In the present project, following our research plan, we have done research and
established a number of significant results in the following four areas:

(I) Set-theoretic topology (compact spaces, scattered spaces, cardinal functions,
resolvability)
(IT) Descriptive set-theory
(III) Combinatorics
(IV) Real analysis and measure theory

We presented our results in 45 papers almost all of which appeared or will appear
in the leading international journals of these fields (6 of these papers have been
submitted but not accepted as yet). Our research group consisted of 8 people, one
of us — J. Gerlits — unfortunately passed away in 2008. We also participated at
a large number of international conferences, four of us (Elekes, Juhdsz, Métrai,
Soukup) as plenary and/or invited speakers at many of these. We now give an
overview of our results.

I. Set-theoretic topology
— compact spaces

The study of the important class of compact spaces traditionally has occupied
a central place in our investigations. In 13. we gave a considerable strengthening
of the classical (more than 70 year old) Cech-Pospiisil theorem which states that if
every point of a compact Ty space X has character > « then | X| > 2*. We showed
that under the same assumption the compact space X cannot even be covered by
fewer than 2" discrete subspaces.

In 9. we studied and gave partial answers to questions of Arhangelskii and
Buzyakova concerning compacta in which there is no convergent sequence whose
length is an uncountable regular cardinal. We call these K-compacta, and the
related but wider class of compacta in which the character of every point has
countable cofinality AB-compacta. The most intriguing question of Arhangelskii
and Buzyakova, namely if every K-compactum is first countable, is still open in
ZFC, but we proved in 10. that if the continuum ¢ is less than N, then even all
AB-compacta are first countable. We also proved in ZFC that the cardinality of
any AB-compactum is at most 2<¢.

The investigations that we started in 9. led to the quite extensive general study
of the convergence and character spectra of compacta in 36. The convergence
spectrum ¢S(X) of a space X is the set of all sizes of converging (one-to-one)
sequences in X, while the character spectrum xS(X) is the set of all characters
of (non- isolated) points in subspaces of X. For compacta (that we are really
interested in) we always have ¢S(X) C x.S(X). Here is a selection of the results of
36. (X is always a compactum):

(1) If x(X) > 2¢ then wy € xS(X) or {2¥,(2¥)T} C xS(X).

(2) If x(X) > w then xS(X) N [wy, 2] # 0.

(3) If x(X) > 2% then xT € ¢S(X), in fact there is a converging discrete set of
size kT in X.

(4) If we add A Cohen reals to a model of GCH then in the extension for every
k < X there is X with xS(X) = {w,«}. In particular, it is consistent to
have X with xS(X) = {w,N,}. Note that this X is a non-first countable
AB-compactum but not a K-compactum: w,, € ¢S(X) for every n < w.

(5) If all members of xS(X) are limit cardinals then

| X| < (sup{[S]: S € [X]*})”.



(6) It is consistent that 2¢ is as big as you wish and there are arbitrarily large
X with xS(X) N (w,2¢) = 0.

The last item (6) shows that the character spectrum of a non-first countable com-
pactum may (consistently) omit wy, the first uncountable cardinal, but it was left
open in 36. if the convergence spectrum can do that. Item (3) implies that this
may only happen if x(X) < ¢ = 2%. This problem turned out to be very hard and it
took us in 24. a lot of work to construct, with a very complicated forcing argument,
a compactum X such that ¢S(X) = {w,ws}. So far, this is the only known (con-
sistent) example of a non-first countable compactum whose convergence spectrum
omits wy.

Answering a question of Tkachuk, we proved in 14. the following surprising
result: The wth power of every compactum is d-separable, i.e. it has a o-discrete
dense subset. (On the other hand, it is known that there is a compactum no finite
power of which is d-separable.) The proof of this hinges on the following result that
is interesting in itself: The square X2 of every compactum X contains a discrete
subset of size d(X), the density of X. The latter statement was sharpened in
30. to obtain the following result that is of interest for functional analysts: Every
compactum X possesses a bidiscrete system of size d(X). A bidiscrete system for
X is a set of pairs {(za,¥a) : @ < £} C X2 such that there are continuous real
functions {f, : @ < k} C C(X) with the property that f, separates the pair
(T, Ya) but does not separate any of the other pairs. A bidiscrete system thus
provides for the Banach space C'(X) a so-called nice biorthogonal system.

