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Water is the most important chemical substance. To understand the behavior of this 
ubiquitous material is essential in science. When a system containing water is large, quantum 
mechanical description of its properties is impossible. We have to use classical mechanics and 
electrostatics. This is especially the case when water solvates biopolymers. 
 
The first classical models of water for molecular simulations were created more than 30 years 
ago. Since then at least 50 models were suggested in the literature [1]. Some of them gained 
popularity and were applied several thousand times. Such models are the TIP3P [2] which is 
the water model of biochemical program packages like GROMOS, CHARMM and others. 
Similarly popular versions are the TIP4P [2] and the SPC/E [3] models. The latter model was 
applied more than 8000 times in the literature. These models are rigid nonpolarizable 
molecules. Their parameters are chosen to fit the density, the internal energy and the 
experimental pair-correlation function of ambient water. 
 
The continuous increase in computing power created a natural urge to replace these models 
with more realistic ones. The most important property is the polarizability of the model, 
because the gas phase dipole moment of water, 1.855 D, can become 2.6-8 in condensed 
phases. Clearly, in the vicinity of a biopolymer the polarizing force varies a lot. Thus, the 
model must be able to cover the entire range of dipole moments. The first attempt to create 
polarizable models was published at the end of the 70-s [4]. More reliable models were 
created in the mid 90-es.  
 
A convenient method was to have three permanent point charges on a fix frame representing 
the gas-phase molecule and to express the polarization with the addition of a point dipole. 
This was the idea of the BSV [5] and the DC [6] models. The GCP [7] model applied the 
same idea but replaced the fixed point charges with Gaussian charges. 
 
An alternative to point dipoles to express polarization is the charge-on-spring method. In this 
approach one of the charges is connected to the rigid geometry of the model by a classical 
harmonic spring. The polarizing electrostatic forces pull the spring. Equilibrium is established 
when these two forces cancel each other. This method was followed by the SWM4 [8,9] 
model (CHARMM) when, in addition to the three point charges, the charge pair of the Drude 
oscillator expressed the polarization. Several COS models [10-12] of the GROMOS group 
used 4 point charges to represent the fix charges and the spring charge connected to the 
negative charge. 
 
In our previous OTKA project we studied the ice polymorphs of water. It turned out that 
while the proliferating high pressure structures provide a sophisticated test of potential 
models, the rudimentary character of the interaction models cannot exploit this possibility yet. 
So, we turned to the other end of the phase diagram.  
 
We carried out extensive calculations to determine the gas clusters for 13 different water 
models frequently used in the literature. The major conclusion of this study was that if the 
negative charge is positioned on the oxygen atom, the molecule will have erroneous structures 
in gas phase (TIP3P, SPC/E). These models have very distorted dimers and, contrary to 
quantum chemical calculations and experimental data, flat trimers and tetramers (all atoms are 
in the same plane). Actually, the calculated phase diagram of water by Vega and coworkers 
[13] also showed that while the TIP4P model gave qualitatively correct results, only the entire 



diagram was shifted by ~40K to lower temperatures, the SPC/E model provided very distorted 
diagram. Certain ice polymorphs were entirely missing from the phase diagram of the SPC/E 
model.  
 
In the case of liquids it is more difficult to decide about the correctness of a model because 
rigid models are fitted to the properties of ambient liquid. We decided to identify structural 
differences of several models beyond the pair-correlation function. We were searching for 
trimers in liquid phases of models with different bondlengths, bond angles, and most 
importantly, different positions of the negative charge. We found that the flat structure 
characteristic of TIP3P and SPC/E trimers occurs more frequently in these liquids than liquids 
of other models having the negative charge on the main axis of the molecule at certain 
distance from the oxygen atom. After all, this is not surprising because to obtain correct gas-
phase quadrupole moment, the negative charge should be shifted from the oxygen towards the 
hydrogen atoms for such simple models. 
 
The other conclusion of gas cluster calculation was that tetrahedral geometries provide lots of 
artificial low-energy structures not present in nature (TIP5P) [14]. If the polarization of the 
molecule is confined in a plane, contrary to the almost isotropic polarization of water, the 
structures will also be erroneous (TIP4P-FQ, SPC-FQ) [15]. The best overall result was given 
by the GCP model. 
 
These results proved that the Gaussian functions are not only more realistic to represent 
charge distributions, but provide better results than point charge models. However, we found 
the application of point dipoles, as in the GCP model, less realistic because they represent 
interaction sites very far from the source of electrostatic forces which is obviously not the 
case in condensed water. In addition to this, to derive the Ewald summation for Gaussians is 
much simpler if there is no point dipole present. Therefore we turned to the charge-on-spring 
method to express polarization. The model can have only 3 charges, instead of 4(GROMOS) 
or 5 (CHARMM). This is so because we can connect the spring to any point of the rigid 
model. 
 
