTN ⋅+⋅)209(

Table 2b. Estimated communication times of the

I
2
C bus

Note:
These data are valid only for write
operation.

Table 2b shows the estimated

communication times of the I2C bus.
Assuming 100 kHz clock frequency and
normal 1-8 data bytes, the message
transmission periods is shown in the Table
3.
Databytes (N) 7 bit address 10 bit address

1 200µs 290µs
2 290µs 380µs
3 380µs 470µs
4 470µs 560µs
5 560µs 650µs
6 650µs 740µs
7 740µs 830µs
8 830µs 920µs

Table 3.

2.3. Analysis of the UART interface

The UART (Universal Asynchronous
Receiver Transmitter) interface makes
possible the serial transmission of data bits
with asynchronous framing. The
transmitted data are linked to a start bit
and, in general 1, 1.5 or 2 stop bits as well
[10]. Optionally, a parity bit (even or odd)
can be transmitted, too. The UART output
circuits are usually connected to a line
driver through the transmission medium.
Depending on the driver circuit, the wiring
and the higher level protocol, point-to-
point or point-to-multipoint networks can
be formed. The direction of the
communication can be full duplex, half
duplex or simplex.

TXD
S

ta
rt

S
to

p

Data transmission

D0

D1

…

D5

D6

D7 P

a
r.

Figure 3. UART data transmission

Estimation of the UART transmission

time

The communication time can not be
separated from the number of additional
bits, so the following formula can be used:

 bitk TspbT ⋅+++=)1((5)
Where b is the number of data bits to be
forwarded (5..8),
p is number of parity bits to be forwarded
(0 or 1),
s is number of stop bits to be forwarded (1,
1.5 or 2)
Tbit: forwarding time of one bit
If N bytes are transmitted, the
communication time is as follows:

 bitk TspNT ⋅+++⋅=)81((6)
 If the least possible amount of additional
bits is used (no parity bits, 1 stop bit), then
the communication time is:

 bitk TNT ⋅⋅= 10 (7)

2.4. Analysis of the CAN interface

The CAN (Control Area Network) is a
serial communication protocol which
supports the real-time distributed control,
at up to 1 Mbit/s speed. There are two
types of CAN protocols: CAN V2.0A
(standard format) which uses 11 bits, and
the CAN V2.0B (extended format) which
uses 11+18 = 29-bits as identifier in the
transmission of messages. The devices,
which can use the extended format, are
able to communicate in the standard mode
too. Thus, the different devices can work
together, but only in the standard mode.

The structure of CAN messages are
carefully detailed in [1] and [2].

Figure 4 shows the structure of the CAN
data frame. At the three interfaces
described above, the length of the message
did not depend on the content. Because of
the so called bitstuffing applied in the
CAN system we can give only a worst case
estimation for the communication time.
We must estimate also the maximum bit
number of the longest CAN message.

Calculation of the maximum CAN

message size
The length of the CAN message can

vary depending on the transmitted data and
the stuffed bits. The method of the
bitstuffing is as follows: if the transmitter
detects five consecutive bits of identical
value in the bit stream to be transmitted it
automatically inserts a bit of opposite
value in the actual bit stream before the
transmission [2]. The frame segments, start
of frame, arbitration field, control field,
data field and CRC sequence are coded by
the method of bit stuffing [2].

To estimate the maximum number of
the inserted bits, ignore the fixed control
bit values (eg.: IDE, RB0, RB1, etc). The
frame starts with a zero SOF bit, so we
start also the sample sequence identifier
with 0 bits. After five 0 bits (including the
SOF), a 1-bit value will be inserted.
Afterwards, the test series continues with 4
additional 1-bits, then again a 0 bit, and so
on. Figure 5 shows the first 16 bits of the
test sequence.
Of the above test series can be seen that for
the transmission of 16 bits 4 stuffed bits
were needed. The "#" character marked the
inserted bits.

 S
O

F Arbitration

Bitstuffing

Bus frame

 D
E

L

 A
C

K

1 No of bits 12, 32 6

CTRL Data

0-64

CRC

15

EOF

1 1 1 7

 D
E

L

IFS

≥ 3

 S
O

F ID CAN V2.0A

1 No of bits 11 1

DLC

 R
T

R

 I
D

E

 R
B

0

1 1 4

 Adatok

arbitration CTRL

 S
O

F ID[28..18] CAN V2.0B

1 No of bits 11 1

DLC

 S
R

R

 I
D

E

 R
B

1

1 18 4

 Adatok

arbitration CTRL

ID[17..0]

 R
T

R

 R
B

0

1 1 1

DLC Data Length Code
CRC Cyclic Redundancy Code
RTR Remote Transmission Request
SRR Substitute Remote Request
IFS Inter Frame Spacing

IDE Identifier Extension

SOF Start of Frame
DEL Delimiter
ACK Acknowledge
EOF End of Frame
ID Identifier
RB0/1 Reserved bits

Figure 4. Structure of CAN dataframes [1], [2]

SO
F

Original data flow

CAN dataflow with stuffed bits

1 2 3 4 5 1 2 3 4

5 1 2 3 4 5 1 2 3 4 5

1

S
O

F

Figure 5. Bitsuffing

The maximum number of stuffed bits

(s) can be estimated by dividing the bit
number of the message bits by 4, and then
the result is rounded up.

��

�
��

� +
=�

�

�
�
�

�
=

44

 AMFMdatabitsofNo
s (8)

FM: bit number of fix fields
AM: bit number of variable data field
AM = 8⋅N, where N is the number of data
bytes.
According to the above considerations, the
total number of bits in the frame (db) is as
follows:
 EsAMFMdb +++= (9)
E: number of non stuffed bits after the
CRC at the end of the frame E � 13.

Taking into account the bit number of the
fields (in the fix header and the variable
lengths of data and the empty space (13
bits) at the end of frame and the stuffed
bits), the following maximum number of
bits can be calculated:

 CAN2.0A CAN2.0B
Fix fields 34 bits 54 bits
N [byte] Total length [bit]

1 53+13 78+13
2 63+13 88+13
3 73+13 98+13
4 83+13 108+13
5 93+13 118+13
6 103+13 128+13
7 113+13 138+13
8 123+13 148+13

Table 4. Maximal bit number of CAN messages

Transmission time estimation of the

CAN interface

The maximum transmission time can be
estimated, if we know the bit-time of the
CAN interface. For this kind of estimation,
the previously calculated message length is
multiplied by the transmission time of one
bit. Reordering the equation (9):

��

�
��

�
+++��

�
��

�
+=

44

AM
AME

FM
FMdb (10)

As AM field size can be 0…8 bytes, the
inserted bits can be maximum 2 of each
byte. When N is the number of data bytes,
the total bit number of the data field is:

 10)28(
4

⋅=+⋅=��

�
��

�
+ NN

AM
AM (11)

For example: at 100kbit/s data transfer rate
from Table 4 is shown in Table 5.

