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Department of Pharmacology and Pharmacotherapy, Institute of Pharmacology (T.K., R.P.), and Division of Clinical Physiology,
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ABSTRACT
The transient receptor potential type V1 channel (vanilloid re-
ceptor 1, TRPV1) is a Ca2!-permeable nonspecific cation chan-
nel activated by various painful stimuli including ischemia. We
hypothesized that TRPV1 is expressed in the arterioles and is
involved in the regulation of microvascular tone. We found that
TRPV1 stimulation by capsaicin (intra-arterial administration) of
the isolated, perfused right hind limb of the rat increased vas-
cular resistance (by 98 " 21 mm Hg at 10 !g) in association
with decreased skeletal muscle perfusion and elevation of skin
perfusion (detected by dual-channel laser Doppler flowmetry).
Denervation of the hind limb did not affect capsaicin-evoked
changes in vascular resistance and tissue perfusion in the hind
limb but reduced the elevation of perfusion in the skin. In
isolated, pressurized skeletal (musculus gracilis) muscle arte-
rioles (diameter, 147 " 35 !m), capsaicin had biphasic effects:
at lower concentrations, capsaicin (up to 10 nM) evoked dila-

tions (maximum, 32 " 13%), whereas higher concentrations
(0.1–1 !M) elicited substantial constrictions (maximum, 66 "
7%). Endothelium removal or inhibition of nitric-oxide synthase
abolished capsaicin-induced dilations but did not affect arte-
riolar constriction. Expression of TRPV1 was detected by re-
verse transcriptase-polymerase chain reaction in the aorta and
in cultured rat aortic vascular smooth muscle cells (A7r5). Im-
munohistochemistry revealed expression primarily in the
smooth muscle layers of the gracilis arteriole. These data dem-
onstrate the functional expression of TRPV1 in vascular smooth
muscle cells mediating vasoconstriction of the resistance ar-
teries. Because of the dual effects of TRPV1 stimulation on the
arteriolar diameter (dilation in skin, constriction in skeletal mus-
cle), we propose that TRPV1 ligands represent drug candidates
for tissue-specific modulation of blood distribution.

The transient receptor potential type V1 channel (vanilloid
receptor-1, TRPV1) is a nonselective cation channel, struc-
turally belonging to the transient receptor potential family of
ion channels. TRPV1 is found in sensory C and A-" fibers
(Caterina et al., 1997) and functions as a ligand-, proton-, and
heat-activated molecular integrator of nociceptive stimuli in
the periphery (Szallasi and Blumberg, 1999; Di Marzo et al.,
2002a,b; Ross, 2003). Activation of TRPV1 leads to central

(pain) as well as to local “sensory-efferent” effects (Szolcsá-
nyi, 1988).

It is well established that the sensory-efferent effects of
TRPV1 stimulation include the release of neuropeptides such
as calcitonin gene-related peptide (CGRP) and substance P
(SP) from the sensory nerve terminals. These peptides cause
vasodilatation in different vascular beds such as mesenteric,
hepatic, basilar, dural, and meningeal arterioles (Zygmunt et
al., 1999; Ralevic et al., 2001; Harris et al., 2002; Dux et al.,
2003; Akerman et al., 2004; O’Sullivan et al., 2004). It is
interesting that TRPV1-induced release of SP from sensory
neurons has been implicated recently in mediating pressure-
induced myogenic constriction (Scotland et al., 2004). Like-
wise, previous studies have also proposed that in certain
circumstances, TRPV1 activation may lead to vasoconstric-
tion in mesenteric (Pórszász et al., 2002), coronary (Szolcsá-
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nyi et al., 2001), skeletal muscle (Lizanecz et al., 2006), and
dural vessels (Dux et al., 2003), although the underlying
mechanism remained obscure.

In the present study, the possible mechanisms of TRPV1-
mediated vascular effects were investigated. It was found
that TRPV1 stimulation results in opposite effects in differ-
ent arterial beds from the same hind limb of the rat in vivo,
namely vasodilation in the skin and vasoconstriction in the
skeletal muscle. Moreover, investigation of the possible mech-
anisms of TRPV1-mediated responses confirmed TRPV1 ex-
pression in vascular smooth muscle cells and suggested cell
type-specific differences in the capsaicin responsiveness.

Materials and Methods
Animals, Anesthesia, and General Preparation in the in

Vivo Experiments. The experiments were performed on male
Wistar rats weighing 250 to 450 g raised on a standard laboratory
food and water ad libitum. Anesthesia was performed with 100
mg/kg i.p. thiobutobarbital (Inactin-Byk). The right common carotid
artery and the left internal jugular vein were cannulated with poly-
ethylene tubing for continuous measurement of arterial blood pres-
sure and for administration of drugs, respectively. Respiratory move-
ments were measured by means of a Statham transducer connected
to one side of a Y-shaped cannula introduced into the trachea. The
body core temperature was maintained at approximately 37°C with
a temperature-controlled infrared heating lamp. Recordings were
displayed on a polyphysiograph. All procedures used in this study
are in agreement with the rules of the Ethics Committee on Animal
Research.

Hind Limb Autoperfusion and Recording of Perfusion
Pressure. Isolated hind limb autoperfusion and perfusion pressure
recording were performed as described previously (Colquhoun et al.,
1988). In brief, after administration of heparin sodium (1000 U/kg,
i.v.), the right hind limb was perfused by means of a peristaltic pump
(Masterflex; Cole-Parmer Instrument Co., Vernon Hills, IL) with
blood taken from a catheter inserted in the left common carotid
artery. The outlet side of the perfusion circuit (Masterflex Silicon
tube platinum) was connected to the common iliac artery, which was
approached through a midline abdominal incision. Perfusion pres-
sure, measured from a side arm in the perfusion circuit between the
pump and the iliac artery, was recorded using a Spectramed P23XL
pressure transducer and displayed on a recorder. During the whole
surgical procedure, the ischemic period of the leg never lasted longer
than 3 to 5 min. The peristaltic pump was set to produce a constant
flow rate (3 ml/min). This arrangement enabled us to record repro-
ducible responses over 2 to 3 h without swelling of the paw. Capsa-
icin (8-methyl-N-vanillyl-trans-6-nonenamide), norepinephrine [(")-
4-(2-amino-1-hydroxyethyl)-1,2-benzenediol hydrochloride], and
oxytocin (#-hypophamine) were administered into the perfusion can-
nula near to the iliac artery catheterization site. For administration,
a Hamilton syringe was used, and the injected volumes varied be-
tween 10 and 100 !l. Acute cross-section of femoral, genitofemoral,
and sciatic nerves were carried out in the right hind limb to prevent
nociceptive reflexes from the perfused leg.

Measurement of Skin and Striated Muscle Blood Flow. La-
ser-Doppler recordings of microvascular blood flow changes were
made in the middle of the paw covered by thin glabrous skin and
from the flexor muscles of the thigh using a dual-channel laser
Doppler flowmeter (MBF3D; Moor Instruments, Axminster, Devon,
UK). The time constant was set to 1 s. During the experiment, the
exposed skeletal muscle was kept moist by a wet chamber placed
around the probe. Blood flow changes were recorded continuously
throughout the experiment and were expressed as arbitrary units of
flux (Escott and Brain, 1993; Pórszász and Szolcsányi, 1994). The
zero level was verified at the end of the experiment. Disturbances
caused by direct light were excluded by means of a piece of cotton

wool placed onto the right hind limb. The peak of the changes was
used to calculate the effect of drugs.

Long-Term Denervation of Hind Limb. In a group of animals
(n # 15), the nervous supply of the right hind leg was denervated
7 to 20 days before the experiment under sodium pentobarbital
[5-ethyl-5-(1-methylbutyl)-2,4,6-trioxohexahydropyrimidine] anes-
thesia (40 mg/kg, i.p.), as described previously (Sántha and Jancso,
2003). In brief, an incision was performed on the abdomen, and the
right femoral, genitofemoral, and sciatic nerves were cross-sected
transperitoneally. Then hemostasis was confirmed, and the wound
was sutured. During recovery from the anesthesia, the animals were
placed under an infrared heating lamp. Animals showing autotomy
were not included in the experiments.

Isolation of Arterioles and Experimental Protocols. The iso-
lation of the skeletal (gracilis) muscle arterioles of the rat and diam-
eter measurement of the arterioles were performed as described
earlier (Lizanecz et al., 2006). In brief, after spontaneous tone devel-
oped in response to intraluminal pressure of 80 mm Hg, arteriolar
responses were obtained in maximal response to cumulative doses of
the TRPV1 agonist, capsaicin (0.1 nmol/l to 1 !M). Capsaicin-in-
duced responses were also observed after endothelium removal
(Koller and Bagi, 2004) or after inhibition of NO synthase with
N$-nitro-L-arginine methyl ester (Koller and Bagi, 2004). In separate
experiments, intraluminal pressure was changed from 20 to 120 mm
Hg, and changes in diameter were measured before and after cap-
saicin treatment (1 !M for 20 min followed by a 40-min regeneration
period) (Scotland et al., 2004).