Based on the above experience we created a new model. The first application of Gaussians for 
describing charge distributions in classical models of water was done by Chialvo and 
Cummings[16] Later based on this approach a new model of water was developed and tested 
the GCP model [7]. This model contained three fixed Gaussian charges and a polarizable 
point dipole. For Gaussian models the partial charges are represented by a spherical charge 
distribution as 
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where j,αρ is the charge density of site α  on molecule j . The charge of this site is 
and the width of the distribution isαq ασ . The coulombic interaction energy, , between 

Gaussian charges can be given as 
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It can be seen from Eq.(2) that for point charges ( 0→σ ) we recover the usual 
formula. This means that program codes written for Gaussian charges can involve point 
charges without difficulty. 

An alternative to polarizable point dipoles is the charge-on-spring approach. In this 
case a point charge is connected to the molecule by a classical harmonic spring and the 
equilibrium between the polarizing electrostatic force and the spring force establishes the 
position of the charge. The formulas are the following: qq e /FEl ααμ ===  and 

, where q  is the charge, l is the elongation vector of the spring, lFF sse k−==− μ is the 
induced dipole, α is the polarizability, is the electric field, and is the electrostatic force 
which is equal in size with the force of the spring. So, .  

E eF
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The short description of our model is the following. The molecule consists of three 
Gaussian charges. The centers of the positive charges are placed on the hydrogen atoms, 
while the negative charge is positioned between the hydrogen atoms and the oxygen atom on 
the main axis of the molecule (base point). The geometry of the molecule follows its gas 
phase structure. The OH bondlength is 0.9572 Å and the HOH bond-angle is 104.52°.   

In fact, in condensed phases the OH bond is longer and the HOH angle is larger. For 
rigid models the 2-3° increase of the angle causes only negligible effect. The OH bondlength 
is more important, especially when relative elongation differences are considered. However, 
for a rigid model the parameterization overwrites the subtleties of different bondlengths in 
different phases. Therefore we stuck to the convention followed by all the models above. 

The negative charge is -1.210 esu and its distance from the oxygen is 0.2667 Å. This 
arrangement ensures that the dipole moment of the molecule matches the experimental value,  
1.855 D, while the eigenvalues of the quadrupole moment tensor, Qxx = -0.325 DÅ, 
Qyy = 2.660 DÅ, Qzz = -2.335 DÅ provide the minimum least squares fit to the experimental 
values: Qxx = -0.134 DÅ, Qyy = 2.626 DÅ, Qzz = -2.493 DÅ . 

The square roots of the variances of the Gaussians (σ-s) are fitted parameters. They are 
0.45 Å for the positive charge and 0.63 Å for the negative charge. There is some freedom in 
this choice. The larger the σ -s are, the smaller the internal energy becomes if all the other 
parameters are the same. In this respect, there is an intangible relationship between the fitted 
dispersion forces, the polarizibility and the width of the Gaussians.  

After a number of tentative calculations and taking into account geometrical 
considerations, we chose the above values forσ -s as reasonable ones. While the sum of 
theσ -s can be chosen with some liberty, this is not true for the difference of the negative and 
positiveσ -s. The difference of the two half widths determines the characteristic angle of the 
gas-phase dimer (the angle between the O-O vector and the bisector of the acceptor molecule) 
which must be a very important structural feature affecting the correct many-body 
arrangements in liquid phase as well.  

The negative charge is bonded by a classical harmonic spring to its nonpolarized 
position (base point). In polarized state the electrostatic forces establish mechanical 
equilibrium with the spring force. Assuming the spring charge is massless and follows the 
dynamics of the nuclei infinitely fast, this equilibrium should be established in each timestep. 

As a dispersion function we applied the following form 
6/)exp()( ijijij rCBrAr −−=ϕ      .   (3) 

where A, B, and C are parameters to be fitted. We found this form a bit more suitable than the 
obligatory Lennard-Jones version. 
 
The transferability of the model means that it has the ability to accommodate itself to very 
different environments. In the case of pure water the two extremes of the phase diagram are 



the gas phase and high pressure ice polymorphs.  We tested it for our model by decreasing the 
steepness of the repulsive wing of the dispersion potential assuming that this part of the 
potential has no effect on the structure and energy of gas clusters but will give good estimate 
for dense ice phases. 
 
However, we realized that this can only work for very high pressure ice VII because in this 
phase the closest OO distance is considerably shorter than that in hexagonal ice.  In the case 
of  moderately dense ice phases like ice III, ice VI or ice VII at lower pressures the closest 
OO distances are very close to the same distances in water and hexagonal ice. In the 
compressed polymorphs of ice the number of neighboring molecules in the second shell, or in 
the case of ice VII even in the first shell, is larger than in hexagonal ice. The accumulating 
repulsion of these neighbors lowers the density of these phases if we use the repulsion 
function suitable for hexagonal ice. In the classical picture it is reasonable to say that the 
molecules contract under the impact of external pressure. 
 