Message size
[byte]

CAN2.0A CAN2.0B

1 660µs 910µs
2 760µs 1010µs
3 860µs 1110µs
4 960µs 1210µs
5 1060µs 1310µs
6 1160µs 1410µs
7 1260µs 1510µs
8 1360µs 1610µs

Table 5. Maximal CAN transmission time

By using the closed forms, the results

presented above are summed up in Table 6.

CAN Maximal

number of

bits

Maximal

transmission time

(Tk)

2.0A 1056 ⋅+ N
bitTN ⋅⋅+)1056(

2.0B 1081 ⋅+ N
bitTN ⋅⋅+)1081(

Table 6. Length estimation of CAN messages

N denotes the number of data bytes (N:
0…8), and Tbit is the bit time

Notes:
1. If it is expected that the message will

be repeated, then the above times must
be multiplied by the number of
repetitions. In error-free channels there
is no need for repeating messages.

2. The model can be further refined if we
consider the effect of fixed value bits.

3. Using the results in HLS design
systems

The HLS tools usually represent the task to
be solved by forming a data flow graph
(DFG). The Figure 6 shows a simple
example, how to represent the
communication channel (e3) between the e1
and e2 elementary operations. In Figure 6,
t1 and t2 represent the duration of the
operation e1 and e2.

Figure 6. DFG representation

The execution time of the e3
communication operation is tk. However,
the communication time (Tk) presented in
the previous chapters depends on the bit
rate, so we have to transform it into the
timing system used by the particular HLS
tool. The communication time is
characterized by the Tbit and Tk. In the
HLS tools the time is generally modelled

by the number of the clock periods. The
two time domains should be scaled as
follows:

 T

T
t k

k =
 (12)

where T denotes the length of the clock
period and tk is Tk expressed by the
number of clock periods.
As an example for the practical usage of
this method, we have chosen a sound
source localisation structure from the
reference [6]. Let a CAN communication
network be assumed between the
microcontrollers. In order to optimize the
graph structure, we used the HLS tool
PIPE [3]. The Elementary Operation Graph
(EOG) of the task is shown in Figure 7.a.
By applying the tool PIPE for scheduling
and allocation, the allocated DFG is
illustrated in Figure 7.b.
The execution times of the operations are
assumed as shown in Table 7.

Processor Operation ti pieces
P1 FFT 23 4
P2 SC 1 5
Pk CAN 3 4

P4 HT 25 1
Table 7. The input parameters

In the example, it has been assumed that a
restart time (initialisation period) R=50
clock period ensures the desired pipeline
throughput. To fulfil this requirement, the
necessary numbers of operations are
summarized in Table 8.

Processor Operation ti pieces
P1 FFT 23 2
P2 SC 1 3
Pk CAN 3 1

P4 HT 25 1
Table 8. Resources after the allocation

The results show that the HLS tool PIPE
provided only two FFT blocks and only
one CAN interface at the specified restart
time.

1
 t 1

e1

2
 t 2

e2

1

 t1
e 1

3

 tk
e 3

2

 t2
e 2

Communication Transmitter

Receiver

Comm. line

SC
1 e5

����

3 e9

FFT
23 e2

SC
1 e6

����

 3 e10

FFT
23 e3

SC
1 e7

����

 3 e11

FFT
23 e4

SC
1 e8

����

 3 e12

HT
25 e13

SC
1 e14

FFT
23 e1

e1 e2

FFT
 e3 e4

FFT

e5 e6

SC
 e7 e8

SC

e9 e10 e11 e12

CAN

e13

HT

e14

SC

 a b

Figure 7. The EOG and the allocated DFG

4. Results

The method presented in this paper can be
applied to estimate the communication
time in four frequently serial
communication interfaces. Since such
interfaces are byte-organized in most
cases, so it is advisable to indicate the data
to be forwarded (N) in bytes.

Interface Tk

SPI
bitTN ⋅+⋅)18(

I2C-7 bits address
bitTN ⋅+⋅)119(

I2C-10 bits address
bitTN ⋅+⋅)209(

UART
(1 stop, 0 parity)

bitTN ⋅⋅10

UART
(1 stop, 1 parity)

bitTN ⋅⋅11

CAN2.0A
bitTN ⋅+⋅)5610(

CAN2.0B
bitTN ⋅+⋅)8110(

Table 9. Communication time estimation

The results are summarized in Table 9. N
is the number of bytes (N=1..8), Tbit is the
bit time. The N � 8 limit is needed,
because the maximum size of CAN
messages can be 8 bytes. Figure 8 shows
the message transmission time of various
communication interfaces at Tbit =10µs bit

time. The presented method can be applied
in other types of interfaces as well.

Figure 8. Comparison of the communication

times at Tbit=10µs

5. Acknowledgement

The support of the Hungarian Scientific
Fund (OTKA K72611) and New Hungary
Development Plan (Project ID: TÁMOP-
4.2.1/B-09/1/KMR-2010-0002) IKT-P5-T3
are gratefully acknowledged. This work is
also belonging to the scientific program of
the "Development of quality-oriented and
harmonized R+D+I strategy and functional
model at BME" project.

6. References

[1] CAN specification 2.0A
(http://www.can-
cia.org/index.php?id=441)

Communication time

0

500

1000

1500

0 1 2 3 4 5 6 7 8
Message size [Byte]

Tk [µs]
CAN2.0B
CAN2.0A
I2C 10bit
I2C 7bit
UART with parity
UART No parity
SPI

[2] CAN specification 2.0B
(http://www.can-
cia.org/index.php?id=441)

[3] Péter Arató, Tamás Visegrády, István
Jankovits: High Level Synthesis of
Pipelined Datapaths, John Wiley & Sons,
New York, ISBN: 0 471495582 4, 2001

[4] I2C-bus specification and user manual
Rev. 4 — 13 February 2012
(http://www.nxp.com/documents/user_m
anual/UM10204.pdf)

[5] Pilászy György, Móczár Géza, Remote
control of modular microcontroller
systems, Microcad 2001, In:
Measurement and Automation. Miskolc,
Hungary, 2001.03.01-2001.03.02. pp. 45-
50.