Immunohistochemistry. The immunohistochemical experi-
ments were performed as described by Lizanecz et al. (2006) with
minor modifications. In short, musculus gracilis, skin, and small
mesenteric tissues were dissected from Wistar rats and were embed-
ded in Tissue-Tek OCT compound (Electron Microscopy Sciences,
Hatfield PA). Cryostat sections (thickness, 10 !m) were placed on
adhesive slides and fixed in acetone for 10 min. The slices were
blocked with normal goat sera (1.5% in phosphate-buffered saline;
Sigma, St. Louis, MO) for 20 min and stained with anticapsaicin
receptor antibodies [AB 5370P (rabbit) and AB 5566 (guinea pig);
Millipore Bioscience Research Reagents, Temecula, CA; PC 547 (rab-
bit); Calbiochem, San Diego, CA; and RA 10110 (rabbit) and GP
14100 (guinea pig); Neuromics, Edina, MN] at a 1:500 dilution (for
all TRPV1-specific antibodies), with smooth muscle actin antibody
(NCL-SMA, dilution, 1:20; Novocastra Laboratories, New Castle,
UK) or with a neurofilament-specific antibody (dilution, 1:100;
Sigma) in the blocking buffer. Then the slices were incubated with
anti-rabbit, mouse, and guinea pig antibodies conjugated with Texas
red or Cy2. The pictures were captured by a Scion Corporation
(Frederick, MA) digital camera attached to a Nikon Eclipse 80i
fluorescent microscope (Nikon, Tokyo, Japan).

Detection of TRPV1 mRNA. Total RNA was isolated from rat
aorta and A7r5 cells (obtained from American Type Culture Collec-
tion, Manassas, VA) (LGC Promochem, Wesel, Germany) and main-
tained in 10% fetal bovine serum containing Dulbecco’s modified
Eagle’s medium, both were from Invitrogen (Carlsbad, CA) with
RNeasy RNS isolation kit (Qiagen GmbH, Hilden, Germany) and
cDNA was synthesized by a RevertAid H Minus kit (Fermentas UAB,
Vilnius, Lithuania), according to the manufacturer’s instruction. The
RT-PCR was performed by a sense (5$-CTACCTGGAACACCAATGT-
GGG-3$) and an antisense primer (5$-GCTGGGTGGCATGTC-
TATCTCG-3$) designed to produce a 596-bp fragment from DNA and
a 149-bp fragment from RNA. Glyceraldehyde-3-phosphate dehydro-
genase was used as control. Polymerase chain reaction was per-
formed in a volume of 25 !l consisting of 1 !l of cDNA, 1 !M primer,
200 !M dNTP, 6 mM MgCl2, 50 mM KCl, 10 mM Tris-HCl, pH 8.3,
and 2.5 U Long PCR Enzyme Mix (Fermentas UAB). The protocol
was 94°C 5 min followed by 35 cycles of 20 s at 94°C, 20 s at 58°C, and
40 s at 72°C.

Materials and Solutions. Oxytocin (#-hypophamine), capsaicin
(8-methyl-N-vanillyl-trans-6-nonenamide; Sigma), and resinifera-
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toxin [RTX; 6,7-deepoxy-6,7-didehydro-5-deoxy-21-dephenyl-21-
(phenylmethyl)daphnetoxin 20-(3-hydroxy-5-methoxybenzeneac-
etate] (from Sigma or from LC Laboratories, Woburn, MA) were
dissolved in ethanol/Tween 80/physiological saline in the ratio 1:1:8
for a 10 mg/ml capsaicin and a 100 !g/ml RTX stock solution, and
further dilutions were made with saline. Norepinephrine and oxyto-
cin from Gedeon Richter (Budapest, Hungary) were dissolved in
physiological saline.

Statistical Analysis. The peak increase or decrease in skin or
muscle blood flow (arbitrary units of flux) was determined after
drug administration for the assessment of the blood flow. The
change of the evoked effect was related to the values measured
before drug administration and expressed as percentages (mean "
S.E.M.). Changes in arteriolar diameter were expressed as the
percentage change to baseline diameter (constrictions) or in the
case of the arteriolar dilations, the percentage change of the
diameter as was related to the maximal dilation, determined at 80
mm Hg intraluminal pressure in a Ca2!-free medium. After the
normality test, the statistical analysis was made by one-way
analysis of variance, and pair-wise multiple comparisons were
performed by Student-Newman-Keuls method. The diagrams
were plotted using the computer program MicroCal Origin 5.0
(OriginLab Corp., Northampton, MA).

Results
It is well established that vanilloid receptor-1 (TRPV1)-

mediated vasodilatation involves the activation of TRPV1 in
sensory neuronal terminals and the consequent release of
neurotransmitters evoking endothelial synthesis of NO (Zyg-
munt et al., 1999). The effects of TRPV1 stimulation by
capsaicin on vascular resistance were tested in the isolated,
perfused right hind limb of the rat in vivo. Changes in the
systemic and perfusion pressure in the local blood flow in
skeletal muscle and in skin of the same hind limb were
measured simultaneously together with the respiration of
the rat by pressure transducers and dual-channel laser-
Doppler flowmetry (Fig. 1A). First, the responsiveness of the
perfused rat hind limb preparations was tested by norepi-
nephrine. Intra-arterial injection of norepinephrine (0.5 !g)
resulted in an increase of both systemic and tissue blood
pressure and a decrease in the blood flow in the perfused
skeletal muscle, whereas no responses were detected in skin
perfusion and respiration at this dose (Fig. 1). After a 15-min
regeneration period, the effects of TRPV1 stimulations were

Fig. 1. Effects of TRPV1 stimulation in perfused hind limb of the rat. The left common carotid artery and the common iliac artery were cannulated
for blood perfusion of the right hind limb of the rat (3 ml/min). Systemic (arterial blood pressure and respiration) and local (perfusion pressure, blood
flow in the skin and skeletal muscle) effects of noradrenaline (NA, 0.5 !g i.a.), capsaicin (Caps, 1 !g i.a.), and RTX (1 !g/kg i.v.) were recorded on the
same preparation. A representative of the in vivo experiments performed is shown in A. The dose-response of capsaicin is shown on the perfusion
pressure (B), on the blood flow of the skin (C), and skeletal muscle (D) on the right hind limb. Values are average " S.E.M.
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tested. Injection of capsaicin (1 !g) into the arterial perfusion
cannula of the blood-perfused right hind leg evoked a de-
crease in the systemic blood pressure, an increase in the
perfusion pressure, a parallel increase in the cutaneous blood
flow, and a decrease in blood perfusion of the muscle,
whereas respiration was not affected by this dose. These
responses were mimicked by the application of the ultrapo-
tent TRPV1 agonist resiniferatoxin (1 !g/kg i.v.). In addition,
the application of resiniferatoxin resulted in alterations in
the respiration and desensitized vanilloid receptors, as
shown by the unresponsiveness to repeated capsaicin stimu-
lation after 25 min, whereas the noradrenaline responses
were unaltered.

Next, the capsaicin-mediated responses were investigated
in detail. Intra-arterial application of capsaicin (0.1–10 !g)
resulted in a dose-dependent increase of perfusion pressure
(98 " 21 mm Hg increase at 10 !g, Fig. 1B), an increase in
the blood flow in the skin (42 " 5 AU increase at 3 !g; Fig.
1C) and a decrease in the blood flow in the skeletal muscle
(30 " 4 AU decrease at 3 !g; Fig. 1D).

To determine the role of neural elements in the capsaicin-
induced responses, long-term denervation was performed. In
a group of animals (n # 15), the genitofemoral, femoral, and
sciatic nerves were cross-sected 7 to 20 days before the com-
mencement of the experiment (see Materials and Methods).
Denervation was not able to abolish capsaicin (1 !g, intra-
arterial application)-evoked increase in the perfusion pres-
sure (Fig. 2, increase in the perfusion pressure is 49 " 3 mm
Hg in control and 32 " 3 mm Hg in denervated hind limbs),
nor was it able to affect oxytocin (0.5 I.U.)-mediated eleva-
tions (49 " 7 mm Hg increase in control and 56 " 8 mm Hg
in denervated hind limbs).

The effect of denervation was also tested on the local blood
flow in the skin and in the skeletal muscle (Fig. 3). Capsaicin-
evoked increases in the blood flow were decreased in the skin
(28 " 3 AU increase in the case of control versus 18 " 2 AU
in the case of denervated right hind limb; P % 0.01, n # 7),
but the decrease in the blood flow in the skeletal muscle was
not affected (9 " 1.5 AU decrease in the case of control,
versus 12 " 1.5 AU in the case of denervated; P # 0.25,
n # 7).

The presence of neurogenic innervation of the arteries in
the skin and in the skeletal muscle was tested by immuno-
histochemistry (Fig. 4). Dense innervation of arteries was
found in the skin (filled arrows in Fig. 4), but neurofilament-
positive nerve terminals were not detected in the skeletal
muscle arteries. In contrast, thicker nerves farther away
from the vessels were detected in both skin and skeletal
muscle tissue samples (labeled by open arrows in Fig. 4).

