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Final report on “Novel biophysical methods for surface-

coupled antigen detection by leukocytes” OTKA PD 134195 
 

This document summarizes our comprehensive investigation into the most suitable biophysical 

parameters for label-free measurement of leukocyte activation using advanced biophysical platforms. 

Our objective was to identify methodologies that provide detailed, scalable, and reproducible data on 

cell activation, particularly at the single-cell level. 

The question of how individual cells function differently in response to various triggers and 

perturbations necessitates methods that can characterize cellular heterogeneity with single-cell 

resolution. Traditionally, most cell analysis techniques measured bulk responses, failing to account for 

smaller subpopulations within mixtures and overlooking differences between individual cells 

(Altschuler and Wu, 2010). This limitation has hindered our understanding of the complexity of cellular 

functions, particularly within the immune system. 

Recent advancements in single-cell analysis technologies have provided an unprecedented level of 

detail, allowing researchers to explore cellular heterogeneity with greater precision. These 

advancements offer new insights into how different cell types respond to stimuli and interact within the 

immune system. However, these techniques often rely on the expression of predefined molecular 

markers, creating a complex system with numerous variables. Interpreting these results can be 

challenging due to the intricate interplay between these molecules. 

In immune research, the relevance of single-cell analysis is indisputable. Current approaches, such 

as labeling-based phenotyping, provide valuable insights into cell types and their distributions. 

However, these methods fall short in capturing the full functional complexity of immune cells. For 

instance, phenotypic analysis does not fully address functional cell states or their variations at the single-

cell level (Satija and Shalek, 2014). 

Many existing techniques for characterizing immune cell heterogeneity rely on established cell 

lines, such as THP-1 for antibody-dependent cellular phagocytosis (ADCP), or on cells isolated from 

unrelated healthy donors to assess processes like antibody-dependent neutrophil phagocytosis (ADNP) 

and NK-cell activation assays. While useful, these models fail to account for allotypic variations in 

antibodies and their Fc receptors, ignoring inter-individual differences that may lead to biased results. 

This limitation underscores the need for more comprehensive methods that accurately reflect the 

diversity of the immune cells’ functional states in response to antibodies and their complexes (Lu et al., 

2018). 

The complete characterization of a vaccine’s efficacy, for example, requires multiplexed testing 

involving multiple reagents and steps, with each test conducted separately(Loos et al., 2023). This 

complexity likely increases the likelihood of inconsistencies, making it difficult to generate a coherent 

and unbiased immune profile. Furthermore, most current assays for assessing immune cell effector 

functions lack the single-cell resolution necessary to capture the full range of cellular behavior (Lodge 

et al., 2025). 

To address these challenges, novel approaches to characterizing cellular heterogeneity are being 

explored. One promising direction is the characterization of net functional outcomes, providing a more 

holistic view of immune cell functionality. This approach allows researchers to describe cellular 

heterogeneity without relying on predefined markers or labels, offering a more unbiased perspective on 

immune system function. In summary, single-cell resolution is crucial for accurate immune profiling. 

Current methods face limitations in capturing the full complexity of immune cell functions and 

interactions. To advance our understanding of cellular behavior, new technologies must provide label-

free, single-cell resolution, enabling more precise and unbiased characterization of immune cells and 

their functional states. 

Label-free optical biosensors and biophysical measurement platforms present a novel opportunity 

to characterize single-cell parameters, such as adhesion strength, activation kinetics (based on changes 
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in the local refractive index), and morphological changes in individual cells. These innovative 

approaches have the potential to revolutionize immune profiling, offering deeper insights into cellular 

heterogeneity and function(Szittner et al., 2022). 

To address this, we adopted a stepwise approach, beginning with the activation of THP-1 cells on 

immunoglobulin-coated surfaces. This was later extended to leukocytes activated on various immune 

complexes and in the presence of Toll-like receptor (TLR) ligands. The comparative evaluation of 

biophysical techniques to evaluate key parameters of leukocyte behavior during activation, potentially 

paves the way for leukocyte based immune profiling. This report details our findings, challenges 

encountered, and future directions for the application and refinement of the following parameters: 

 

Relative Adhesion Force: We compared a computer-controlled micropipette and FluidFM system to 

measure the adhesion strength of single cells, providing insight into the mechanical changes occurring 

during immunoglobulin triggered activation. 