[6] Michel Goraczko, Jie Liu, Dimitrios
Lymberopoulos: Energy-Optimal
Software Partitioning in Heterogeneous

Multiprocessor Embedded Systems,
DAC 2008, June 8–13, 2008, Anaheim,
California, USA

[7] P. Arató, D. Drexler, G. Kocza, G.
Suba: Synthesis of a Task-dependent
Pipelined Multiprocessing Structure,
submitted to the International Journal of
Circuit theory & Applications (Wiley)

[8] The I2C Bus specification version 2.1,
January 2000,
http://www.nxp.com/documents/other/39
340011.pdf

[9] Philippe Coussy, Daniel D. Gajski,
Michael Meredith, Andres Takach, An
Introduction to High-Level Synthesis,
IEEE Design & Test of Computers, 2009

[10] 8251A Programmable communication
interface, 1993, Intel Corporation,
Document number: 205222-003

7

Hierarchical pipelining of nested loops

Dr. Péter Arató, Gergely Suba

November 21, 2012

Abstract

Pipelining of the nested loops is a very important
way to increase the throughput of a system devel-
oped by a high-level synthesis tool. The most of
the pipelining methods require that the input of the
method should be a single loop. Therefore, nested
loops have to be converted into a single loop by
the method called loop flattening. Nevertheless, in
this way the sequential loops can not be pipelined
in separate pipeline stages. This constraint limits
the throughput. In this paper, we present a novel
pipeline scheduling method of nested loops for im-
plementing the sequential loops in separate pipeline
stages. There is another advantage of the method:
the desired restart time of the whole system can
be given as an input parameter of the method. A
novel multi-rate dataflow graph is introduced for
modelling the nested loops in an easy and abstract
way.

1 Introduction

High-level synthesis is based on many optimization
methods in order to ensure a desired performance
in speed, area and cost. The loops are essential
parts of the algorithms to be implemented by a
high-level synthesis tool. Therefore the proper loop
handling is unavoidable in increasing the through-
put in a pipeline system. In achieving a given

The support of the Hungarian Scientific Fund (OTKA
K72611) and New Hungary Development Plan (Project
ID: TMOP-4.2.1/B-09/1/KMR-2010-0002) IKT-P5-T3 are
gratefully acknowledged. This work is also belonging to the
scientific program of the ”Development of quality-oriented
and harmonized R+D+I strategy and functional model at
BME” project.

pipeline throughput (initiation interval or restart
time1), even the loops with constant trip count may
set limit if no efforts have been made for decreasing
the latency or restart time of the loop.

In this paper a novel method is presented for in-
creasing the pipeline throughtput of nested loops
with constant trip count. By this method, the
pipeline scheduling is performed on more than one
level of the loop hierarchy simultaniusly in contrary
with the usual solutions. Compared with the previ-
ous work, this simultaneous scheduling has advan-
tage, if the loop hierarchy contains also sequential
loops. The method can map the sequential loops
into successive pipeline stages2, which may increase
the throughput of a system significatly.

In contrary to the methods applied by the most
HLS tools, the desired restart time (initiation in-
terval) can be given as an input parameter for the
method presented in this paper.

The method can be used if every loop in the
loop nest has constant trip count (number of it-
erations). Otherwise a transformation is needed to
make the trip counts constant. For example, if an
upper bound can be defined or estimated for the
trip count of a loop, this bound can be used as con-
stant trip count. In this case some control solution
is maded to ensure that the loop body should be ex-
ecuted in the same number of times as the original
trip count. Although this transformation increases
the latency, and so it can cause some performance
loss, in many cases the benefits of pipelining se-
quential loops is greater than the drawback of the

1It can be called also initiation interval, which is the re-
ciprocal of the pipeline throughput. These values are inter-
preted by the number of clock periods.

2Let Pk
j denote the data processed by the operation ej

at the k-th initialisation (restart). Si is a disjoint subset of
operations (nodes) called pipeline stage, if Pk

s = Pk
r :∀k and

∀es, er ⊂ Si. Further the restart time (R) and Initiation
Interval (II) will be used as synonyms.

1

performance loss.
It is beneficial to perform the pipeline schedul-

ing method on a dataflow representation, because
these are formal and abstract models of a system.
The operations inside a loop are executed more
times than the program itself, therefore a so-called
multi-rate dataflow model [13, 9, 3] can be applied
to represent nested loops. The well known multi-
rate dataflow graphs (e.g. SDF, discussed later)
can not represent the nested loops in hierarchical
way. Therefore, a novel dataflow graph based on
existing single-rate dataflow models is introduced.
The paper is organized as follows. In Section

2 the previous works in the area of nested loops
pipelining and the related dataflow models are re-
viewed. In Section 3 a novel dataflow graph, the
so-called MR-HSDFG is introduced. In Section 4
the latency and restart time calculation is presented
in the MR-HSDFG model. Section 5 discusses the
optimization of these two parameters. In Section 6
experimental results are presented. The conclusion
is summarized in Section 7.

2 Previous Work

In this section the most relevant methods are eval-
uated regarding the pipeline scheduling of nested
loops. Further on, the dataflow graph representa-
tions are compared, which are suitable for modeling
nested loops.
One of the approaches is the hierarchical reduc-

tion [11] method. In this way the program (rep-
resented in dataflow graph) is scheduled hierarchi-
cally, starting with the innermost loop. After this
scheduling, the whole loop is substituted by a single
operation. The same scheduling method will be ex-
ecuted for an outer loop if it does not contain inner
loops, only operations (every loop has already been
substituted by operations). At the end of these pro-
cedure, the entire program is reduced to a single
operation. The paper [11] contains only the main
concept of the reduction, and it doesn’t discuss the
precise algorithm.
An other hierarchical approach is the hierarchi-

cal pipelining [2]. In this method four level of the
hierarcy is defined: system, behaviour, loop and
operation. The description of the levels is not uni-
fied; each level has its own description graph (CFG,
CDFG and DFG), therefore the handling of the lev-

els of the hierarchy is different. The given time
constraint determines the length of the stages. The
stages are filled by the nodes one after the other.
A node is assigned to the same stage as the pre-
decessor node, if the latency of the nodes doesn’t
exceeds the length of the stage. This method is
the nearest approach to the basic objectives of the
method presented in this paper.