These results suggested non-neuronal vasoconstriction
(decrease in the blood flow) upon TRPV1 stimulation in the
skeletal muscle arterioles. To test this hypothesis, skeletal
muscle (musculus gracilis) arteries were isolated and cannu-
lated to directly measure the vasoactive effects of capsaicin.
Effects of TRPV1 stimulations were tested after the sponta-
neous development of the myogenic tone in response to 80
mm Hg intraluminal pressure (spontaneous tone, 31 " 4% of
the maximal diameter). TRPV1 activation with capsaicin
resulted in a biphasic effect on these arterioles. Low nano-
molar concentrations (0.1–10 nM) of capsaicin resulted in
substantial arteriolar dilation (maximum at 10 nM, 32 "
13%, n # 12), which was abolished by the removal of endo-
thelium (Fig. 5A) or by NO synthase inhibition with N$-nitro-
L-arginine methyl ester (0.2 mM) (7 " 5% dilation, n # 8, or
1 " 2% constriction, n # 4, respectively). In contrast, higher
concentrations of capsaicin (0.1–1 !M) elicited a significant
vasoconstriction (Fig. 5A; apparent maximum at 1 !M, 66 "
7%, n # 12), which was not affected by endothelium removal
(Fig. 5A; apparent maximum at 1 !M, 68 " 4%, n # 8 after
endothelium removal). We have found that capsaicin-induced
arteriolar constriction was transient (Fig. 5B), reaching its
maximum at approximately 90 s (maximal constriction: 59 "
10%, n # 5) and returning to the baseline diameter at the end
of the 20-min treatment (3 " 3% dilation, n # 5).

The role of the endogenous activation of TRPV1 on the
determination of arteriolar diameter was also tested. Appli-
cation of the TRPV1 antagonist capsazepine (10 !M) resulted
in a significant vasodilation (28 " 7%, n # 5) in isolated
skeletal muscle arteries.

Based on these functional and immunohistochemical ob-
servations, we hypothesized that TRPV1 expression is not
restricted to sensory neurons in the vasculature. The vascu-
lar expression of TRPV1 in the musculus gracilis arterioles
was evaluated by immunohistochemistry. In these arterioles,

Fig. 2. Effects of denervation on the perfusion pressure changes of the rat
right hind limb in vivo. In a group of animals (n # 15), the nerves
innervating the right hind leg were transected 7 to 20 days before the
measurement. The effects of capsaicin (1 !g i.a.) and oxytocin (0.5 I.U.)
were tested on the perfusion pressure in control and in denervated hind
limbs. Values are average " S.E.M.

Fig. 3. Effects of denervation on the blood flow changes of the rat right
hind limb in vivo. Denervation was performed as mentioned earlier. The
effects of capsaicin (1 !g i.a.) on the blood flow of skin and skeletal muscle
were tested in control and denervated hind limbs. Values are average "
S.E.M., n # 7.
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TRPV1-expressing cells were costained with smooth muscle
#-actin (Fig. 6B), demonstrating the expression of TRPV1 in
the smooth muscle cells. To further confirm the specificity of

the TRPV1 staining, arterioles were costained with differ-
ent TRPV1 antibodies developed against different TRPV1
epitopes in different species, which resulted in overlapping
staining patterns (data not shown). the presence of TRPV1
mRNA in aorta and in cultured A7r5 vascular smooth
muscle cells was also confirmed by RT-PCR (Fig. 6A).

Discussion
The main findings of the present study are that 1) in the

hind limb, TRPV1 stimulation resulted in an increase of
vascular resistance and reduction of tissue perfusion (Fig. 1),
independently of the innervation (Fig. 2 and 3); 2) in the
isolated skeletal muscle arterioles, capsaicin elicited vaso-
constriction, which was not affected by endothelium removal
(Fig. 5); 3) TRPV1 mRNA is detectable in both aorta and
cultured smooth muscle cells (Fig. 6); and 4) TRPV1 is ex-
pressed in vascular smooth muscle cells of the skeletal mus-
cle arterioles (Fig. 6). These data suggest functional expres-
sion of TRPV1 in the vascular smooth muscle cells of the
skeletal muscle arterioles.

Our present findings also indicate that TRPV1 stimulation
results in diverse vascular effects in arterial beds of the rat
hind limb. We propose that TRPV1 regulates arteriolar di-
ameter primarily by two mechanisms (Fig. 7). In the case of
skin, TRPV1 activation resulted in a neuronal vasodilation
(Fig. 1 and 3), probably mediated by a sequence of events

Fig. 4. Innervation of arteries in the skin and skeletal muscle of the rat
hind limb. The skin (paw) and skeletal muscle (gracilis) of the hind limb
were sectioned in a cryostate (thickness, 10 !m) and fixed in acetone. The
presence of neuronal elements (innervation) was tested by a neurofila-
ment specific antibody (dilution: 1:100; Sigma) and visualized by a sec-
ondary antibody conjugated with Texas red (red on the figures). For the
staining of the arteries, a smooth muscle-specific antibody (dilution: 1:20;
Novocastra) and a secondary antibody conjugated with Cy-2 (green on the
figures) were used. Localization of these elements were visualized in
cross and longitudinal sections. Thick nerves in the tissue sections are
represented by open arrows, whereas thin neurits innervating the arter-
ies are shown by closed arrows.

Fig. 5. Effects of TRPV1 stimulation in isolated arterioles. A, dose-
response of capsaicin on isolated pressurized skeletal muscle arterioles
(control, n # 12, and endothelium-denuded, n # 8). B, the effect of 20-min
continuous application of 1 !M capsaicin. Values are average " S.E.M.

Fig. 6. Expression of TRPV1 in vascular smooth muscle cells. RT-PCR
analysis was performed using RNA isolated from aorta and cultured
vascular smooth muscle cells (A). TRPV1-specific primers were designed
to yield a 149-bp fragment from mRNA (shown by the arrow) and a
596-bp fragment from DNA (not detected). Glyceraldehyde-3-phosphate
dehydrogenase was used as control. To investigate the localization of
TRPV1, immunohistochemistry was performed in the skeletal muscle
(gracilis) tissue sections of the rat (B). TRPV1- (rabbit, 1:500 dilution,
green; Calbiochem) and smooth muscle actin (monoclonal, 1:20 dilution,
red; Novocastra)-specific staining was visualized by a fluorescent micro-
scope. Slides were also processed in mounting media containing 4,6-
diamidino-2-phenylindole for staining of nuclei (blue). The artery used in
the in vitro functional studies is identified (L, lumen; A, artery).

TRPV1 Expression in Vascular Smooth Muscle Cells 1409



such as the activation of sensory neurons, the subsequent
local release of sensory neurotransmitters (like CGRP or SP),
stimulation of endothelial cells by these neurotransmitters,
activation of endothelial NO synthesis, and NO-mediated
relaxation of smooth muscle cells, as proposed by Zygmunt et
al. (1999). In contrast, TRPV1 stimulation by capsaicin had
biphasic effects in the isolated skeletal muscle resistance
arterioles (vasodilation at lower concentrations and vasocon-
striction at higher concentrations; Fig. 5), suggesting a dual
regulation of vascular tone. The dilatative effects of capsaicin
were endothelium-dependent (Fig. 5) and nitric oxide-medi-
ated. In addition, inhibition of TRPV1 in isolated, pressur-
ized skeletal muscle arteries resulted in a vasodilation, indi-
cating a physiological role of TRPV1 in the regulation of
vascular diameter. It should also be noted that capsaicin
evoked opposite effects in different vascular beds under in
vivo conditions (Fig. 1A). The increase of pressure of the
isovolumetric (3 ml/min) perfusion in the hind limb suggests
higher local resistance in the vasculature of the hind limb (at
least partly as a result of skeletal muscle arteriolar constric-
tion, Fig. 5), whereas the simultaneous decrease in systemic
blood pressure indicates a somewhat higher overall efficiency
of vasodilatative receptors (probably mediated by mesenteric,
dural, skin, pulmonary, or coronary arteries) in the whole
vasculature.

The simplest explanation of the findings is that TRPV1 is
functionally expressed in vascular smooth muscle cells. Al-
though findings based on immunohistochemical data in gen-
eral should be interpreted with caution, this proposal is also
supported by RT-PCR results and the vasoconstrictive effect
of TRPV1 stimulation in intact or endothelial denuded iso-
lated skeletal muscle arteries. According to these data, we
hypothesize that activation of TRPV1 in skeletal muscle ar-
teries occurs both in sensory neurons and in vascular smooth
muscle cells, leading to Ca2! influx into both cell types. The

elevated intracellular Ca2! concentration in the smooth mus-
cle directly results in vasoconstriction, whereas in the sen-
sory nerves, it triggers neurotransmitter release and concom-
itant endothelial-dependent vasodilation (Fig. 7).

Capsaicin-evoked in vivo vasoconstriction of various arte-
rial beds was discovered decades ago (Molnár and Gyorgy,
1967; Toda et al., 1972; Donnerer and Lembeck, 1982; Duck-
les, 1986; Edvinsson et al., 1990). In these initial and fol-
low-up studies, TRPV1-mediated vasoconstriction was found
in dog mesenteric (Toda et al., 1972; Pórszász et al., 2002),
renal, and carotid artery (Toda et al., 1972); in cat middle
cerebral (Duckles, 1986; Edvinsson et al., 1990), pial (Edvins-
son et al., 1990), and pulmonary (Molnár and Gyorgy, 1967)
arteries; in rat heart (Szolcsányi et al., 2001), small mesen-
teric (Scotland et al., 2004), dural (Dux et al., 2003), and
skeletal muscle arteries (Lizanecz et al., 2006); and in mouse
knee joint (Keeble and Brain, 2006). Multiple mechanisms
leading to TRPV1-mediated vasoconstriction were suggested,
including endothelin-1 (Szolcsányi et al., 2001) or SP (Scot-
land et al., 2004) release from sensory neurons, and yet
uncharacterized smooth muscle-mediated effects were ob-
served (Pórszász et al., 2002; Dux et al., 2003; Keeble and
Brain, 2006). In addition to these possibilities, our data pro-
vide evidence for TRPV1 expression in vascular smooth mus-
cle cells, suggesting a direct link between TRPV1 activation
and smooth muscle contraction. Nevertheless, these data
indicate that vasoconstrictive effects of TRPV1 stimulation
are not restricted to a specific blood vessel or to a single
species.