Morphology and Motility: Cell shape and movement were analyzed using digital holographic 

microscope, Holomonitor, a quantitative phase imaging platform that allowed real-time, non-invasive 

visualization of dynamic changes. 

Activation Kinetics: Using a resonant waveguide grating (RWG)-based biosensor, we monitored the 

kinetics of cell activation, focusing on real-time detection of biophysical changes at the single-cell level. 
 

Single cell adhesion force 
 

Two methods Fluidic Force Microscopy (FluidFM) and Computer Controlled Micropipette (CCMP 

were used to test the relative force required to detach cells form the immunoglobulin functionalized 

surface, and to reveal the distribution of the cell adhesion strength values on single cells. After setting 

up the parameters and buffer requirements of the measurement were compared with the classic negative 

pressure based CCMP results and the FluidFM. We found that cells specifically adhere to the 

immunoglobulins on the surface, as if no immunoglobulins were present no cell adhesion was 

measurable, when the surface was blocked. Since with FluidFM 

We proved that the measurement is able to characterize the relative forces. While, the two tested 

methods showed comparable relative adhesion force, the distribution scattered widely. compared to 

other methods their throughput (cells measured per hour) is relatively low compared to other methods, 

moreover provides only single end-point measurement results. As will be discussed later on in detail a 

likely reason behind the wide range of values, is the dynamic manner of cell adhesion during the 

activation process. On the other hand, as we successfully demonstrated the CCMP method is readily 

available to transfer single cells with a high precision to specific locations and containers.  

 
 

Figure 1. Schematics of the computer-controlled micropipette and the theoretical basis of the 

experiments. a Cell sorting equipment for automated sorting and deposition of individual cells b-d 
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images show how different surface treatments affect the interaction between the cells and the surface b 

Cells may adhere on an untreated surface in Phosphate Buffered Saline (PBS) in a non-specific manner 

triggered by electrostatic interactions or in an integrin mediated manner. c Fetal Bovine Serum (FBS) 

treatment prevents adhesion to the surface d FBS block applied after Intravenous Immunoglobulin 

(IVIG) surface treatment prevents non-specific adhesion of the cells to the surface, only Fc receptor-

specific binding occurs e Shows the concept of cell adhesion measurement. 

 

To demonstrate our ability to measure the strength of specific binding between the Fc receptors of 

THP-1 cells and Intravenous Immunoglobulin (IVIG) molecules, we measured the relative cell binding 

strength on different surfaces using CCMP (Fig1). Both conventional and Tissue culture Petri dishes 

were used to perform surface treatments (Fig2A-B). Both bar graph shows the percentage of cells 

remaining attached to the surface after passing over them with a given vacuum and shows three different 

treatments next to each other represented by a different color bar. When RF was applied alone it shows 

that the FBS in the RF solution completely blocked the surface, and the cells were unable to attach. 

When we used this in combination with IVIG surface treatment however, only adhesions specific to 

IVIG stayed on the Petri dish's surface because the FBS blocked the nonspecific binding points that 

IVIG couldn’t coat. The PBS-treated surface was used as a control as the cells were attached to the 

surface by several methods like electrostatic and integrin-substrate interaction. The number of cells 

remaining adherent shows a significant difference between treatments, especially at the initial vacuum 

values.  

We looked at the reproducibility of experiments within and between petri dishes (Fig2E).  For the 

measurements, we used IVIG on a treated surface, tested two areas per petri dish and found that there 

was minimal disparity when working with a sufficiently large number of cells. 

We used ReadyProbes® Cell Viability Imaging Kit  during some measurements to ensure that the 

cell population is in the right condition for the experiment So we test whether cell death could affect the 

adhesion measurements and the average number of dead cells that could occur in a series (Fig2D). 

In order to speed up the experimental work and reduce the resulting scatter, different variables were 

compared to see how they influence the change in cell adhesion. To scale down the experiment to reduce 

the material dependence, measurements were made on 96-well plates instead of Petri dishes (Fig2C), 

but these significantly reduced the adhesion at higher vacuum values. Since BSA is a more purified 

version of the FBS solution, the possibility arose that it might have a different effect on the adhesion 

ability of the cells, so the two blocking methods were compared but there was no significant difference 

(Fig2F). 