Another approach to perform pipelining is to
flatten [5] the loop nest first, then the resulted sin-
gle, non-nested loop can be pipelined using the sin-
gle loop pipelining methods [10, 11]. The main idea
of the loop flattening is to emulate the execution of
the original loop nest by a single (called flattened)
loop, where the trip count is equal to the total sum
of inner loop trip counts. The method calculates
that which iterations of the original loops should be
executed for each iterations of the flattened loop.
Several commercial HLS tools apply this approach,
e.g. Calypto Catapult C [4] or Xilinx Vivado.

The advantage of the loop flattening is that it can
handle also some types of loops having nonconstant
trip counts. The disadvantage of the loop flattening
regarding the pipelining is that the original inner
loops desappear and so multilevel pipeline schedul-
ing cannot be applied (e.g. the sequential loops
can not be mapped to successive pipeline stages).
Therefore the throughput of the whole system may
be decreased.

Another way is use a self-timed ring representa-
tion to perform the pipeline scheduling of nested
loops [6]. This method is dedicated to asyn-
chronous pipeline mode where a handshake control
is assumed in each stage. This solution makes the
run-time pipeline loop scheduling easier, but the
necessary control overhead is significant. The self-
timed ring method can be applied only for asyn-
chronous systems, which is out of the scope in this
paper.

The method presented in this paper is based on
the hierarchical reduction, i.e. in contrast with the
flattening way is made level by level in successively
in the loop hierarchy.

In handling the nested loops the dataflow model
apply for the representation is crucial. The main
types of such models can be classified as follows.

Hereinafter the most commonly used dataflow
models are reviewed. The models are characterized
how it can be used to represent nested loops.

For digital signal processing, the application of

2

Synchronous Data Flow (SDF) [12] is typical. In
SDF the nodes represent operations (called actors),
and the edges represent communication channels
realized by FIFO queues. The FIFO-s connect to
the ports of the actors. For each port of an ac-
tor the number of produced or consumed tokens
are defined. An input port consumes tokens from
the predecessor FIFO, and an output port produces
tokens to the successor FIFO. The number of pro-
duced and consumed tokens of an actor can differ,
becaouse the frequency of the fires (executions) of
the actors may vary. Therefore the SDF can be
considered as a so-called multi-rate [13] dataflow
graph.
The Homogeneous SDF (HSDF) is a simplified

variant of the SDF, where the number of produced
and consumed tokens of each actor is always 1
Therefore the HSDF can be considered as a so-
called single-rate [13] DFG.
As the HSDF is a very simplified model, it is eas-

ier to analyze than the generic SDF model. Besides
the SDF model has disadvantage that the most ana-
lyzing and optimizing algorithms have to start with
transforming the SDF to a HSDF. These transfor-
mation increases the number of nodes significantly.
[12] Therefore, the SDF representation is practi-
cally not applicable in case of great number of op-
erations.
An approach resembling the HSDF is the so

called Elementary Operation Graph (EOG) [1].
This model is also single-rate, but it contains also
timing parameters in constrast with the HSDF. The
nodes are considered as elementary (not separable)
operations and for each operation the duration (ex-
ecution) time.
For the elementary operations of the EOG, the

following assumptions are made:

• operation vi is started only after having fin-
ished ∀vj ∈ V , where vj is the direct prede-
cessor operation of vi and V is the set of the
operations

• operation vi requires all its input data during
the whole duration time of the vi

• operation vi may change its output during the
whole duration time

• after the output of vi shows, holds its actual
output stable until its next start

The EOG supports the description and develop-
ing of the pipeline scheduling algorithms. For cal-
culating and optimizing the restart time there are
algorithms in [1], that will be reused in this pa-
per. These algorithms handle the loops as single
elementary operations, without defining the inner
behavior of them. The aim of this paper is to rep-
resent and handle each level of the loop hierarchy
separately.

3 MR-HSDFG - a novel multi-

rate dataflow graph

In this section an extended dataflow model, the
MR-HSDFG is introduced, which is based on the
EOG model. The main purpose of the model is
to represent nested loops in an abstract and formal
way that can be used effectively to perform pipeline
scheduling methods. The reviewed dataflow mod-
els in the previous section do not comply with these
requirements. The HSDF and the EOG are single-
rate DFG, therefore they can not represents nested
loops in worthwhile way. (in a single-rate DFG ev-
ery operation executes in the same rate, but in case
of a loop the operations inside the loop body need
to run more times than the loop itself) Although
the SDF can represent nested loops, the analyz-
ing and optimizing methods convert the model to
HSDF first, hereby increasing the number of the
nodes significantly.

The novel multi-rate homogeneous synchronous
dataflow graph (MR-HSDFG) is the improvement
of the HSDFG and the EOG. The MR-HSDFG is a
finite and directed graph. Each node represents an
operation, which has zero3 or more input and zero
or one output (except the case when both are zero),
and each edge is a dataflow channel, which trans-
ports data from an operation to an other. Each
operation has a duration and a restart time pa-
rameter.

The model has five types of operations:

• simple elementary operation: an operation,
which is considered as atomic (indivisible) -
in EOG this is the only operation type

3It’s a different between MR-HSDFG and EOG, because
in EOG every operation has at least one input and one out-
put.

3

 !!"#!"$%&'(!)

*!+)'$%
,-..'/012

3))$%#4%&"5
, !!"#6!782

9$ $/'!%

'!#&)#!'5$%#)!7$

:%!;#&)
!'5$%#)!7$

:%!;#&)
!'5$%#)!7$

<& +$ $)&6 $

Figure 1: General construction of the loop opera-
tion (in this figure the loop operation has two pre-
decessor nodes)

• loop operation: an operation that represents a
loop. The behavior of the loop body is defined
by an inner dataflow graph (discussed later),
which is also a MR-HSDFG, therefore it can
also contains loop operations.

• constant operation: an operation, which pro-
duces a constant value in runtime (it has no
input dataflow channel)

• input operation: represents an input of the
dataflow graph (it has no input dataflow chan-
nel)

• output operation: represents an output of the
dataflow graph (it has no output dataflow
channel)

The duration time of the constant, input and out-
put operations are 0 by definition.
The loop operations are essential to ensure the

model can handle the nested loops, because it con-
tains the control of the loop iterations.
The general construction of the loop operation is

shown in figure 1. A loop operation consists of spe-
cial fixed operations (Counter and Selector) and a
task dependant subgraph, called inner graph, which

represents the loop body. This inner graph is illus-
trated by a single node in figure 1. The Counter
can be considered as an input operation of the inner
graph, which counts the number of times the loop
body has to run in the task description. The Se-
lector is a special downsampling operation, which
has a value and an enable input. When the enable
input is on, the value will be buffered to the out-
put of the Selector node, and will be held until the
next enable sign. The Selector can be considered as
the output operation of the inner graph. The pre-
decessor operations (Pred 1 and Pred 2) need to
hold stable output state during the loop operation,
therefore these predecessor operations can be con-
sidered as constant operations from the perspective
of the inner graph.