A celebrated reflection theorem of Dow states that if every subspace of cardi-
nality w; of a compact space X is metrizable then so is X. Arhangelskii asked if
this is also true for locally compact spaces and in 34. we proved that the answer
to this question is independent of ZFC. More importantly, we introduced in 34. a
reflection principle, we called it Fodor-type reflection principle, that is much weaker
than Fleissner’s Axiom R but still implies most of its known consequences, in par-
ticular (the consistency of) the affirmative answer to Arhangelskii’s question. The
topological methods used to establish this can also be applied under various other
circumstances. Thus another interesting result from 34., proved in ZFC, is that
metrizability has the singular compactness property in the class of locally separa-
ble and countably tight spaces. That is, if every subspace of such a space X of size
smaller than |X| is metrizable so is X, provided that | X| is a singular cardinal.

While it is well-known that the (Vietoris) hyper space H(X) of a space X is
compact if and only if X is, it has been a celebrated open problem to find a criterion
for the countable compactness of H(X). In 5. we found a sufficient condition for this
that seems to be very close to being also necessary, though we could not prove this.
However, our condition is very effective in the sense that it significantly improved a
number of earlier results. We also succeeded in giving consistent examples showing
that even such ,nice” topological properties as first countability or normality do
not suffice to yield the countable compactness of H(X) from that of X.

Finally, we mention here the results of 15. because of its connections with count-
able compactness. An old conjecture of Nagata stated that every M-space is home-
omorphic to a closed subspace of the product of a metric space with a countably
compact space. This was refuted by Burke and van Douwen, and independently
by Kato, even for Mi-spaces. However, in 16. the following partial justification of
Nagata’s conjecture was given: Every ground model has a CCC generic extension
such that every regular, first countable M-space from the ground model satisfies
Nagata’s conjecture in the extension. The proof is based on the fact, interesting



in itself, that every regular M;j-space from the ground model ha an M; ,countably
compactification” in the generic extension.

— scattered spaces

We continued the investigation of the cardinal sequences of compact scattered
spaces (or equivalently: superatomic Boolean algebras) that occupied a central
place in our earlier projects, and we made significant progress in the difficult task
of characterizing these sequences. The cardinal sequence SEQ(X) of a compact
scattered space X is the sequence of sizes of its infinite Cantor-Bendixson levels,
taken in their natural well-order. We let C(a) denote the class of all cardinal
sequences of length « associated with compact scattered spaces and

Ca(a) ={f €C(a) : f(0) = A = min[f(B) : B < al}.
It is known that we get every member of C(«) as a finite concatenation of the
sequences from the subclasses Cy ().
A (locally compact scattered = LCS) space X is called Cy(d)-universal in 37. if,
on one hand, SEQ(X) € C,(9) and, on the other, for each sequence s € Cy(9) there
is an open subspace Y of X with SEQ(Y) = s. We showed there the following;:

there is a C, (w1 )-universal space,

under CH there is a C,(d)-universal space for every ¢ < wa,

under GCH for every infinite cardinal A and every ordinal § < ws there is
a Cx(d)-universal space,

e the existence of a C,,(wz)-universal space is consistent.

As a consequence, the following is consistent: 2% = wq and C,(w2) is as large as
possible, i.e. Cy(w2) = {s € “?{w,w;,wa} : $(0) = w}.

The natural idea to prove the last result is to do some iterated forcing in such a
way that in each step we add a space Xy to the intermediate model with cardinal
sequence f for some f € “2{w,w;i,ws}. Since in each step we want to imitate the
proof of Baumgartner and Shelah we try to use CCC iterands. However, in this
case in each step we introduce new subsets of w, and the length of the iteration is
at least |“2{w, w,ws}| = w3, hence in the final model 2% > ws.

That is why universal spaces came into the picture. A C,(w2)-universal space
may have cardinality wo, which gave us hope that it could be obtained by forcing
with a single CCC poset P of cardinality we, allowing us to get a generic extension
with 2¥ = ws.

In 39. we obtained some further results on the possible cardinal sequences of
arbitrary length under GCH For any cardinal A and ordinal § < AT™" we define
D (0) as follows: for A = w

D, (6) = {s € *{w, w1} : 5(0) = w},
and for A > w
Dy(6) = {s € *{A\ AT} :5(0) = A\, s71{\} is < A-closed and successor-closed in 0}.
We have shown in our earlier work that if GCH holds and k is regular, then
Cx(8) € Dy(6). In 39. we proved the following result:

If x is an uncountable regular cardinal with x<* = x and 2% = k™ then for each
§ < k1T there is a k-complete xT-c.c poset P of cardinality xT such that in V'

Cr(0) = Dx(d)
and there is a Cx(d)-universal LCS space.