Surface treatment is time-consuming and stretches the preparation time before the measurement, so 

we looked at whether preparing it the day before would cause a change in adhesion, because it would 

have helped in speeding up the work (Fig2G). We are most interested in the initial vacuum values in 

these measurements as this was the most significant difference between the surface treatments and we 

saw no significant variance. 

Isolation and preparation of the cells can also affect their adhesivity, so we compared how changing 

the measuring medium in which the cells adhere to the IVIG molecule. We looked at the difference in 

cell adherence to the surface between PBS and RF solution or the solvent in which the cells are 

resuspended after isolation might change the adhesion of the cells, but we found no significant 

change(Fig2H-I). 
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Figure 2.  Parameters of immunoglobulin triggered cell adhesion measurements with CCMP. A 
Percentage of cells remained attached to the surface of regular Petri-dishes with different surface 

treatments at increasing negative pressure values. Intravenous Immunoglobulin (IVIG) treated surfaces 

were also blocked with RPMI + 10% (Fetal Bovine Serum) FBS (RF).  B Cells remained attached to the 

surface of Tissue culture Petri-dishes with different surface treatments. C Comparison of cell adhesion 

strength on IVIG on Petri dish and 96 well plate surface. D Comparison of the adhesion ability of living 

and dead cells using viability assay on IVIG. E Shows how closely a measurement in a given Petri dish 

compares with a measurement in another area, and between two different IVIG coated Petri-dishes. F 

Difference in cell adhesion ability with either RF or BSA surface blocking after IVIG surface treatment. 

G Difference in cell adhesion ability depending on whether the IVIG surface treatment was prepared 

before the experiments or the day before. H Difference in cell adhesion ability between cells resuspended 

in either RF or PBS. I Difference in the adhesion of cells depending on whether the cells are in empty 
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RPMI solution or in RF solution during the measurement. Data is shown as the mean ± SEM of multiple 

measurements. During the statistical analysis, a two-way ANOVA test was conducted with either Turkey 

or Bonferroni comparison test, the significance levels for statistical analysis were denoted as follows: * 

for p ≤ 0.05, ** for p≤0.01, *** for p≤0.001, and **** for  p≤0.0001., statistically non-significant results 

are not marked, n indicates how many individual cells were measured in total for a given set of 

parameters. 

 
Figure 3. The working principle of the FluidFM and processing of the gathered data. A The process 

of measuring cell adhesion with FluidFM B An electron microscope image of a cantilever used in an 

experiment (www.cytosurge.com). C The FluidFM data processing pipeline and the values provided by 

a single measurement. Here Emax shows the total adhesion energy, Fmax the maximum adhesion strength 

and Dmax shows the probe distance from the surface at Fmax obtained during the measurement of a single 

cell. D The processed force-distance curves of PBS treated surfaces and E IVIG treated surfaces. F The 

averaged force distance curves of both surfaces. Data is presented on logarithmic scale to make 

individual differences more apparent. 
 

Since the CCMP only provides indirect information on the strength and characteristics of adhesion 

we employed a FluidFM system that could measure each adhered cell's force curve as it separated from 

the surface. The principle of the single cell measurements can be seen on Figure 3A, while Figure 3B 

shows the electron microscope image of a cantilever. The measurements were performed only on IVIG 

treated and RF blocked, and plain PBS treated surfaces since it is not possible to measure adhesion on 

non-adherent cells in only RF treated areas. We successfully measured the adhesion data of 25 cells on 

PBS and 75 cells on IVIG treated surface. The raw data given by the equipment software was then 

processed using an internally developed python code schematically represent on Figure 3C. This made 

the task faster and more manageable and so we could extract the Force-distance curves of the individual 

cells with ease. Figure 4D-E shows the individual cells curves while Figure 4F plots the averages side 
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by side. It is not possible to give an accurate opinion on these curves alone, so pure values must be 

obtained. These vales that we can extract from these curves are the adhesion force, distance, and energy 

(Figure 4C). The adhesion force is the maximum force that which the adherent cell can bend the 

cantilever before separating from the surface. The adhesion distance is the point where the cell exerts 

the greatest force on the continuously rising spring plate before breaking away from the surface and the 

adhesion energy is the area under the force-distance curve it gives how much energy was needed for the 

cantilever to retreat to a neutral state from attachment. 