The loop operation can be formally defined as a
pair: C = 〈G, tc〉, where:

• G is the inner graph (MR-HSDFG), which rep-
resents the loop body

• tc ∈ N is the trip count of the loop, where
tc > 1 (otherwise there wouldn’t be a loop).
While the loop operation performs once, the
G should be restarted tc times, that is tc data
is sent to the input of the G.

The MR-HSDFG fits to the nested loops written
in a programming language. The top-level function
can be described by an MR-HSDFG. The loops in-
side the function can be mapped to loop operations
in MR-HSDFG. The other parts of the function
body can be represented as simple elementary and
constant operations, because these parts run just
once in each running of the function. The function
parameters and the returning value can be repre-
sented as input and output operations.

The tc is the trip count of the loop, which is
used by the Counter operation as the upper bound
of the counting. If the trip count is data depen-
dant, a designer decision is needed to fix an upper
bound for this value, which will be used as constant
trip count. Among others the commercial softwares
(e.g. Catapult C) also use manually given upper
bound of a loop, if it has data dependant trip count.

The MR-HSDFG can be illustrated by an exam-
ple. Let’s consider the following expression:

f(a, n) =
n
∏

i=1

(a+ i), n ∈ [1, nmax] (1)

4

 !"#

$

 !"%

&'(

Figure 2: EOG representation of the task

The task is to calculate the value of the function
f in case of a given a and n inputs repeatedly. In-
side the f function there is a loop that represents

the
n
∏

i=1

operation.

In EOG the f function can be only represented
as an elementary operation, where the inner behav-
ior is hidden, therefore pipeline scheduling can not
be performed for the inner behavior in this model.
This representation is illustrated in figure 2. In
MR-HSDFG the f function is represented as a loop
operation, where the inner graph represents the be-
havior of the loop body, which can be seen in figure
3. The inner graph (without its environment) can
be represented as MR-HSDFG, as it is shown in
figure 4. As this inner graph doesn’t contain loop
operation, it can be considered as a regular EOG,
therefore the analyzing and optimizing algorithms
of the EOG can be performed on it. The following
sections will introduce these extended algorithms.

4 Calculation of the minimal

restart time in MR-HSDFG

In this section we introduce an algorithm, which
calculates the minimal restart time of the system
in three cases: if scheduling is performed in each
level of the loop hierarchy 1) sequentially, 2) using
pipeline mode without any other optimization (op-
eration replication [1], loop unrolling [7, 8], etc.),
3) using pipeline mode with operation replication.
If the MR-HSDFG does not contain loop oper-

ation, the model will be similar to the EOG. The
calculation of the latency and the restart time in
EOG is written in [1], which will be reviewed in

!"#$%&'

()*

+

,&-&.%"'

/#

012

3456 345$

Figure 3: MR-HSDFG representation of the task
(the +, >=, ∗ and buf operations represent the
loop body, called inner graph)

!"

$%

&

'()

*+

,-./012 ,-./01.

Figure 4: MR-HSDFG representation of the inner
graph

5

the following, then they will be extended in case
of loop operations in order to calculate the latency
and restart time in MR-HSDFG.

The dataflow graph needs to be acyclic, therefore
the operations inside each each recursive loop4 are
to be substituted by a combined operation first.

The latency of the G dataflow graph is L(G),
which is the summarize of the duration time of the
longest path in G. The calculation of the restart
time of a G dataflow graph in the cases described
above are given in the following expressions [1]:

• Sequential scheduling: the system is
restarted when the previous input data is
reached the output. The throughput is low,
but this scheduling allows area decreasing in
the course of the allocation.

Rseq(G) = L(G) (2)

• Pipeline scheduling without operation

replication: the graph is unchanged (same as
in the case of sequential scheduling), but the
system is restarted more often. The restart
period can be less than in case of sequential
scheduling. This scheduling allows less area
decreasing in the course of the allocation com-
pared with the sequential scheduling.

In the following this minimal restart time is
called simple pipelined restart time, and de-
noted by Rsp.

Rsp(G) = max(qvi
)

∀vi ∈ V
(3)

• Pipeline scheduling with operation repli-

cation: the minimum restart time that can be
reached with operation replicating. In most
cases this restart time is 1, but the value can
be higher, if some operation is not allowed to

4Cycle in the graph, that is directed path goes from a
node to the same node.

be replicated.

Rmin(G) = max(q′vi
)

q′vi
:=

{

1 if vi can be replicated
qvi

if vi can not be replicated
∀vi ∈ V

Lmin(G) =
∑

w∈W

t′w

t′w :=







tw + 1 if w can be replicated
and qvi

> R
tw otherwise

W = {vj1 , vj1 . . . vjn} longest path operations
(4)

where V is the set of the operations, E is the set
of the dataflow channels (the edges of the graph),
and tvi

∈ N is the duration time (number of clock
periods required for execution) of the vi operation
in terms of clock periods. For the various restart
times the following is true:

Rseq(G) >= Rsp(G) >= Rmin(G) (5)

For the expression (2), (3) and (4), the duration
time of each operation is needed. These duration
times are given by parameters generally. The only
exception is the loop operation, where calculation
is needed to get the duration time of the opera-
tion. The inner behavior of the vi loop operation
can be defined by the Ci = (Gi, tci) pair, and the
duration time of the loop operation (which is equal
to the busy time in case of loop operation) can be
calculated in terms of the elements of the pair:

qvi
= tvi = (tci − 1) ∗R(Gi) + L(Gi) (6)

where R(Gi) is the restart time of the inner graph
inside the vi loop operation, and L(Gi) is the la-
tency of that. The correctness of the expression:
the inner graph of the loop operation is also MR-
HSDFG, and its restart time R(Gi) can be also de-
fined by the expression (2), (3) and (4). While the
loop operation is executed once, the inner graph
is restarted tc times, therefore between the first
and last restart (tci − 1) ∗R(Gi) time elapsed. Af-
ter the last restart, the loop operation is busy for
L(Gi) time (as the time needed to change the out-
put value after the last input data is sent), therefore
this value should be added to the expression, to get
the overall duration time of the loop operation.