It is interesting that in some of these cases, like in the case
of rat mesenteric arteries, both vasoconstriction (Scotland et
al., 2004) and vasodilation (Ralevic et al., 2000) were ob-
served upon capsaicin stimulation. It suggests that there are
two pools of TRPV1 in these systems, but one of the receptor
types is down-regulated under specific circumstances, and

Fig. 7. Proposed mechanism of tissue-
specific regulation of vascular diame-
ter by TRPV1. Our data support the
well known sensory neuronal dilation
in the skin arteries involving the fol-
lowing events: 1) activation of sensory
neuronal TRPV1; 2) elevation of intra-
cellular Ca2! in the neuronal termi-
nals; 3) release of sensory neurotrans-
mitters, including CGRP and SP; 4)
activation of endothelial receptors of
these neurotransmitters; 5) increase
of endothelial NO synthesis; and 6)
NO diffusion and smooth muscle re-
laxation. The same mechanism was
found to be responsible for capsaicin-
mediated dilation in skeletal muscle
arteries. In contrast, functional ex-
pression of TRPV1 was also identified
in vascular smooth muscle cells of
gracilis artery. The activation of these
smooth muscle-located receptors led
to vasoconstriction. We propose that
the balance of activities of sensory
neuronal and smooth muscle-located
TRPV1-mediated pathways deter-
mines the vasoactive effects of TRPV1
stimulation.
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the physiological effect of capsaicin stimulation is dominated
by the active receptor population. In accordance with this
idea, dose-dependent biphasic effects were also noted in some
studies: low dose capsaicin evoked dilation, whereas higher
concentrations resulted in constriction (Edvinsson et al.,
1990; Dux et al., 2003), similar to our findings.

Several mechanisms have been suggested to regulate TRPV1
activity, besides to the expressional regulation. These include
protein kinase C (Bhave et al., 2003) or protein kinase A (Bhave
et al., 2002)-mediated phosphorylation, calcineurin-mediated
dephosphorylation (Docherty et al., 1996), interaction with cal-
modulin (Numazaki et al., 2003) or with phosphoinositides (Liu
et al., 2005; Lukacs et al., 2007), besides others. As a matter of
TRPV1 mediating skeletal muscle vasoconstriction, phosphor-
ylation seems to be the most likely candidate (Lizanecz et al.,
2006).

Some of the findings of this study suggest pharmacolog-
ical differences in the TRPV1 pools mediating constriction
and dilation, namely 1) higher sensitivity/effectivity of
dilatative responses (dilation in the case of low capsaicin
concentrations), with a profound constrictive responses at
maximal stimulation; and 2) vasodilation evoked by short-
term inhibition of TRPV1. In addition, earlier data sug-
gest that the TRPV1 receptors mediating vasodilation can
be easily desensitized by neonatal capsaicin treatments,
whereas the capsaicin response of receptors mediating va-
soconstriction remains intact or augmented (Donnerer and
Lembeck, 1982). As a therapeutical consequence of these
observations, it seems to be possible to design TRPV1
ligands preferably acting on receptors mediating constric-
tive or dilatative responses. Although there is no shortage
of drug candidates regulating TRPV1 activity (Szallasi et
al., 2007), their development was concentrated on their
effects on sensory neuronal functions (mostly pain). One of
the examples to emphasize the feasibility of such drug
development is that it was possible to design an antagonist
selective to the plasma membrane located TRPV1 over to
the intracellular membrane-located receptors (Tóth et al.,
2004). The drugs selective to receptors mediating dilation
or constriction may be useful to regulate blood distribu-
tion in various pathophysiological conditions associated
with ischemia. For example, sensory neuronal TRPV1 was
found to be activated upon myocardial ischemia (Zahner et
al., 2003; Pan and Chen, 2004) and beneficial in postisch-
emic recovery (Wang and Wang, 2005), suggesting that
selective activation of sensory neuronal TRPV1 may be
beneficial in myocardial infarction.

Taken together, we report here that TRPV1 (a nonspe-
cific Ca2! channel) is expressed in smooth muscle cells,
and its activation leads to vasoconstriction in skeletal
muscle resistance arterioles. We propose that TRPV1 has a
potential physiological/pharmacological role in the regula-
tion of arteriolar tone in skeletal muscle (apparently in the
range of 40% dilation to 60% constriction), which repre-
sents a promising new therapeutic strategy to control tis-
sue-specific blood distribution.
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Summary  

Background and purpose: The vanilloid receptor 1 (TRPV1) plays a role in the 

activation of sensory neurons by various painful stimuli and became a therapeutic target. 

However, functional TRPV1 expression was also observed in the peripheral arteries 

affecting microvascular diameter.  

Experimental approach: Sensory TRPV1 activation was measured by eye wiping tests. 

Arteriolar TRPV1 mediated smooth muscle specific responses (arteriolar diameter, 

changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle 

arterioles (from the rat and wild type or TRPV1-/- mice, n=130) or in isolated canine 

smooth muscle cells. Vascular pharmacology of TRPV1 agonists (potency, efficacy, 

kinetics of action and receptor desensitization) was determined in isolated skeletal muscle 

arteries of the rat.  

Key results: Capsaicin evoked a similar constriction as norepinephrine, which was 

absent in TRPV knockout mice and was competitively inhibited by a TRPV1 antagonist 

AMG9810. Capsaicin activation resulted in an increase in intracellular Ca2+ in the 

arteriolar wall as well as in isolated smooth muscle cells. Other TRPV1 agonists evoked 

similar vascular constrictions (MSK-195, JYL-79) or were without effect (resiniferatoxin, 

JYL-273), although all resulted in a sensory activation (eye wiping). Maximal dose of 

agonists gave different kinetics of arteriolar response. A complete desensitization 

(tachyphylaxis) of arteriolar TRPV1 was observed (with the exception of capsaicin). 

Application of the partial agonist JYL-1511 suggested that about 10% TRPV1 activation 

is sufficient to evoke vascular tachyphylaxis without sensory activation.  
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Conclusions and implications: Our data suggests that arteriolar TRPV1 has different 

structure-activity relationship compared to sensory neuron located receptor in the rat. 

 

Keywords: vanilloid receptor (TRPV1), resistance artery, vascular autoregulation  

 

List of abbreviations: 

TRPV1: Transient receptor potential vanilloid 1 

AMG9810: (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide 

MSK-195: N-[2-(3,4-Dimethylbenzyl)-3-(pivalyloxy)propyl]-2-[4-(2-aminoethoxy)-3 

methoxyphenyl]acetamide 

JYL-79: 2-(3,4-Dimethylbenzyl)-3-{[(4-hydroxy-3-methoxy-

benzyl)amino]carbothioyl}propyl pivalate 

JYL-273: 2-(4-t-Butylbenzyl)-3-{[(4-hydroxy-3-methoxybenzyl)ami- no]carbothioyl}propyl pivalate 

JYL-1511: N-(4-tert-Butylbenzyl)-N'-[3-methoxy-4-(methyl-

sulfonylamino)benzyl]thiourea 

BSA: Bovine serum albumin 

TRPV1-/-: B6.129X1-Trpv1tm1Jul/J mice (Jackson Laboratories) 

CHO-TRPV1: Chinese hamster ovary cells overexpressing rat TRPV1 

PKC: Protein kinase C 

PKA: Protein kinase A 

DRG: dorsal root ganglion 
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i.p.: intraperitoneal injection 
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Introduction 

 

The vanilloid receptor-1 (TRPV1) is a non-selective cation channel, originally found in 

sensory C and A-! fibers (Caterina et al., 1997). It functions as a ligand-, proton- and 

heat-activated molecular integrator of nociceptive stimuli (Di Marzo et al., 2002; Ross, 

2003; Szallasi et al., 1999) and hence represents a promising drug target for analgesia 

(Gunthorpe et al., 2008; Szallasi et al., 2007). 

 However, TRPV1 expression was identified in many cells, besides sensory 

neurons in the last years. In particular, TRPV1 expression was detected in various cell 

types in the brain (Toth et al., 2005a), and in the periphery, including arteriolar receptors 

responsible for vasoconstriction (Kark et al., 2008). Moreover, while functional 

expression of TRPV1 in the central nervous system remained elusive, activation of 

vascular TRPV1 resulted in a substantial vasoconstriction in vivo and in vitro (Kark et al., 

2008). TRPV1 antagonists are in clinical trials for various indications like dental pain, 

osteoarthritis, neuropathic pain, overactive bladder, chronic cough, rectal 

hypersensitivity, migraine, lower back pain, interstitial cystitis (Khairatkar-Joshi et al., 

2009). Although some results of these trials are promising, they also revealed that 

TRPV1 antagonists may evoke serious hyperthermia (Gavva et al., 2008). This 

hyperthermia is probably related to the contribution of TRPV1 to the temperature 

regulation, in vivo (Gavva et al., 2007). However, the mechanism of this effect is not 

clear. Although some antagonists are causing hyperthermia (Gavva et al., 2008), others 

are without thermoregulatory effects in human (Khairatkar-Joshi et al., 2009). It suggests 

that pharmacologically different TRPV1 is responsible for analgesia and for 
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thermoregulation. The nature and identity of these TRPV1 dependent responses have not 

been identified yet, but it seems to be plausible that a separate pool of receptors exists 

(Steiner et al., 2007). 