 

 
Figure 4.  Comparison of biophysical parameters of single cell adhesion on PBS and IVIG treated 

surfaces by fluidic force microscopy. Comparison of A adhesion force, B adhesion energy and C 

adhesion distance on PBS and IVIG treated surfaces. Correlation between D adhesion force and energy 

E adhesion force and distance and F adhesion distance and energy on IVIG treated surface. Comparison 

of G Adhesion force normalized with area, H Adhesion energy normalized with area and I cell area on 

PBS and IVIG treated surfaces. J Comparison of Spring coefficient on PBS and IVIG treated surfaces. 

The data are represented by individual data points and the statistical analysis was an unpaired non-

parametric t test (Mann-Whitney test) the significance levels for statistical analysis were denoted as 

follows: * for p ≤ 0.05, ** for p≤0.01, *** for p≤0.001, and **** for p≤0.0001. 
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Figure 5.  Comparison of the FluidFM and the CCMP results. A Relative frequency distribution of 

single cell the adhesion energy on IVIG treated surfaces measured by FluidFM. B Normalized 

percentage of single cells remaining attached to the IVIG treated surfaces with the CCMP. C Relative 

frequency distribution of single cell the adhesion   force of cells on IVIG treated surfaces measured by 

FluidFM. D Ratio of cells that were detached from the IVIG treated surface during CCMP 

measurements. E Comparison of the frequency of adhesion energy and the ratio of cells stayed adhered 

to the IVIG surface. F Comparison of the converted CCMP measurements to the adhesion force of the 

FluidFM measurements. 

 

A comparison of these values between the two surfaces shows that there is a significant difference 

in distance and energy between the cell adhesion caused in favor of the IVIG treated surface seen on 

Figure 4A-C. On the IVIG treated surface we also looked at how the obtained values correlate of the 

and here we can see that there is only a weak positive correlation between the force and the energy 

(Figure 4D) while there was no correlation between the distance and the energy (Figure 4F) and between 

the force and distance there is no correlation (Figure 4E). As the adhesion is caused by the interaction 

between Fc receptors and IgG antibodies, we can’t expect a strong correlation since the strength of the 

adhesion is highly dependent on how many receptors can each cell utilize. On the treated surface 

localized low- and high-density ligand spot can cause further disruptions.  

The cell area was determined and compared between the two surfaces and as we anticipated the 

cells spread out more during frustrated phagocytosis (Figure 4I). We also compared the force and energy 

normalized by the cell area and only found differences between the two surfaces only in adhesion energy 

(Figure 5G-H). We also determined and compared the spring coefficient of the cells on the different 
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surfaces and found no difference (Figure 5J). Since this value tells information about average elasticity 

of the cells we expected this to be similar considering we used identical cells. 

 

 
Figure 6.  A Comparison relative frequency distribution of single cell the adhesion energy on IVIG 

treated surfaces measured by Piezoelectric volume control system and valve control system. B   

Comparison of normalized percentage of single THP-1 cells and leukocytes remaining attached to the 

IVIG treated surfaces with the CCMP valve system. 

 

We also tested the piezoelectric valve system and compared our results to the classic negative 

pressure based valve system (Fig6A). Comparing the two methods, it can be seen that the piezoelectric 

system exerts less force on the cells due to the different operation, so the adhesion curve is much less 

elongated although its characteristic is similar. One reason can be that during the Piezo measurements 

the duration in which the voltage was applied was 100ms while during Valve measurements (Quickpick) 

the valve was open for 25ms during which the valve system provides a constant pressure during this 

time the piezo system distributes the created vacuum at the given time.  

Utilizing voltage modifications, this cutting-edge apparatus excels at producing adjustments in 

minuscule volumes. The newly employed instrument consistently produced similar results on both 

treated and untreated surfaces, thereby reinforcing the findings of previous experiments. Afterwards, we 

measured peripheral blood derived human leukocytes as well. A comparison analysis was performed to 

assess the adhesion qualities of white blood cells and THP-1 cells in these first assessments. It was 

observed that activated cells, most likely neutrophils, showed increased persistent adhesion to surfaces 

covered with IVIG (Fig6B). 