The calculation method introduced in this sec-
tion deals with the nested loops in bottom-up way,

6

 !"#$%&'()*+#,%#(-'.&&/

01'2'3'()*45*#.!"*&'2'-'()*41#6.-'4(

7+*8*+.-'+5'#$9

:'$*'-*+%!!##$9

;<7= 0>

=.-#(!/*41-'2'3.-'4(

Figure 5: Optimizing of each operation

beginnings with the innermost loop. (the algorithm
can be implemented by a recursion)

5 Achieve desired restart time

in MR-HSDFG

An optimization method [1] are known for the
EOG, which decrease the minimal restart time to
a given value. In the first step the method inserts
buffers to achieve the goal. If the insertion doesn
not satisfy, the operation replication is perform to
achieve the goal. In MR-HSDFG the modified ver-
sion of this optimization method can be used, which
will be introduced in this section.

The RESTART algorithm of the MR-HSDFG
starts dealing with the top level of the loop hierar-
chy.

The overview of the achieving algorithm is in-
troduced in figure 5. The first step is to calculate
the duration times of each loop operations using
sequential scheduling (see section 5.1).

If the resulted R restart time satisfies the de-
sired value, the whole algorithm can be stopped and
sequential scheduling is performed in the source
graph. If it is not the case, optimizing of each limit-
ing operation (see section 5.2) is needed. This step
may be failed, in this case the whole algorithm is
failed. Finally the optional latency optimization

 !"#$%$&

'(()*$+,-"."/0-"+(
+1$(+2)$"

"3$"$4++,
+,)*0-"+(5

 !"#6$%$&

7,)*0-"+($.84-",4"90-"+(
+1$(+2)$"

:)3

(+

:)3

(+

:)3

(+

;<=&<

;<7>

Figure 6: Optimizing of each operation

can be performed.
The method introduced in this section deals with

the nested loops in top-down way, and the algo-
rithm can be implemented by a recursion.

5.1 Scheduling sequentially

The first step is to calculate the duration times of
each loop operations, in order to get the restart
time of the system in case of sequential scheduling.
(sequential scheduling can result the least resource
using and the largest amount of allocating) This
calculation can be performed as described in Sec-
tion 4, using the expression (6).

5.2 Opimizing of each limiting oper-

ation

In case of R is not satisfied after the sequential
scheduling, each of the operations, which limits the
restart time, need to be optimized one by one.

The overview of the operation optimizing algo-
rithm can be seen in figure 6. The algorithm deals
with one operation, therefore it should be run for
each operation of the graph, where the running or-
der is irrelevant.

7

The first condition detects wheather the given
node limits the desired restart time. If not, there
is no need to do anything with that operation. In
case of an operation that limits the desired restart
time two steps can be performed in order to sat-
isfy the requirement, the cheaper inner optimiza-
tion (for only loop operations) and the more ex-
pensive operation replication (for any operations).
If the operation is a loop operation, first the inner
optimization (see in section 5.2.1) is performed, as
it is the cheaper. If this step can not decrease the
duration of the loop operation to the desired value,
or the operation is not a loop operation then repli-
cation is needed.

5.2.1 Inner optimization of node i

In case of a loop operation, which doesn’t satisfy
the desired R restart time, an effective way is to
pipeline schedule the inner graph of the loop op-
eration. This inner scheduling can decrease the
duration time of the loop operation. In the fol-
lowing this inner graph pipeline scheduling will be
discussed (deducing).
The following expression should be complete,

that the vi loop operation desires the global restart
time R [1]:

qvi
≤ R (7)

Just in case of this condition can be ensured the
desired R restart time is fulfilled. To substitute the
expression (6) reviewed in the previous section to
the expression (7):

(tci − 1) ∗R(Gi) + L(Gi) ≤ R (8)

whereby:

R(Gi) ≤
R− L(Gi)

tci − 1
(9)

BecauseR(G) ∈ N and the minimum restart time
of Gi is Rmin(Gi) (see expression (4)), the desired
restart time can be expressed:

Rdes(Gi) = max

(⌊

R− L(Gi)

tci − 1

⌋

, Rmin(Gi)

)

(10)
The inner graph needs to be optimized by the cal-

culated desired restart time Rdes(Gi). As the inner

graph is an MR-HSDFG, the pipeline scheduling
of the inner graph can be performed also in the
method overviewed in figure 5. (actually the same
optimization algorithm is performed in case of each
loop of the loop nest)

When the inner graph Gi is optimized, the du-
ration time tvi of the loop operation vi can be
calculated by the expression (6), where R(Gi) =
Rdes(Gi) .

5.2.2 Operation replication of node i

If the operation is not a loop operation, or the inner
optimization step (section 5.2.1.) may not satisfy
the desired restart time, the only way to decrease
the restart time is to replicate them. The number
of copies can be calculated by the following expres-
sion:

ci =

⌈

ti

R

⌉

(11)

6 Experimental results

In the following section two example is introduced.
The first will demonstrate the advantage of the cal-
culation method (section 4) and the second exam-
ple demonstrate the advantage of the restart time
minimization method (section 5).

6.1 First example - edge detection

As first example an edge detection algorithm based
on the Roberts operator [14] will be introduced as
the input of the reviewed methods.

The algorithm transforms a 64x64 pixel size
grayscale bitmap to a same size bitmap, which
shows the edges of the original bitmap. The data
interface of the algorithm is two streams, one for
the input (original) bitmap and one for the output
(transformed) bitmap.

For calculating the intensity of an output pixel
Pout(x, y), four input pixels p1-p4 are needed:

p1 = P (x− 1, y − 1)
p2 = P (x+ 1, y − 1)
p3 = P (x− 1, y + 1)
p4 = P (x+ 1, y + 1)

(12)

The calculation of the output pixel via the
Roberts operator:

8

pout(x, y) = max (|p1 − p4|, |p2 − p3|) (13)

As it can be seen, for calculating the pixels in a
given row, the two adjacent rows has to be used,
therefore 3 rows should be stored simultaneously.
(the 3. row is the given row that will be used cal-
culating the next row) As the access of the bitmap
is sequentially (the data is got from a stream), a
buffer is needed to store these 3 rows at the same
time.
The Catapult C code of the algorithm is shown

in figure 7. In the source code there are three
for loops, the I, which iterates through the rows
(between 0 and 63), the J1 and J2, which iterate
through the columns (between 0 and 63 too). In
every iteration of the I, one input row is processed,
and one output row is produced. The J1 loop is
responsible for reading the input stream, and store
the data to a temporary buffer. The J2 loop cal-
culates the next output pixel one-by-one, using the
values stored in the temporary buffer.
We created the MR-HSDFG of the code, which

is shown on Figure 8. The loop I is represented by
a loop operation, which contains inside a Counter
operation, five other elementary operations and the
inner loops J1 and J2 as two loop operations. The
loop operation J1 contains the stream reading and
buffer writing operations, and the loop operation
J2 contains the operations performing the edge de-
tection and the stream writing.