Capsaicin evokes vasoconstriction in skeletal muscle arteries presumably by 

activating smooth muscle located TRPV1 (Kark et al., 2008). Here we made an effort to 

pharmacologically characterize this receptor. To achieve this goal we choose a series of 

commercially available TRPV1 agonists that were tested in assays measuring not only 

their potency and efficacy, but also their kinetics of action and desensitization (Toth et 

al., 2005b). Our experiments revealed different pharmacological profiles for vascular 

TRPV1  when compared to TRPV1 responsible for sensory activation. These findings 

implicate that TRPV1 may be selectively targeted (such as sensory neuronal and arterial 

receptor populations). 
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Methods 

 

The applied drug/molecular target nomenclature (e.g. receptors, ion channels) conforms 

to BJP's Guide to Receptors and Channels (Alexander et al., 2009).  

 

Animals, anaesthesia and general preparation in the in vivo experiments 

The experiments were performed on male Wistar rats (n=119 rats) weighing 250-450 g 

and on male mice (6 control C57BL/6J and 5 TRPV1-/- knockout mice). Rats 

(WKY/NCrl) were obtained from Charles River (Isaszeg, Hungary), while mice was 

obtained from Jackson Laboratories (Bar Harbor, Maine, USA) and maintained on a 

standard laboratory food (CRLT/N chow from Szinbad Kft, Godollo, Hungary) and water 

ad libitum. Anaesthesia was performed with 100 mg/kg i.p. pentobarbital sodium.  

 

Isolation of arterioles and measurement of vascular diameter 

The isolation of skeletal muscle (m. gracilis) arterioles of the rat and diameter 

measurement of the arterioles were performed as described earlier (Lizanecz et al., 2006). 

Briefly, arterioles were kept in a physiological saline solution (PSS, composition in mM: 

110 NaCl, 5.0 KCl, 2.5 CaCl2, 1.0 MgSO4, 1.0 KH2PO4, 5.0 glucose and 24.0 NaHCO3 

equilibrated with a gas mixture of 10% O2 and 5% CO2, 85% N2, at pH 7.4.) at an 

intraluminal pressure of 80 mmHg until the development of spontaneous myogenic 

response (constriction to intraluminal pressure). Intraluminal arteriolar diameter was 

measured upon treatments. First, acetylcholine was used to determine dilative capacity 

and endothelium function, and then norepinephrine was applied to measure maximal 
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constrictive response and smooth muscle function. Changes in diameter to TRPV1 

agonists were tested next with cumulative doses (capsaicin, 0.1 nM – 1 µM; 

resiniferatoxin, 1 pM – 10 nM; JYL-273, 0.1 nM – 1 µM; MSK-195, 0.1 nM – 3 µM; 

JYL-79 3 pM – 10 µM; JYL-1511, 1 nM – 1 µM ). Specificity of the capsaicin responses 

were tested by the application of the TRPV1 antagonist AMG9810. Cumulative dose 

responses for capsaicin were measured in the presence of 100, 300 and 1000 nM 

AMG9810 (obtained from: Tocris Bioscience, Ellisville, MO, USA). Desensitization of 

arteriolar TRPV1 was tested in separate experiments. Acute desensitization (decrease in 

response in the continuous presence of agonist) was determined by measurement of 

arteriolar diameter during 20 min incubations with a high concentration of the drugs. This 

was followed by 40 min regeneration (in KREBS) and tachyphylaxis (decrease of 

response upon re-administration of the agonist) was tested by 1 µM capsaicin. Arterioles 

were isolated from wild type and TRPV1 knockout mice as detailed for the rat. 

Experiments were also performed similarly: acetylcholine was used to determine 

endothelial function, and norepinephrine was applied to estimate smooth muscle function. 

Changes in diameter to TRPV1 agonists were tested with cumulative doses of capsaicin, 

(0.1 nM – 30 µM). 

 

Determination of antagonist equlibrium dissociation constant 

A conventional Schild plot (Arunlakshana et al., 1959) was constructed based on the 

measured values. EC50 of capsaicin was calculated in the absence (designated as A) or in 

the presence of AMG9810 (designated as A'), then log((A/A')-1) values were plotted as 

the function of the logarithm of AMG9810 concentration (Fig. 2B). Data were fitted by a 
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linear regression and the antagonist equilibrium dissociation constant was yielded as the 

x-intercept.  

 

Parallel measurement of vascular diameter and intracellular Ca2+ concentrations 

Skeletal muscle arterioles were isolated and cannulated from the gracilis muscle of the 

rat, as mentioned above. After mounting the arteries into the tissue chamber the 

physiological buffer was supplemented with 1% BSA and 5 µM Fura-2AM fluorescent 

Ca2+ indicator dye for 60-120 min until a spontaneous myogenic tone developed. Then 

the tissue chamber was placed on the stage of a Nikon TS100 inverted microscope to 

measure intracellular Ca2+ concentrations by an IncyteIm2 instrument (Intracellular 

Imaging Inc, Cincinnati, OH, USA) by recording images (cut off >510 nM) excited 

alternatively by 340 and 380 nm light. Images were recorded at each 2-5 s and offline 

evaluated. Outer diameter of the arteries was determined on each recorded image and 

arteriolar Ca2+ concentrations were detected by calculating ratios between averaged 

signal intensity at 340 and 380 nm excitation in the whole arteriolar segment 

(representing minimum 200 pixels). A movie showing the full representative experiment 

has been uploaded as a supplementary video file and additional movies can also be seen 

at our website 

(http://www.debkard.hu/upload/file/klinfiz/kkk/Vascular%20system/Vascular%20system

.html). 

 

Isolation of smooth muscle cells from canine coronary arteries 
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Adult beagle dogs (10–14 kg) were anaesthetised with an i.v. injection containing 10 

mg/kg ketamine hydrochloride (Calypsol, Richter Gedeon, Hungary) and 1 mg/kg 

xylazine hydrochloride (Sedaxylan, Eurovet Animal Health BV, The Netherlands). After 

opening the chest, the heart was rapidly removed and the right coronary artery was 

perfused with Ca2+-free JMM solution (Minimum Essential Medium Eagle, Joklik 

Modification), supplemented with taurine (2.5 g/l), pyruvic acid (175 mg/l), ribose (750 

mg/l), allopurinol (13.5 mg/l), and NaH2PO4 (200 mg/l) equilibrated with a mixture of 

95% O2 and 5% CO2 (similar to all further solutions) for 5 min to remove the blood. Then 

the solution was changed to DMEM and an about 2.5 cm long right coronary artery 

segment was isolated and cannulated on both ends. The cannulae were connected to a 

peristaltic pump and the solution was pumped from the tissue chamber into the arteriolar 

lumen (from which it leaked back to the tissue chamber). Then DMEM was 

supplemented with 3 mg/ml collagenase type I (Worthington, Lakewood, NJ, USA) for 

30 minutes and with 1 mg/ml elastase (Worthington, Lakewood, NJ, USA) at 60 min. 

The vessel fell apart in about 90 min under these conditions, when the cell-rich solution 

was transferred into 24-well plates. After the adherence of the cells to the glass coverslips 

placed into the wells (about 10 min) the solution was replaced with DMEM to remove the 

digesting enzymes and the cells were incubated for 60 min in a CO2 thermostate. Then 

the media was changed to DMEM containing 1 mg/ml BSA and 5 M fura2-

acetoxymethyl ester (Molecular Probes, Eugene, OR, USA) for 2 h at room temperature. 

Then the cover slips were placed in a suitable chamber for intracellular Ca2+ 

concentration measurements. These measurements were started by washing the cells with 

DPBS three times and then the measurements were performed in DPBS. The 
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fluorescence of individual cells was measured with an InCyt Im2 fluorescence imaging 

system (Intracellular Imaging Inc., Cincinnati, OH, USA). The cells within a field were 

illuminated alternately at 340 and 380 nm. Emitted light at >510 nm was measured. The 

cells were treated with 1 M capsaicin and then with 100 mM KCl. Data were analyzed 

with the InCyt 4.5 software and further processed with Excel (Microsoft Corp, Redmond, 

WA, USA) and Prism 5.0 (Graphpad Software, Inc., San Diego, CA, USA) software. 

 

Measurement of eye wiping 

Eye wiping assay was performed as described previously (Jakab et al., 2005). In short, 1 

drop (10 "l) of agonists (capsaicin, 1 µM; resiniferatoxin, 10 nM; JYL-273, 1 µM; MSK-

195, 1 µM; JYL-79, 1 µM; JYL-1511, 1 µM) was put into the right or left conjunctiva of 

the rat (single treatment of each rat). The number of eye wipes was counted during 60 s. 