To handle this problem we devised a self-consistent algorithm. We used two simple 
exponentials with 6−r  attraction terms to represent the repulsions in high- and in low-pressure 
phases. The high-pressure exponential was fixed to be correct for the densest ice VII phases. 
Then we devised a switch function varying between 0 and 1 to partition the two repulsions for 
each particle. The argument of the switch function for each molecule was a virial-like force 
term which characterized the instantaneous compressing force originating from all possible 
potentials of the system. Using only a few fitting parameters we determined the proper form 
of the low pressure repulsion-attraction function and the switch function. We showed that this 
algorithm covers the entire phase diagram of water from gas-phase clusters to high-pressure 
ice phases with excellent accuracy. 
 
Most of the properties of water are accessible by experimental methods. The most notable 
exception is the field dependent polarizability. In condensed phases we have no experimental 
access either to the polarizability, or to the distribution of the molecular dipoles, let alone their 
higher moments. There are theoretical calculations using different techniques of quantum 
chemistry but depending on the particular approximation applied, they come to quite different 
conclusions. The consensus is that the polarizability decreases by increasing field. We carried 
out a detailed study of our model with respect of its polarizability, dielectric behavior and its 
properties under the impact of external field. 
 

In gas phase the polarizability of water depends on the orientation of the molecule, but 
the differences between the diagonal elements of the polarizability tensor are small, so we 
apply the conventional isotropic value of 1.444 Å3. It would be complicated to differentiate 
between directions, let alone we have no idea how these directional values will change under 
the impact of a finite electric field. We choose the following function to describe the field-
dependent dipole moment, μ, of the molecule: 

EEμ
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where 0α  = 1.444 Å3 is the polarizability at zero field, ∞α  is the polarizability at 
infinitely strong field, and s is a parameter to be fitted. The actual polarizability is the 
following: 
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and the polariztion self-energy correction is: 
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For ∞α our choice is 1.0 Å3. This round value is very close to effα close to the constant α of 
the SWM4 models. The value of s should be determined by fitting to the calculated dielectric 
constant. This parameter determines how rapidly the polarizability decreases. 

Although the shape of the α(E) function is not known theoretically, Eq. (4) is plausible 
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dipole moment cannot decrease with increasing field, the actual polarizibility at high field is 
bounded by two extremes. The first is our approach given by the linear limiting form of Eq. 
(4). (Earlier studies excluded hyperpolarizibility with positive coefficients.) The second 
relationship Eμ )(Eα=  with E/1≈α seems less realistic. The polarization function of Ref. 
12 is closer to the latter possibility. The problem with )( ∞Eμ approaching a constant is that 
the distribution of dipole moments will be highly asymmetric, the Gaussian curve will be cut-
off at a maximum value. 

 
There are four criteria to qualify a model created for molecular simulation:  
1. represent the most important gas phase properties of a single molecule accurately; 
2. use a simple, but physically plausible theory to express the response of the molecule 
to the impacts of its surrounding; 
3. estimate most of the experimental properties of the real material with acceptable 
accuracy; 
4. be as economic and simple as possible in computations.  
 

1.Our model is has correct gas phase dipole moment, and a minimum of least square fit for the 
quadrupole moment. The charge distributions are not point charges and point dipoles but three 
Gaussians. 
2. The charge-on-spring method worked for many physical problems and it seems that it is 
reasonably good in this approach as well. The spring connected to a certain point of the 
geometry automatically ensures the isotropic polarizability of the molecule. 
3. The properties of our models are tested on much wider spectrum of properties. Most 
potentials are tested only for ambient liquid or in some cases for gas-phase dimer properties. 
We tested our model on the entire phase diagram and obtained better overall mach with 
experimental data than the rest of the models. 
4. We introduced several optimization steps into our algorithm. New integrator, economic 
estimation of erf functions, etc. With all these optimization our algorithm is slower than the 
unpolarizable TIP4P only by a factor of 2.6. It is much faster than the SWM4 algorithm and 
comparable in speed to the COS algorithms. (The latter algorithm performs poorly in certain 
respect and has obvious errors in its derivation.) 
 
A more detailed account of this project can be find in the listed papers with the exception of 
the dielectric studies because this will appear in the water and ice issue of PCCP. 
 
At present we do the parallelization of the new code, to increase the speed of the code further. 
Calculation of the liquid-vapor equilibrium is under way. Results of these calculations will 



also be used to determine the spinodal curve and the roughness of the water-vapor surface in 
cooperation with other researchers. 
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