Both techniques are capable of measuring cell adhesion, but only FluidFM provides direct force 

measurements. However, the throughput of FluidFM is significantly lower than that of CCMP. By 

combining the two techniques, we can more rapidly gather adhesion data across various surface 

treatments: CCMP allows for quick screening and selection of relevant adhesion interactions across a 

series of experiments, after which precise force measurements can be obtained using FluidFM. The 

preparation of this manuscript is in its final phase. Of note we found the CCMP technology really useful 

in micromanipulation, selection and precise handling of single cells as presented in our recent 

publication (Bányász et al., 2023). 
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Single cell morphology and motility 
 

 
 

Figure 7.  Schematic overview of the Holomonitor platform. A In the instrument, a beam splitter 

divides the 635 nm laser beam from the laser diode into two directions: one is the reference beam, and 

the other is the sample beam. The laser beam passing through the sample undergoes a phase shift. The 

interference pattern created by the two incoming laser beams forms the hologram, which is detected by 

a digital sensor. The software then numerically reconstructs and displays the image. (source: 

https://phiab.com/wp-content/uploads/2019/07/Holographic-microscopy-principle.png) B Shows the 

principle of the evaluation of the image output, here single cells are located in each frame throughput 

the measurement to follow changes in their morphological parameters and movement. C and D Shows 

the region of interest with the cells at the beginning (C) and after 96 hours of incubation (D), on IVIG 

coated surface in the presence of soluble peptidoglycan. 

 

Holomonitor, a quantitative phase contrast microscopy platform (Fig7A), was used to test morphological 

parameters of THP-1 cell activation and movement of single cells to further characterize their activation. 

Using the same setup as in case of adhesion force measurements we investigated the cell activation on 

IVIG coating with various blocking agents and surfaces(Fig9). Here the data evaluation is based on 

algorithm assisted image analysis, however recognition of each cell is to be adjusted manually through 

all recorded frames that are to be evaluated (Fig7B). This notion likely introduces biased evaluation, 

moreover, fine structures of the cells are fading into the background noise in most cases. With this 

platform, cell area and irregularity, optical thickness and motility proved to be useful parameters to 

describe the frustrated phagocytosis of THP-1 cells on IVIG coated surfaces (Fig8). In general, IVIG 

activated cells flatten, their area increases, the move less and tend to have more protrusions, resulting 

higher shape irregularity. This activation can be inhibited with IVIG added in solution (Fig9D).  
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Figure 8. THP-1 cell activation characteristics in the Holomonitor. A Cell spreading on IVIG coated 

surfaces blocked by RF and B Holographic reconstruction of the cell shown in (A). C Distribution area, 

irregularity, average optical thickness and motility speed on BSA and IVIG coated surfaces at the end 

of a 2-hour measurement, while D shows the interaction of area and maximal optical thickness in case 

of single cells. 

 

While Holomonitor offers multi-well measurements by its motorized and programmable sample stage, 

and thus in principle a high throughput measurement, the stage movement and refocusing takes too long 

and it’s a great disadvantage of the system. For example, a theoretically 1-hour measurement, taking 1 

picture per minute in 16 wells, takes approximately 3 and a half hours. This time resolution is well below 

the that of the later introduced RWG based systems for multi-well measurements. Therefore, with this 

current setup only a few wells should be measured simultaneously. Also since cells in may start to 

activate as soon as they land on the immunoglobulin treated surface, in many case only a glimpse can 
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be recorded of the activation process (Fig8D). IVIG functionalized polyacrylamide and carboxymethyl-

dextran based surfaces were also tested and showed comparable results to regular surfaces (Fig9A-B). 

The greatest advantage of this platform is that it’s completely incubator proof therefore long-term 

measurements even of weeks can be performed to follow single cell differentiation on real time (Fig7C-

D; Fig9).   

 

 
Figure 9. THP-1 cell activation characteristics in the Holomonitor on various surfaces. A Shows 

normalized cell area on IVIG functionalized carboxymethyl-dextran surfaces. B Motility and area of 

single cells on IVIG and BSA functionalized polyacrylamide surface. C The effect of poly(L-lysine) -

graft-poly(ethylene glycol) (PLL-g-PEG) blocking on cell motility on IVIG coated and non-coated 

surfaces. D The effect of soluble IVIG on the motility of cells. Markers represent single cells. 