In the control group the solvent was injected in the same volume and manner. 

 

Materials and solutions 

Chemicals were from Sigma-Aldrich (St. Louis, MO, USA) if not stated otherwise. 

Resiniferatoxin, JYL-273, MSK-195, JYL-79  and JYL-1511 were from Alexis (Enzo 

Life Sciences AG, Lausen, Switzerland). TRPV1 agonists were dissolved in ethanol. 

 

Statistical analysis 

Arteriolar diameter was measured in µm, determined at 80 mmHg intraluminal pressure. 

Results are shown as mean ± S.E.M. Statistical differences were evaluated by Student’s t-
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test comparing values before and after treatments (paired) or comparing eye wipes of 

vehicle and TRPV1 agonist treated rats (unpaired). 
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Results 

 

Application of the TRPV1 specific agonist capsaicin (1 µM) resulted in a 

substantial constriction (decrease of arteriolar diameter from 210±11 µm to 91±17 µm, 

n=7, p<0.01) of skeletal muscle (m. gracilis) arterioles (Fig. 1) similarly to 

norepinephrine (10 µM, decrease of arteriolar diameter to 68±9 µm, n=7, Fig. 1). In 

contrast, the endothelium dependent vasodilator acetylcholine evoked a dilatation 

(increase in arteriolar diameter to 240±20 µm, n=7, p=0.028, Fig. 1). 

A vast majority of published data suggested dilative effects upon vascular TRPV1 

stimulation in the previous body of experimental evidence published in the literature. It 

was therefore necessary to test TRPV1 specificity of these capsaicin mediated contractile 

responses. First, a competitive antagonist of TRPV1 was applied. AMG9810 antagonized 

capsaicin mediated contractions in a dose-dependent manner (Fig. 2A). Moreover, the 

potency of AMG9810 determined in these assays (177 nM, Fig. 2B) was in agreement 

with its potency determined in other TRPV1 specific systems (Gavva et al., 2005). 

Nonetheless, TRPV1 selectivity of capsaicin mediated contractile responses were also 

tested in TRPV1 knockout (TRPV1-/-) mice. The potency of capsaicin (EC50) was 137 

nM (Fig. 2C) and efficacy was 73% (decrease in diameter from 69±8 µm to 24±3 µm, 

n=6, Fig. 2C) on arteries from wild type mice, while the same capsaicin treatments were 

without effects on TRPV1-/- mice (Fig. 2C, n=5).   

Next the potential mechanism of TRPV1 mediated constrictions was evaluated. 

Activation of TRPV1 results in an increase of intracellular Ca2+ concentrations in many 

TRPV1 expressing cell types, contributing to the physiological effects. To detect 
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capsaicin mediated changes in intracellular Ca2+ concentrations a Ca2+ imaging system 

was applied. Simultaneous measurement of intracellular Ca2+ concentration and vascular 

diameter (outer diameter in this specific case) of cannulated rat arterioles isolated from 

the gracilis muscle of the rat was performed (Fig. 3). Capsaicin evoked vasoconstriction 

was paralleled by an increase in intracellular Ca2+ concentration (supplementary video 

file and Fig. 3A). Moreover, both vascular diameter and intracellular Ca2+ concentration 

increased in a dose-dependent manner, with a potency in the nanomolar range (note 

maximal responses at 1 µM concentration, Fig. 3B). To identify the TRPV1 expressing 

cell type arteriolar smooth muscle cells were isolated from canine coronary arteries (these 

arteries have also responded to capsaicin treatment with a dose dependent constriction, 

data not shown) and changes in intracellular Ca2+ concentrations were tested upon 

capsaicin (1 !M) and KCl (100 mM) treatments (Fig. 4). The capsaicin mediated increase 

in intracellular Ca2+ concentrations in the cells responding to capsaicin (10 out of 28 

cells, representative data in Fig. 4A and 4B) was similar (increase in 340/380 ratio from 

0.69"0.10 to 0.93"0.17, Fig. 4C) to the increase evoked by depolarization (100 mM KCl, 

340/380 ratio is 1.04"0.20, Fig. 4C). 

Having established the TRPV1 specificity of capsaicin evoked vasoconstrictive 

effects, the pharmacological properties of these receptors were characterized in detail on 

skeletal muscle arteries of the rat. The potency of capsaicin on this receptor (EC50) was 

221 nM (Fig. 5A), efficacy was 58±7% constriction (n=7), which was not significantly 

different from the efficacy of norepinephrine (69±3% constriction, n=6, p<0.01 versus 

control, p=0.08 versus capsaicin). The kinetics of vasoconstrictive response was 

determined by continuous application of capsaicin (1 µM) for 20 min. Maximal 
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constriction (decrease of arteriolar diameter from 160±11 µm to 76±16 µm, n=9) was 

achieved at 90 s (Fig. 5B). After that an acute desensitization (decrease of response in the 

presence of agonist) was observed. Arteriolar diameter was similar to the control at the 

end of the 20 min treatment (gradual increase to 150±13 µm, n=9, Fig. 5B). Finally, 

tachyphylaxis (decrease of response upon repeated application of the agonist) was 

measured by the re-application of capsaicin (1 µM) after 40 min regeneration period. 

Arteriolar diameter decreased from 161±17 µm to 109±18 µm (n=6) suggesting 

significant re-sensitization of the receptor (Fig. 5C). 

Resiniferatoxin was tested under the same conditions (Fig. 6). Surprisingly no 

vascular effects were detected upon application in a concentration range from 1 pM to 10 

nM (Fig. 6A). Moreover, no effects were detected upon application of 10 nM for 20 min 

(Fig. 6B). However, capsaicin (1 µM) was without effects after 40 min regeneration (Fig. 

6C), suggesting complete desensitization of arterial TRPV1 upon the otherwise 

ineffective resiniferatoxin treatments.  

JYL-273 was ineffective in evoking arteriolar vasoconstriction in a concentration 

range between 0.1 nM and 1 µM (n=7, Fig. 7A), nor has it any effect at 1 µM applied for 

20 min (n=5, Fig. 7B). However, this 20 min incubation resulted in complete 

desensitization of TRPV1 as evidenced by the missing response to capsaicin (n=4, Fig. 

7C), similarly to resiniferatoxin. 

 MSK-195 had a potency of 120 nM and an efficacy of 71±11% (n=5, Fig. 8A). 

Application of 1 µM MSK-195 for 20 min resulted in a transient decrease in arterial 

diameter (decrease from 235±19 µm to 155±25 µm at 90 s, n=6, Fig. 8B). However, 

kinetics of acute desensitization was slower than that is for capsaicin, since original 
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arteriolar diameter was not restored during the 20 min incubation (arterial diameter after 

20 min incubation was 193±25, p=0.03 versus before treatment, n=6, Fig. 8B). Similarly 

to all agonists mentioned above MSK195 also evoked a complete desensitization of 

capsaicin sensitive vascular TRPV1 (Fig. 8C). 

JYL-79 was more potent on vascular TRPV1 (EC50=3.9 nM, n=8, Fig. 9A) than 

capsaicin. Its efficacy was 36±8% (n=8, Fig. 9A). It also evoked a transient 

vasoconstriction when applied at a concentration of 1 µM (decrease of vascular diameter 

from 228±13 µm to 127±12 µm at 100 s, n=5, Fig. 9B). The desensitization of the 

receptor was not complete at the end of incubation (vascular diameter at 20 min was 

204±13 µm, p=0.046 versus before treatment, n=5, Fig. 9B). Moreover, no response to 

capsaicin (1 µM) was observed after 40 min regeneration (n=5, Fig. 9C). 

To estimate the threshold of TRPV1 stimulation which may cause complete 

desensitization of vascular TRPV1 a partial agonist (JYL-1511) was applied. Its efficacy 

as agonist was about 17% and its potency was 3 nM in a CHO-TRPV1 cell line (Wang et 

al., 2003). JYL-1511 was without effects in a concentration range of 1 nM - 1 µM on the 

vascular diameter (n=6, Fig 10A). Application of 1 µM for 20 min was also without 

effects (Fig. 10B). A partial inhibition (tachyphylaxis) of capsaicin response (1 µM) was 

noted after 40 min regeneration (decrease of vascular diameter from 244±14 µm to 

209±17 µm, p=0.02, n=6, Fig. 10C). The level of partial agonism/antagonism was also 

determined (Fig. 11). Application of JYL-1511 (1 µM) resulted in a decrease of arteriolar 

diameter (arterial diameter decreased to 94±3 %, n=6) and an immediate capsaicin 

treatment (1 µM) resulted in a decrease of diameter to 83±6 % (p=0.04, n=6). In contrast, 

the same capsaicin treatment alone evoked a decrease of diameter to 43±7 % (p<0.01, 
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n=7) in separate experiments. According to these data, the agonism of JYL-1511 is 10±5 

% and antagonism is 70±11 % at the vascular TRPV1. 

 The goal of the study was to detect differences between TRPV1 populations 

responsible for sensory neuronal activation and vasoconstriction. A weakness of the 

previous characterization of the applied agonists is that their effects were tested only in 

vitro, many times only on TRPV1 receptors expressed exogenously (Table 1). Sensory 

neuronal activation was also tested here by eye wiping assays. JYL-1511 did not evoked 

significant effects, while all of the other agonists increased the number of eye wipes (Fig. 