As a consequence of this theorem we get that under GCH for any sequence f of
regular cardinals of length « that is a potential member of C(a), that is f may be



appropriately obtained as the concatenation of sequences from finitely many D, ’s,
can be made by a cardinal and GCH preserving forcing actually a member of C(a).

Roitman proved the consistency of (w),, ~ {(w2) € C(w1 +1). In 38. we general-
ized this by proving the following theorem.

Assume that k, \ are infinite cardinals such that xTT+ < X, k<" = k and

2% = kT, Then for any ordinal n with k™ < n < k** and cf(n) = kT, we have
(), (A\) € C(n+1) in some cardinal-preserving generic extension.

In particular, both (w), ~(w3) € C(w+1) and (w1),, " (ws) € C(w1 +1) are
consistent. Just until recently, it looked hopeless to obtain the consistency of results
like these. Another recent and quite unexpected result is the following theorem from
43. about cardinal sequences of length wy (but this time in models that violate CH):

If GCH holds and A > ws is regular then, in some cardinal preserving generic
extension, we have 2¢¥ = X\ and every sequence (0, : @ < wa) € C(wz) whenever
w<o, <A

An open neighbourhood assignment for a space X is a function n from X to the
topology of X such that « € n(z) for every x € X. We say that X is a D-space, if
for every open neighbourhood assignment n for X there is a closed discrete subset
D of X such that J{n(y) : y € D} = X. Recently there has been a lot of interest
in D spaces and in particular their additivity properties.

In 25. we show that a finite union of subparacompact scattered spaces is always
a D space. This result can not be extended to countable unions, since it is known
that there is a regular non-D space which is a countable union of paracompact
scattered spaces. We also show that every countable union of regular, Lindelof, C-
scattered spaces has the D-property and that locally finite unions of regular Lindel6f
C-scattered spaces are D.

cardinal functions

A celebrated result of Shapirovskii says that every every compactum of tightness
k has a m-base of order at most x, in particular, a countably tight compactum has
a point-countable m-base. Tkachuk noticed that under CH the latter special case
remains valid if one replaces compact with Lindelof but strengthens countably tight
to first countable (he only considered Tychonov spaces). However, he did not know
what happens if CH is not assumed. In fact, he did not even have a consistent
example of any first countable space which did not possess a point-countable 7-
base. In 4. we settled a number of Tkachuk’s problems concerning this. First of
all, we gave ZFC examples of first countable Tychonov spaces whose all 7w-bases
have order bigger than any previously given cardinal. However, our smallest ZFC
example for a first countable space with no point-countable w-base has cardinality
N, +1 and the best known ZFC lower bound is ws, so the problem is not completely
settled. We do have consistent examples of even hereditarily Lindelof first countable
spaces of size wy with no point-countable m-base which shows that the assumption
of CH cannot be omitted in Tkachuk’s result.

While the above results pointed toward the necessity of assuming compactness
in Shapirovskii’s above result, our main theorem in 12. shows that this is actually
not so. Arhangelskii noticed that, by another result of Shapirovskii, all continuous
images of countably tight compacta have countable m-character, and called this
property countable projective w-character. He also noticed that compacta of count-
able projective w-character and having w; as a caliber are separable, which, of course
follows from having a point-countable m-base. Now, what we, quite unexpectedly,
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proved in 12. is that any Tychonov space of countable projective w-character has a
point-countable m-base, or generally, any Tychonov space of projective m-character
k has a m-base of order at most . We also answered a question of Arhangelskii
by showing that there are even compact spaces of countable projective m-character
that are not countably tight, so ironically, our result is sharper than Shapirovskii’s
even among compacta.

Undoubtedly, the most significant recent advance in set-theoretic topology was
J. Moore’s ZFC example (in 2005) of an L-space, that is of a regular, hereditarily
Lindelof (HL) space of uncountable density. This naturally led to the problem:
What cardinals could consistently occur as densities of such spaces? For regular
cardinals we answered this in our previous OTKA project but the case of singular
cardinals of uncountable cofinality turned out to be much harder. In 11. we could
almost completely settle this problem by showing that for every w-inaccessible car-
dinal A, i.e. such that g < X implies ¥ < A, there is a CCC (hence cofinality
and cardinality preserving) generic extension of the ground model in which A is the
density of a regular HL space.