  

 
Figure 10. Long term effect of TLR ligands on THP-1 characteristics. Area and irregularity of THP-

1 cells after 1 and 96 hours of incubation, with or without IVIG coat. TLR ligands lipopolysaccharide 

(LPS), Polyinosinic:polycytidylic acid (Poly(I:C)), peptidoglycan (PGN) and  bacterial flagellin were 

tested as solution. Markers represent single cells. 
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Single cell dynamic mass redistribution (DMR) during cell 

activation 
 

  
 

Figure 11. Resonant waveguide grating optical biosensor. A Working principle and B optical setup of 

the instrument. 

 

RWG based biosensors EPIC BT and EPIC Cardio were used to study the changes of the dynamic 

mass redistribution (DMR) during cell activation. Here, cell activation on the sensor surface results local 

changes in the refractive index in the evanescent field that will change the light propagating properties 

of the waveguide resulting a shift in the reflected resonant wavelength component (Fig11).   

From our initial measurements we saw that the THP-1 cells bind to the immunoglobulin coated 

wells, and basically no binding can be seen in the BSA coated well (Fig12A). We also found that the 

wavelength shift measured is a function of the number of cells in each well. It is important to note that 

at ~4000 cells per well, no cell adhesion signal can be measured anymore (Fig12A-C), while for our 

single cell measurements with the higher resolution we used a maximum of 1000 cells per well to 

minimize the cell density in order to capture as many single cell events as possible (Fig15F). 

To show that the interaction is specific we added soluble immunoglobulin into the cell assay buffer, 

and as expected, at high concentration we could reduce cell adhesion almost completely (Fig12D). 

Similarly, we checked the optimal FCS content in RPMI based buffers and BSA content in PBS buffers, 

and found that 10 (%V/V) FCS and 1-0.2 µg/ml provides the most differentiating power between IVIG 

coated and non-coated surfaces.  

While the adaptation of population level, measurements from the lower resolution RWG platform, 

EPIC BT, proved successful, we matched the cells measured on the sensor surface with those on the 

micrographs of the same well after fixing the cells (Fig12A-B). However, the handling of single cell 

data raised an unexpected challenge. Unlike adherent cells, THP-1 cells and leukocytes doesn’t 

necessarily remain active on the sensor surface until the end of the measurement (Fig13C, E), therefore 

a new evaluation algorithm was developed.  

 

Detection of cell activation and counting The Epic Cardio biosensor exports a video matrix of the 

concatenated wells with (T, 80 * H, 80 * W) dimensions where T denotes the temporal measurement 

points, whilst H, W are the height and width arrangement grid of the wells on the microplate. These are 

separated into individual (N, T, 80, 80) wells, where N = H * W and the wells are preprocessed. The 

sample is cut to the starting point of the adhesion phase and afterwards two error components are 

removed from the data. The first is the bias which is removed by subtracting the base wavelength at the 

initial point of the activation phase.  

Afterwards, global background correction is performed, where the mean value of a selected number 

of background pixels is subtracted from the data to correct for the error caused by for example the 
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different temperature and consistency of the added buffer solution, or similar sensor drifting phenomena. 

This is an automated process in which pixel selection happens using a foreground mask. The mask 

represents active regions on the biosensor surface where the wavelength shifts reaches at least the value 

of a parameterized constant, in our case 25 pm. Afterwards the selection happens based on three criteria: 

the randomly selected background pixels have to avoid active mask regions, previously selected pixels 

and the edge of the biosensor image, where the biosensor can intersect well edges, producing false 

results. The selected pixels are manually checked to ensure true background selection and afterwards 

the mean or median signal of the selected pixels is subtracted from the whole well matrix (Fig13D), 

depending on which results in a clearer sample. Throughout the measurement, the wavelength shift 

signals associated with a given pixel describe the activation kinetics specific to that cell. After the drift 

correction, cells are localized using bounded peak local maxima search with manually parametrized 

minimum and maximum threshold, in our case 25 and 3000 pm values. Cell centers are selected based 

on the local maxima points of the thresholded mask filtered by a parametrized neighboring radius. This 

is necessary because it is possible that a single cell may appear on a pixel boundary or the cell surface 

can produce multiple peaks in close vicinity. These would lead to multiple selections without an 

adequately selected neighborhood size.  
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Figure 12. Immunoglobulin triggered activation of THP-1 cells, bulk measurement with EPIC BT. A 

Overview of the measurement after stabilizing the measurement baseline with PBS buffer, the sensor 

surface was coated with BSA or IVIG. This was followed by a blocking step, before the addition of cells. 