12). Note, that although these data were in complete agreement with previous in vitro 

results (Table 1), differences between sensory neuronal and vascular effects were also 

noted. In particular, resiniferatoxin and JYL-273 were both ineffective to evoke acute 

activation of vascular TRPV1 receptors (Fig. 6 and 7, respectively).     
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Discussion and conclusions  

 Here we report an analysis on the pharmacological properties of a 

vasoconstrictive population of TRPV1. Changes in vascular diameter were measured to 

various agonists and to a partial agonist/antagonist of the receptor. Our data suggest that 

significant differences exist in the pharmacological properties of endogenous TRPV1 

pools. There are at least two important consequences of this observation: first, TRPV1 

antagonists being developed as analgesic agents should be tested for circulatory side 

effects; second, selective modulation of vascular TRPV1 may also be a therapeutic target. 

Pharmacological exploitation of vascular TRPV1 seems to be reasonable with the 

substantial chemical libraries constructed to develop successful TRPV1 antagonists.  

Vascular TRPV1 was characterized here by measuring the vasoconstriction upon 

TRPV1 stimulation. It was found earlier that TRPV1 is expressed in vascular smooth 

muscle cells, suggesting that activation of TRPV1 is directly linked to intracellular Ca2+ 

elevations in smooth muscle (Kark et al., 2008). Indeed, decrease in arteriolar diameter 

was paralleled by an increase in intracellular Ca2+ concentrations in the vascular wall in 

this present study (Fig. 3), moreover, direct intracellular Ca2+ concetration measurements 

revealed the presence of functional TRPV1 in isolated arteriolar smooth muscle cells for 

the first time (Fig. 4).  

Vasoconstrictive response to TRPV1 stimulation was reported decades ago 

(Donnerer et al., 1982; Duckles, 1986; Edvinsson et al., 1990; Molnar et al., 1967; Toda 

et al., 1972) and this effect has been confirmed later (Dux et al., 2003; Keeble et al., 

2006; Lizanecz et al., 2006; Scotland et al., 2004; Szolcsanyi et al., 2001). Nonetheless, 

these responses were not in the centre of interest. One of the reasons for this was that 
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pharmaceutical research has been concentrated on the exploitation of the obvious 

potential of sensory neuronal TRPV1 as an analgesic target. Another reason was that 

stimulation of sensory neuronal TRPV1 in the perivascular nerves evokes vasodilatation 

(Zygmunt et al., 1999), probably obscuring the vasoconstrictive response in many cases. 

In accordance with this latter mechanism earlier reports showed concentration-dependent 

biphasic effects of TRPV1 stimulation: low dose capsaicin evoked dilatation, while 

higher concentrations resulted in constriction (Dux et al., 2003; Edvinsson et al., 1990). 

This suggested the involvement of different receptors or different pharmacology for 

TRPV1 mediating vascular dilatations and constrictions.  

Although the mechanism of vasoconstrictive effects of TRPV1 agonists were 

generally not investigated in detail (Dux et al., 2003; Keeble et al., 2006; Porszasz et al., 

2002) it was suggested that TRPV1 mediated vasoconstriction is probably mediated by 

endothelin-1 (Szolcsanyi et al., 2001) or SP (Scotland et al., 2004) release from sensory 

neurons.  

We have recently shown that stimulation of TRPV1 in skeletal muscle arterioles 

resulted in a substantial vasoconstriction (Lizanecz et al., 2006). Moreover, intra-arterial 

injection of capsaicin into the hindlimb evoked a dose dependent increase in blood flow 

in the skin (probably representing vasodilatation in this organ) and simultaneously a 

decrease of blood flow in skeletal muscle (representing a vasoconstriction) (Kark et al., 

2008). These data suggested that vascular TRPV1 may have sensory neuron independent 

physiological effects.  

TRPV1 specificity of capsaicin mediated arteriolar vasoconstriction was 

ultimately proven here. Most importantly, capsaicin mediated responses were absent in 
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TRPV1 knockout mice (Fig. 2C). Moreover, an effort was also made to investigate the 

potential mechanisms. Intracellular Ca2+ concentration measurements were performed 

which showed a capsaicin mediated increase in the arterial wall of skeletal muscle 

arteries (Fig. 3) as well as in isolated arteriolar smooth muscle cells (Fig. 4). Although 

only 10 out of 28 isolated smooth muscle cells responded to capsaicin, these data strongly 

suggest that functional TRPV1 is expressed in arterial smooth muscle cells and that the 

activation of these receptors leads to an increase in smooth muscle intracellular Ca2+ 

concentrations and to vasoconstriction.  

Next, the effects of pharmacological TRPV1 inhibition were tested on this 

response. Application of a TRPV1 antagonist (AMG9810, previously tested on 

exogenous and sensory neuronal TRPV1) revealed inhibition of capsaicin evoked 

arteriolar constriction in a competitive fashion. These findings suggest that TRPV1 

antagonists developed as analgesic agents may also interfere with skeletal muscle blood 

perfusion by inhibiting vascular TRPV1. 

Nonetheless, the major goal of this present work was to investigate the structure-

activity relationship of TRPV1 agonists for the vascular TRPV1 in functional assays. Our 

results confirmed that TRPV1 stimulation by capsaicin evokes a substantial constriction 

in isolated cannulated skeletal muscle arteries (Kark et al., 2008; Lizanecz et al., 2006). 

Here a series of commercially available agonists were also tested in addition to capsaicin. 

Significant differences in potency, efficacy and desensitization were found (Table 1). 

One of the observations was that some of the TRPV1 agonists (such as resiniferatoxin, 

JYL-273) were able to desensitize vascular TRPV1 without any apparent vascular effects. 

This behaviour of resiniferatoxin in the vascular diameter assay is not unprecedented: a 
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very similar action (“desensitization” to capsaicin without prior activation) was described 

for pulmonary chemoreflex (Szolcsanyi et al., 1990). A hypothesis for this desensitization 

is that low level activation of TRPV1 with certain structures may be sufficient to evoke 

complete tachyphylaxis, without increasing the intracellular Ca2+ concentrations to those 

levels where vasoconstriction occurs. Alternatively, tachyphylaxis may be the reason of 

irreversible activation of TRPV1 by resiniferatoxin (Jeffry et al., 2009) leading to a 

sustained Ca influx. To measure the level of sufficient activation to evoke tachyphylaxis 

a partial agonist (JYL-1511) was used. Its partial antagonism was confirmed on vascular 

receptors (about 10 % agonism and 70 % antagonism), and its application resulted in a 

significant tachyphylaxis, rather suggesting a role for desensitization than a role for 

sustained Ca2+ influx in this system. In addition, although the functional response to 

capsaicin was transient and the arteries completely desensitized to capsaicin, after 40 min 

regeneration period capsaicin was able to evoke vasoconstriction, suggesting re-

sensitization of the arteries and only a partial tachyphylaxis. Taken together, vascular 

smooth muscle located receptor seems to have different ligand selectivity for 

desensitization than that is for TRPV1 expressed in CHO cells (Table 1) and also for 

TRPV1 responsible for eye irritation upon capsaicin treatment in vivo (Fig. 12). 

It was observed that the kinetics of acute desensitization was different in the case 

of agonists evoking vascular constriction. In the case of capsaicin a complete acute 

desensitization was observed, while in other cases only a partial desensitization was 

found (JYL-79, MSK-195). The fact that different agonists evoked responses with 

different durations suggests that TRPV1 agonists may be tailored to desired duration of 

vascular effects. 
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Several mechanisms have been suggested to regulate TRPV1 sensitivity and 

desensitization. These include PKC (Bhave, 2003) or PKA (Bhave et al., 2002) mediated 

phosphorylation and calcineurin mediated dephosphorylation (Docherty et al., 1996). As 

a matter of TRPV1 mediating skeletal muscle vasoconstriction phosphorylation seems to 

be the most likely candidate. It was found that anandamide (Lizanecz et al., 2006), 

similarly to resiniferatoxin and JYL-273 (shown in this report) evokes complete 

tachyphylaxis on vascular TRPV1 without functional effects. However, it was also 

shown, that the anandamide mediated  tachyphylaxis was antagonized by a protein 

phosphatase 2B (calcineurin) inhibitor (Lizanecz et al., 2006). Moreover, in accordance 

with this hypothesis TRPV1 responses to agonists were differently modulated by 

inhibition of calcineurin in a CHO-TRPV1 cell line (Pearce et al., 2008), suggesting 

ligand selectivity for phosphorylation dependent TRPV1 

sensitization/desensitization/tachyphylaxis.  