We return here to 14. in which we answered several other questions of Tkachuk
that concerned spaces more general than compacta. We proved there:
e For every T}-space X the power X4X) is d-separable.
e There is a 0-dimensional Ty-space whose wond power is d-separable but its
wist power is not.
o There is a 0-dimensional T5-space X for which the function space Cp(X) is
not d-separable.

resolvability

A topological space X is called k-resolvable if it contains x disjoint dense subsets,
and maximally resolvable if it is A(X)-resolvable where A(X) is the smallest size
of a non-empty open set in X. Both metric spaces and linearly ordered spaces are
known to be maximally resolvable, and monotonically normal (MN) spaces form a
class that includes them both. Thus it seems natural to raise the question if MN
spaces are maximally resolvable. We investigated this problem in 11. and found
some interesting and unexpected results:

(1) Every dense-in-itself MN space is w-resolvable.

(2) If k is a measurable cardinal then there is a MN space X with A(X) =«
which is not wq-resolvable.

(3) Every MN space of cardinality < X, is maximally resolvable.

(4) From a supercompact cardinal we get the consistency of a MN space X
with | X| = A(X) =R, that is not wy-resolvable.

The connection of the harmless looking topological problem and deep set-theory
comes from a new class of MN spaces discovered in 12.. These spaces, we call them
filtration spaces, are obtained on certain trees with the help of ultrafilters and their
resolvability properties depend on the descendingly completeness properties of the
ultrafilters used in their construction. We are presently working on the problems left
open by the above results, for instance to see if a MN space that is not maximally
resolvable exists in ZFC.

A topological space X is called almost k-resolvable if it contains k dense subsets
that are almost disjoint in the sense that any two have nowhere dense intersection.
Combining our earlier general method of D- forced spaces, that was developed for
the construction of spaces with various resolvability properties, with some new ideas
we solved in 24. a problem raised by Comfort and Hu, resp. by Pavlov:



For every cardinal x there is a 0-dimensional Ty-space X with A(X) = k that is
almost 2%-resolvable but not wi-resolvable.

Note that neither of the two values can be improved here, i.e. 2% cannot be
increased and w; cannot be decreased. This is trivial for the first and almost trivial
for the second because any almost w-resolvable space is already w-resolvable.

II. Descriptive set theory

A hull of A C [0,1] is a set H containing A such that A(H) = A(A), where A
is the Lebesgue measure. We investigated in 19. all four versions of the following
problem. Does there exist a monotone (wrt. inclusion) map that assigns a Borel/G
hull to every negligible/measurable subset of [0, 1]? Three versions turned out to
be independent of ZFC', while in the fourth case we could only prove that the non-
existence of a monotone G hull operation for all measurable sets is consistent. It
remains open whether existence here is also consistent. We also answered a question
of Z. Gyenes and D. Palvolgyi which asked if monotone hulls can be defined for
every chain (wrt. inclusion) of measurable sets. This line of research was very
recently taken up by Roslanowski and Shelah.

In connection with the investigations of 19. we raised the problem if it is possible
to give a represantation of all Borel sets as countable unions of simpler sets in a
monotone way. This was answered negatively in 28. with the help of the theory
of topologized Hurewicz test sets. This theory was introduced by Matrai in his
PhD thesis and then further developed in 6. with the aim of finding Hurewicz test
sets for generalized separation and reduction properties of Borel sets. In 7. Matrai
extended the theory of topologized Hurewicz test sets from the Borel hierarchy
to the full difference hierarchy. This enabled him to prove that the classes of the
full difference hierarchy are closed under certain transfinite unions. This closure
property was previously known only for the Borel classes.

The study of definable (e.g. Borel, analytic, etc.) ideals has been a very active
field of research of descriptive set theory recently. In 40. a 20 year old conjecture
of Kechris was refuted by producing a G o-ideal in the compact subsets of the
Cantor set that covers the whole Cantor set but does not contain all the compact
subsets of any dense G subset of the Cantor set. This new type of ideal has since
then found many other applications as well.