#include "ac_fixed.h"

#include "ac_channel.h"

#include "type.h"

#pragma hls_design top

void test (

ac_channel<int> &data_in,

ac_channel<int> &data_out)

{

int buf[4][64];

I: for (int i=0; i<64; i++)

{

int is = i % 4;

int ia = (i-1) % 4;

int ib = (i-3) % 4;

J1: for (int j=0; j<64; j++)

{

buf[is][j] = data_in.read();

}

int a1=0, b1=0, a2=0, b2=0;

J2: for (int j=0; j<64; j++)

{

int a = buf[ia][j];

int b = buf[ib][j];

int atlo1 = a-b2;

int atlo2 = b-a2;

if (atlo1<0) atlo1 = -atlo1;

if (atlo2<0) atlo2 = -atlo2;

a2 = a1; a1 = a;

b2 = b1; b1 = b;

int el = atlo1 > atlo2

? atlo1 : atlo2;

data_out.write(el);

}

}

}

Figure 7: Catapult C source code of the task

9

 !!"#!"$%&'(!)#*

 !!"#!"$%&'(!)#+,

 !!"#!"$%&'(!)#+-

.!/)'$%#01123
,

45 6, 63

.!/)'$%#01123
,

7%('$
,

45

8$&9
,

45

8$&9
,

:'%$&;#*)
,

.!/)'$%#01123
,

<$ &=

6

<$ &=

6

>?@>?@

A&B

:'%$&;#C/'
,

CDE

*F

Figure 8: MR-HSDFG of the edge detection algo-
rithm

10

The results is summarized in table 1. In the first
four rows (Catapult results) the restart time of the
outer loop I equals to the sum of the duration time
of the operations inside the loop body:

R3 =
∑

tvi (14)

where the duration time tvi of the loop opera-
tions can be calculated via the expression (6). In
this case R3 = (63R1 + L1) + (63R2 + L2) + L′

3,
where L′

3 is negligible (the latency of the simple
elementary operations inside the loop body of I).

For the second and third rows we used flattening
in Catapult C, therefore the J1 and J2 loops disap-
peared. The parameter II = 1 in the third row can
not be satisfied, because the minimal restart time
of the original (before flattening) inner J2 loop is 2.
In the fourth row the inner loops are optimized one
by one, where the desired restart time of J1 is 1,
and for J2 is 2. This is the best achieved solution
using Catapult C.

The last row represents the result of our method.
In this case J1 and J2 are put to different pipeline
stages, therefore better result (8384 cycle instead
of 12609, which is the best Catapult solution) is
achieved compared with the Catapult C.

6.2 Second example - divisor func-

tion

The second example is a computation algorithm,
which first calculates the average of 64 integer in-
put values, than calculates the number of divisors
of this average. The Catapult C code represents
the algorithm is shown in figure 9. The code con-
tains two for cycles, the first one (J1) deals with
the average calculating, and the second one (J2)
calculates the number of divisors.

The algorithm can be described in MR-HSDFG
as the figure 11 shows, where the J1 and J2 loops
are represents by loop operations. According to the
section 4, the minimal restart time of the loop oper-
ation J1 is (64−1)∗1+3 = 66 (for the inner graph,
R=1 can be satisfied). For the loop operation J2,
the minimual restart time is (256−1)∗7+7 = 1792
(for the inner graph, R=7 can be satisfied without
replication). The expression 3 can be used to cal-
culate the Rsp, which is 1794 in this case. This
situation is shown in figure 10(a).

Suppose the developer likes to schedule with
R=68 constraint, which is the minimal value where
loop operation J1 is not needed to replicate (actu-
ally it can’t be replicated, because the Stream in
operation can be executed once in a system clock
period). According to the algorithm written in sec-
tion 5, in the top level of the hierarchy only the
loop operation J2 is to be scheduled newly. The
desired restart time of the inner graph inside the
loop operation J2 can be calculated by the expres-
sion (10):

Rdesired = max

(⌊

68− 7− 2

256− 1

⌋

, 1

)

= 1 (15)

Inside the inner graph, only the % operation is
to be replicated, where the number of copies is
⌈ 5+2

1
⌉ = 7. In this case the Rdesired = 1 can be

satisfied and the duration time of the loop opera-
tion J2 will be (256−1)∗1+7 = 262. After this, the
loop operation J2 has to be replicated ⌈ 262+2

68
⌉ = 4

times to satisfy the R=68 constraint. This case is
shown in figure 10(b).

The Catapult C and MR-HSDFG results are
summarized in table 2. The 1. row shows the se-
quential scheduling, in this case none of the loops
is scheduled in pipeline mode. In the 2. solution,
the J2 loop is pipeline scheduled (we chose the J2
for pipelining, because this was the bottleneck in
the 1. solution) The 3. solution is pipeline sched-
uled in one level higher (in the main loop), which
is achieved by flattening the main loop. The re-
sult is very similar than the previous one, because
pipelining the loop J1 is ineffective. To increase
the throughput additionally loop unrolling method
is performed (4-6. rows), but in these cases the area
cost will be duplicated. The 6. solution can not be
satisfied, because the J1 loop can not be unrolled
by 2.