 Taken together, we report here that TRPV1 (a non-specific Ca2+ channel) 

activation leads to an increase in intracellular Ca2+ concentrations  in isolated coronary 

smooth muscle cells and in the wall of isolated skeletal muscle arteries, resulting in a 

vasoconstriction. The pharmacological profile of the vascular TRPV1 differs from the 

TRPV1 population responsible for sensory irritation. Arteriolar TRPV1 was inhibited by 

a competitive TRPV1 antagonist developed as an analgesic agent suggesting that vascular 

TRPV1 activation may represent a side effect to analgesic application of TRPV1 

antagonists, in vivo. Moreover, vascular TRPV1 may be a new therapeutic candidate for 

the regulation of tissue blood distribution.  
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Tables 

 

Table 1 Pharmacological properties of TRPV1 agonists 

  

DRG/CHO-TRPV1 CHO-TRPV1 Arteriolar TRPV1 (vasoconstriction) Agonist 
Ki 

(binding) 
EC50 

(45Ca2+ 
uptake) 

EC50 

(intracellular 
Ca2+) 

Acute 
desensi 
tization 

Potency Efficacy Acute 
desensi 
tization 

Tachyphylaxis 

Capsaicin 1.8±0.3 
µM 

(Wang et 
al., 2003) 

95±8 nM 
(Pearce et 
al., 2008) 

35±11 nM 
(Toth et al., 

2005b) 

+ 
(Toth et al., 

2005b) 

221 nM 58±7 % + - 

Resiniferatoxin 23 pM 
(Lee et al., 

2001) 

1.5±0.3 nM 
(Pearce et 
al., 2008) 

81±20 pM 
(Toth et al., 

2005b) 

- 
(Toth et al., 

2005b) 

>10 nM No effect 
at 10 nM 

N/A + 

JYL-273 11±4 nM 
(Lee et al., 

2001) 

361±54 nM 
(Lee et al., 

2002) 

No data No data >3 µM No effect 
at 1 µM 

N/A + 

MSK-195 No data 162±33 nM 
(Lee et al., 

2002) 

52±12 nM 
(Toth et al., 

2005b) 

- 
(Toth et al., 

2005b) 

120 nM 71±11 % + + 

JYL-79 19±4 nM 
(Lee et al., 

2001) 

58±8 nM 
(Lee et al., 

2002) 

2.4±1.0 nM 
(Toth et al., 

2005b) 

- 
(Toth et al., 

2005b) 

3.9 nM 36±8 % + + 

JYL-1511 50±17 nM 
(Wang et 
al., 2003) 

3.4±0.5 µM 
(Wang et 
al., 2003) 

No data + 
(Wang et 
al., 2003) 

N/A No effect 
at 1 µM 

N/A +/- 
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Figures and Legends 

 

Fig. 1 Functional effects of TRPV1 stimulation in skeletal muscle arteries  

Internal diameter of cannulated gracilis arteries were measured at 80 mmHg intraluminal 

pressure before treatments (control). The existence of spontaneous myogenic tone and 

viability of endothelium was determined by acetylcholine (10 µM) evoked dilatations. 

Next, the constrictive response to TRPV1 agonist capsaicin (1 µM) was compared to that 

the effect of norepinephrine (10 µM). Experiments were performed on the same (n=7) 

arteries. Values are mean±S.E.M. Significant differences are represented by asterisks 

(p<0.05 (*) or p<0.01 (**)). 

 

Fig. 2 TRPV1 specificity of capsaicin evoked vasoconstriction 

Internal diameter of cannulated gracilis arteries were measured at 80 mmHg intraluminal 

pressure upon capsaicin cumulative dose-response determinations in the absence 

(control) and presence of the TRPV1 antagonist AMG9810 (100, 300 and 1000 nM, 

Panel A). Symbols are mean±S.E.M. of 5-9 independent determinations. The 

equilibration dissociation constant of AMG9810 was determined by the conventional 

Schild plot (x-intercept, Panel B). Finally, gracilis arterioles isolated from control (Wild 

type) and TRPV1 knockout (TRPV1-/-) mice were also tested for capsaicin mediated 

vasoconstriction (Panel C). Symbols are mean±S.E.M. of 5-6 independent 

determinations.  

 

Fig. 3 Mechanism of capsaicin mediated vasoconstriction: skelatal muscle arteries 
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Capsaicin evoked changes in arteriolar diameter were recorded in parallel with changes in 

intracellular Ca2+ concentrations of the vascular wall. An individual experiment is shown 

on Panel A (the full recorded experiment also available in the supplementary movie). 

Solid line represents the arteriolar diameter (please note, that in this specific case the 

outer diameter is plotted), while dotted line shows intracellular Ca2+ concentrations 

expressed as 340/380 ratio. Capsaicin was administered in a cumulative fashion 

(indicated by the arrows, the applied capsaicin doses were: 3x10-10, 10-9, 3x10-9, 10-8, 

3x10-8, 10-7, 3x10-7, 10-6, 3x10-6 M). Panel B shows the mean±S.E.M. of n=5 single 

determinations. 

 

Fig. 4 Mechanism of capsaicin mediated vasoconstriction: isolated arteriolar smooth 

muscle cells 

Freshly isolated canine coronary arteriolar smooth muscle cells were loaded with fura-2 

fluorescent Ca2+ sensitive dye and treated with capsaicin (1 M) and KCl (100 mM). 

Changes in intracellular Ca2+ concentrations were detected as changes in the 340/380 

fluorescence ratio (a representative experiment is shown in panel A, where green pixels 

represent low and red high values). Capsaicin evoked a fast increase in the intracellular 

Ca2+ concentrations in some cells, which was not increased further upon the addition of 

KCl (panel B). These observations were confirmed when responses of the capsaicin 

sensitive cells (10 out of 28 viable cells) were evaluated (panel C). Bars are mean±S.E.M. 

 

Fig. 5 Pharmacological characterization of vascular responses to capsaicin 
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Experiments were performed on cannulated arteries as mentioned above. First, a 

cumulative dose-response was measured (panel A, n=7). Next on a separate set of arteries 

the kinetics of response was measured by the application of 1 µM capsaicin for 20 min. 

Arteriolar diameter was measured at 10 s intervals (panel B, n=9). After this 20 min 

treatment the arteries were washed and were incubated in KREBS solution for 40 min 

(regeneration). At the end of regeneration, vasoconstriction to the same dose of capsaicin 

(1 µM) was measured to determine tachyphylaxis (panel C, n=7). Values are 

mean±S.E.M., significant difference (P<0.05) is represented by asterisk. 

 

Fig. 6 Arteriolar response to resiniferatoxin  

Experiments were performed as mentioned in Fig. 4 with resiniferatoxin. Cumulative 

dose-response is shown on panel A (n=3). No functional response was detected in 20 min 

upon resiniferatoxin stimulation (panel B, 10 nM, n=5). However, this treatment 

desensitized the receptors to capsaicin (1 µM) measured after regeneration (panel C, 

n=5).  

 

Fig. 7 Arteriolar response to JYL-273  

Experiments were performed as mentioned in Fig. 4 with JYL-273. Cumulative dose-

response is shown on panel A (n=7). No functional response was detected in 20 min upon 

JYL-273 stimulation (panel B, 1 µM, n=5). However, this treatment desensitized the 

receptors to capsaicin (1 µM) measured after regeneration (panel C, n=4).  

 

Fig. 8 Arteriolar response to MSK-195  
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Experiments were performed as mentioned in Fig. 4 with MSK-195. Cumulative dose-

response is shown on panel A (n=5). A transient vasoconstriction was observed upon 

MSK-195 stimulation for 20 min (panel B, 1 µM, n=6). In addition, this treatment 

desensitized the receptors to capsaicin (1 µM) measured after regeneration (panel C, 

n=6). 

 

Fig. 9 Arteriolar response to JYL-79  

Experiments were performed as mentioned in Fig. 4 with JYL-79. Cumulative dose-

response is shown on panel A (n=8). A transient vasoconstriction was observed upon 

JYL-79 stimulation for 20 min (panel B, 1 µM, n=5). In addition, this treatment 

desensitized the receptors to capsaicin (1 µM) measured after regeneration (panel C, 

n=5).  

 

 

Fig. 10 Arteriolar response to JYL-1511  

Experiments were performed as mentioned in Fig. 4 with JYL-1511. Cumulative dose-

response is shown on panel A (n=6). No functional response was detected in 20 min upon 

JYL-1511 stimulation (panel B, 1 µM, n=6). However, this treatment desensitized the 

receptors to capsaicin (1 µM) measured after regeneration (panel C, n=6).  

 

Fig. 11 Partial agonism/antagonism of JYL-1511 on vascular smooth muscle located 

TRPV1 

Changes in internal diameter of the arteries were measured before treatments (control, 
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n=6) and after addition of 1 µM JYL-1511 (JYL-1511, n=6). Capsaicin responses were 

also determined in the presence of 1 µM JYL-1511 (JYL-1511 + capsaicin, n=6). Finally, 

capsaicin responses alone (1 µM, without any pretreatment) were also measured on a 

different set of arteries (capsaicin, n=7). Efficacy of JYL-1511 as partial agonist was 

expressed as the % of decrease in arteriolar diameter evoked by the application of 

capsaicin alone (100%, capsaicin).  Efficacy as partial antagonist was expressed as the % 

of decrease in capsaicin constriction (100%, capsaicin) in the presence of JYL-1511 (1 

µM, JYL-1511+capsaicin). 

 

Fig. 12 Sensory neuronal irritation evoked by the applied TRPV1 ligands 

TRPV1 agonists or vehicle were applied in the eye of rats to determine their ability to 

evoke sensory neuronal irritation. Number of eye wipes were counted for 60 s after 

application of 10 µl of the drugs onto the conjunctiva of the rats. Concentration of the 

drugs were chosen to represent the highest dose used in the vascular experiments 

(indicated in the figure). Bars are mean±S.E.M. (n=5), significant differences (P<0.05) 

from the control (wipes upon administration of the vehicle alone) are represented by 

asterisks. 
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