In 21. we presented a a number of new results about analytic P-ideals on w:
For any ideal Z on w we let a(Z) (resp. @(Z)) denote the minimum cardinality of
a maximal infinite (resp. uncountable) Z-almost disjoint subfamily of [w]“. We
showed that a(Z,) > w if Z is any summable ideal but a(Z;) = w for any tall
density ideal Zj, including the density zero ideal Z. Moreover, we have b < a(Z)
for any analytic P-ideal Z and a(Z;) < a for any density ideal Z;. For any ideal Z
on w, bz and 07 are the unbounding and dominating numbers of (w*, <z), where
f<zgiff{new: f(n) > g(n)} € Z. We proved that by = b and 07 = 0 whenever
7 is an analytic P-ideal.

For an ideal Z on w the forcing P is Z-bounding iff Ve €¢ ITNVF Iy c INV 2 Cy
and Z-dominating iff 3y € TNVF Vo € TNV = C* y. For an analytic P-ideal Z if
a forcing P has the Sacks property then it is Z-bounding; if Z is also tall then the
property Z-bounding/Z-dominating implies w*-bounding/adding dominating reals
and the converses of these two implications fail. For the density zero ideal Z we
can prove more: (i) P is Z-bounding iff it has the Sacks property, (ii) if P adds a
slalom capturing all ground model reals then P is Z-dominating.



III. Combinatorics

A coloring of a set-system A (formally, a map f defined on UA) is called conflict
free if every member of A € A has a point whose color differs from the color of any
other point in A. The conflict free chromatic number xcp(A) of A is the smallest p
for which A admits a conflict free coloring with p colors. Clearly, if all elements of
A have size > 1 (that we always assume) then no member of A is monochromatic
for a conflict free coloring, hence the chromatic number x(A) < xcp(A).

A is a (A &, p)-system if |A| = A, |A| = & for all A € A, and A is p-almost
disjoint, i.e. |[ANA’| < p for distinct A, A’ € A. Erdés and Hajnal investigated the
chromatic numbers of (\, k, p)-systems in the 60’s and our aim in 35. was to run a
parallel study of

Xcr (A K, 1) = sup{xcr(A) : Ais a (A, K, p)-system}

for A > k > u, actually restricting ourselves to A > w and p < w. It turned out
that the three cases 1.) w > k > p, 2.) kK > w > u, and 3.) w = u require very
different methods. Here is a list of our main results:

(1) for any limit cardinal £ (or K = w) and integers
n >0, k > 0, GCH implies

A=) k<t < (i4+ 1)k, i=1,..,n
XCF(H+n7t7k+1) =

(2) if \>Kk>w>d>1,then A\ <™ implies xcp(A, K, d) <w
and A > 3, (k) implies xop(A K, d) = w;

(3) GCH implies xcp(A, k,w) <wsy for A > Kk > wq and
V=L implies xcp(A, K,w) <wp for A >k > wy;

(4) the existence of a supercompact cardinal implies
the consistency of GCH plus
XCF(Nw+17W1aw) = Nw+l and
Xor Rog1,wn,w) =ws for 2<n <w ;

(5) CH implies xcp(w1,w,w) = xcrp(wi,wi,w) = wi, while
MA,, implies xcp(wi,w,w) = xcp(wi,w1,w) =w.

The additivity spectrum ADD(Z) of an ideal Z is the set of all regular cardinals
k such that there is an increasing chain {A, : @ < K} C Z with Uy« A ¢ Z. In 43.
we investigated when a set of regular cardinals can be the additivity spectrum of
certain ideals. Assume that Z is either the o-ideal generated by the compact subsets
of the Baire space w* or the ideal of null sets. We show that if A is a non-empty
progressive set of uncountable regular cardinals and pcf(A) = A, then ADD(Z) = A
in some CCC generic extension. We also show that if A C ADD(Z) is countable
then pcf(A) € ADD(Z). So for a non-empty countable set A of uncountable regular
cardinals we have A = ADD(Z) in some CCC generic extension iff pcf(4) = A.