7 Conclusion

In this paper we presented a novel pipeline schedul-
ing method of nested loops. The greatest advantage
of the method, that the pipeline scheduling can be
performed in each level of the loop hierarchy simul-
taneously. Compared with the flattening based ap-
proaches this method can achieve more increasing
in performance, as the restart time of the system

11

N Results J1 loop (tc1=64) J2 loop (tc2=64) I loop (tc3=64) Thrtpt. Cycles

1. Cat. without opt R1=2, L1=2 R2=4, L2=4 R3=386 24705

2. Cat. III=2 flattened flattened R3=2 (tc3=8128) 16260

3. Cat. III=1 flattened flattened - can not be satisfied

4. Cat. IIJ1=1, IIJ2=2 R1=1, L1=2 R2=2, L2=4 R3=197 12609

5. MR-HSDFG R=Rsp R1=1, L1=3 R2=2, L2=4 R3=131 8384

Table 1: Results (Ri is the inner restart time, Li is the inner latency of the given loop body)

N Results J1 loop J2 loop Throughput Cycles Area

1. Cat. without opt tc1=64, R1=1, L1=1 tc2=256, R2=6, L2=6 1603 589

2. Cat. IIJ2=1 tc1=64, R1=1, L1=1 tc2=256, R2=1, L2=6 329 2880

3. Cat. IIM=1 tc1=64, flattened tc2=256, flattened (LM=8) 319 3071

4. Cat. IIJ2=1, UJ2=2 tc1=64, R1=1, L1=1 tc2=128, R2=1, L2=6 202 5733

5. Cat. IIM=1, UJ2=2 tc1=64, flattened tc2=128, flattened (LM=10) 191 5968

6. Cat. IIM=1, UM=2 tc1=32, flattened tc2=128, flattened can not be satisfied -

7. MR-HSDFG R=Rsp tc1=64, R1=1, L1=3 tc2=256, R2=7, L2=7 1794 622

8. MR-HSDFG R=264 tc1=64, R1=1, L1=3 tc2=256, R2=2, L2=4 264 2904

9. MR-HSDFG R=68 tc1=64, R1=1, L1=3 tc2=256, R2=2, L2=4 68 11615

Table 2: Results (Ri is the inner restart time, Li is the inner latency of the given loop body)

can be minimized, for example in case of sequential
loops.
The novel dataflow graph model MR-HSDFG is

also introduced, where the main purpose is to rep-
resent nested loops in an abstract and formal way
that can be used effectively to perform pipeline
scheduling methods.
We presented experimental result, where the ad-

vantage of the method is shown. Contrary to the
Catapult C commercial development environment,
the method creates the pipeline scheduling opti-
mization automatically.
Further working: the array handling is very im-

portant to determine, whether the method can
pipeline the sequential loops.

12

#include "ac_fixed.h"

#include "ac_channel.h"

#include "type.h"

#pragma hls_design top

int test(ac_channel<char> &data_in)

{

int sum=0, count=0;

for (int j=0; j<64; j++) {

sum += data_in.read();

}

int number = sum / 64;

for (int i=1; i<256; i++) {

if (number%i==0 && i<=number)

count++;

}

return count;

}

Figure 9: Catapult C source code of the divisor
algorithm

 !

"#$%&&'$&'(
))

*)+
,

"-$%&&'$&'(
#./-

012

(a) R=Rsp

 !

"#

$%&'(()&()*
++

,+!
-

$.&'(()&()*
.+.

/01

(b) R=68

Figure 10: MR-HSDFG of the divisor algorithm

 !!"#!"$%&'(!)#*+

 !!"#!"$%&'(!)#*,

-.

/!0)'$%#12234
+

5'%$&6#7)
+

8
1

90:
+

5$ $;'!%
+

<3=
1

/!0)'$%#122,>>
+

?
>

@A
1

AA1
1

8
1

90:
+

5$ $;'!%
+

BCD

7E

Figure 11: MR-HSDFG of the divisor algorithm

13

References

[1] Peter Arato, Visegrady Tamas, and Istvan
Jankovits. High Level Synthesis of Pipelined
Datapaths. John Wiley & Sons, Inc., New
York, NY, USA, 2001.

[2] Smita Bakshi and Daniel D. Gajski.
Performance-constrained hierarchical pipelin-
ing for behaviors, loops, and operations. ACM
Trans. Des. Autom. Electron. Syst., 6(1):1–25,
January 2001.

[3] N. Chandrachoodan, S.S. Bhattacharyaa, and
K.J.R. Liu. An efficient timing model for hard-
ware implementation of multirate dataflow
graphs. In Acoustics, Speech, and Signal
Processing, 2001. Proceedings. (ICASSP ’01).
2001 IEEE International Conference on, vol-
ume 2, pages 1153 –1156 vol.2, 2001.

[4] M. Fingeroff. High-Level Synthesis Blue Book.
Xlibris Corporation, 2010.

[5] Anwar M. Ghuloum and Allan L. Fisher.
Flattening and parallelizing irregular, recur-
rent loop nests. In Proceedings of the fifth
ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPOPP ’95,
pages 58–67, New York, NY, USA, 1995.
ACM.

[6] Gennette Gill, John Hansen, and Montek
Singh. Loop pipelining for high-throughput
stream computation using self-timed rings. In
Proceedings of the 2006 IEEE/ACM interna-
tional conference on Computer-aided design,
ICCAD ’06, pages 289–296, New York, NY,
USA, 2006. ACM.

[7] John L. Hennessy and David A. Patterson.
Computer Architecture, Fourth Edition: A
Quantitative Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA,
2006.

[8] J.C. Huang and T. Leng. Generalized loop-
unrolling: a method for program speedup. In
Application-Specific Systems and Software En-
gineering and Technology, 1999. ASSET ’99.
Proceedings. 1999 IEEE Symposium on, pages
244 –248, 1999.

[9] K. Ito and K.K. Parhi. Determining the itera-
tion bounds of single-rate and multi-rate data-
flow graphs. In Circuits and Systems, 1994.
APCCAS ’94., 1994 IEEE Asia-Pacific Con-
ference on, pages 163 –168, dec 1994.

[10] R.B. Jones and V.H. Allan. Software pipelin-
ing: a comparison and improvement. In Mi-
croprogramming and Microarchitecture. Micro
23. Proceedings of the 23rd Annual Workshop
and Symposium., Workshop on, pages 46 –56,
nov 1990.

[11] M. Lam. Software pipelining: an effective
scheduling technique for vliw machines. In
Proceedings of the ACM SIGPLAN 1988 con-
ference on Programming Language design and
Implementation, PLDI ’88, pages 318–328,
New York, NY, USA, 1988. ACM.

[12] E.A. Lee and D.G. Messerschmitt. Syn-
chronous data flow. Proceedings of the IEEE,
75(9):1235 – 1245, sept. 1987.

[13] K.K. Parhi. Algorithm transformation tech-
niques for concurrent processors. Proceedings
of the IEEE, 77(12):1879 –1895, dec 1989.

[14] Lawrence G. Roberts. Machine perception of
three-dimensional solids. PhD thesis, Mas-
sachusetts Institute of Technology. Dept. of
Electrical Engineering, 1963.

14