The following problem was investigated in 18.: Let X be a set, x a cardinal
number, and H a family that covers each z € X at least x times. Under what
assumptions can we partition H into x many subcovers? Equivalently, under what
assumptions can we colour H by x many colours so that for each x € X and each
colour ¢ there exists H € H of colour ¢ containing 7 The assumptions we study
may come from descriptive set theory, e.g. that H consists of open, closed, compact,
Gy, et. sets, or can be geometric: convex subsets of R™, or intervals in a linearly
ordered set, or we can make various restrictions on the cardinality of X, H or the



elements of H. Besides numerous positive and negative ZFC results many of the
questions turned out to be independent of ZFC'

Let G (resp. D) denote the partially ordered set of homomorphism classes of
finite undirected (resp. directed) graphs, ordered by the homomorphism relation.
Order theoretic properties of G and D have been studied extensively, and have in-
teresting connections with familiar graph properties and parameters. In particular,
the notion of a duality is closely related to the idea of splitting maximal antichains
in them. In 2. we constructed both splitting and non-splitting infinite maximal
antichains in both G and in ID. The splitting maximal antichains give infinite ver-
sions of dualities for graphs and for directed graphs. In 32. we studied generalized
duality pairs in D and gave a new, short proof for the Foniok - Nesettil - Tardif
theorem that characterizes all finite-finite duality pairs in . We also showed that
there is no finite-infinite duality pairs of antichains in .

An independent set A of vertices of a directed graph is called quasi-kernel (resp.
quasi-sink) iff for each vertex v there is a path of length at most 2 from A to v
(resp. from v to A). Chvétal and Lovész proved that every finite directed graph
has a quasi-kernel. The plain generalization of this to infinite directed graphs fails,
even for tournaments, as is shown by (Z, <), where Z is the set of the integers and
(z,y) is an edge iff x < y. However, in 20. we formulated and studied the following
conjecture: for any directed graph G = (V, E) there is a a partition (Vy, Vi) of
the vertex set V' such that the induced subgraph G[V;] has a quasi-kernel and the
induced subgraph G[V;] has a quasi-sink. Although the conjecture remains open,
we could proved it for a number of classes of infinite directed graphs.

IV. Real analysis and measure theory

Let RR denote the set of real valued functions defined on the real line. A map
D : RF — RR is said to be a difference operator, if there are real numbers a;, b; (i =
1,...,n) such that (Df)(z) =Y/, a;f(z +b;) for every f € R® and x € R. By a
system of difference equations we mean a set of equations S = {D;f =g¢; : i € I},
where [ is an arbitrary set of indices, D; is a difference operator and g; is a given
function for every ¢ € I, and f is the unknown function. One can prove that a
system S is solvable if and only if every finite subsystem of S is solvable. However,
if we look for solutions belonging to a given class of functions, then the analogous
statement is no longer true. For example, there exists a system S such that every
finite subsystem of S has a solution which is a trigonometric polynomial, but S
has no such solution; in fact, S has no measurable solutions. This phenomenon
motivates the following definition. Let F be a class of functions. The solvability
cardinal sc(F) of F is the smallest cardinal number & such that whenever S is a
system of difference equations and each subsystem of S of cardinality less than &
has a solution in F, then S itself has a solution in F. In 3. we determined the
solvability cardinals of most function classes that occur in analysis. As it turned
out, the behaviour of sc(F) is rather erratic. For example, sc(polynomials) =
3 but sc(trigonometric polynomials) = wq, sc({f : f is continuous}) = w; but
sc({f : f is Darboux}) = (2*)*, and sc(R®) = w. We also consistently determined
the solvability cardinals of the classes of Borel, Lebesgue and Baire measurable
functions, and gave some partial answers for the Baire class 1 and Baire class «
functions.



A function f : R™ — R is called vertically rigid if graph(cf) is isometric to
graph(f) for all ¢ # 0. In 8. we settled Jankovié’s conjecture by showing that a
continuous function f : R — R is vertically rigid if and only if it is of the form
a+bx or a+ be*® (a,b,k € R). In 18. we proved that a continuous function of
two variables f : R? — R is vertically rigid if and only if after a suitable rotation
around the z-axis f(x,y) is of the form a + bx + dy, a + s(y)e*® or a + be** + dy
(a,b,d,k € R, k #0, s : R — R continuous). The problem of characterizing the
vertically rigid continuous functions in more than two variables remains open.

A very fashionable topic of geometric measure theory was the subject of 31.:
How stable is the ,size” (e.g. the natural measure or Hausdorff measure) of the
intersection of two copies of a fractal set under perturbations or other transforma-
tions. We obtain instability results stating that the measure of the intersection is
separated from the measure of one copy. We also obtain results stating that the
intersection is of positive measure if and only if it contains a relative open set. As
an application we also obtain isometry (or at least translation) invariant measures
of R? such that the measure of the given self-similar or self-affine set is one.