In this example the effect of cell numbers was tested. B Changes in Wavelength shift compared to 

baseline values, before the addition of the cells was calculated to evaluate the measurement (n=3).  The 

wavelength shift jump from the cellular baseline after the blocking phase showing the effect of surface 

treatments on cell activation. C Microscope images taken under the different conditions after fixing the 

cells (Axio Zeiss Observer Z1 microscope, 10 X magnification). D The inhibitory effect of soluble IVIG 

when added to the cell assay buffer. E The effect of FCS content in RPMI and F BSA concentration in 

BSA PBS based buffer during cell activation testing. 
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Figure 13. Detection of the activation of individual THP-1 cells with EPIC Cardio single cell 

resolution biosensor. A Sensor image at the end of the measurement, pixels are shown x and y axis. 

Individual cells are marked with red dots and numbers, while color coding indicates the wavelength 

shift measured on the given pixels. B RWG sensor image overlapped with micrograph of the microwells 

containing the sensor for precise localization of the cells for further analysis. C Wavelength shift values 

of individual cells as a function of time extracted from the measurement frames. D Processing overview 

of the kinetic activation data curves obtained after background correction and filtering of the 

wavelength shift data set and the original wavelength shift. E Single cell derived kinetic data fitted with 

equations describing various time course profiles(Hoare et al., 2020). 

 

 

To identify the optimal parameters of signal threshold and neighborhood size, biosensor data was 

manually compared to the micrographs of the same wells (Fig14). Here, accuracy was calculated as the 

ratio:  

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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True positive refers to those wavelength shift phenomena that are analyzed based on the shift 

characteristics of single cells in the image, which are fitted to the microscopic image. These signals 

correspond to lateral inhomogeneous signals representing activation kinetics, with pixel maximums 

visible on the biosensor image. True negative includes cells visible on microscopic images and counted 

by the Cellpose program but not activated. As no wavelength shift phenomenon can be assigned to these 

cells during analysis with the Cardio evaluator, this category can be calculated as the difference between 

the total number of cells counted by Cellpose and the total signals detected by the Cardio evaluator, 

minus the false negatives: Cellpose - (Sum Cardio signal + False negative). False positive signals occur 

when multiple cells are present in a given pixel, making them unclassifiable as a single cell. This 

category also includes signals that, although corresponding to single cells, are falsely identified as excess 

signals from specific activation zones due to a low neighborhood size parameter. Additionally, it 

includes cases where wavelength shift phenomena are detected in areas where no cells are present, 

resulting in false recognition. False negative refers to activation regions in the biosensor images where 

cells are detected at the smallest neighborhood size and lowest threshold values but not at the evaluation 

setting parameters. To accurately analyze false negatives, it is helpful to examine a single matched 

image, as some regions may show activation staining at low thresholds where cells are visible in the 

microscopic image.  

 

 
Figure 14. Selection of optimization parameters for single cells RWG evaluation. A Diagram showing 

the optimization of the neighborhood size and wavelength shift threshold limits of the evaluation 

program, with the tested neighborhood size distances: 2, 3, 4, 5 pixels. The tested wavelength shift 

threshold limits were 25, 50 and 75 pm. B A summary of the accuracy results is shown in the table, with 

the best setting highlighted in red. 
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Figure 15. Effect of the blocking strategies used on ratio of THP-1 cells activated. A Effect of I-block 

on activated cell number in cellular solution containing 0.05% BSA, with and without IVIG surface 

functionalization. B Effect of I-block on activated cell number in on the sensor surface in PBS cellular 

solution, with and without IVIG surface functionalization. C Ratio of cells activated on RF blocked or 

non-blocked (PBS) sensor surface with and without IVIG surface functionalization D Ratio of cells 

activated on PLL-g-PEG blocked sensor surface with and without IVIG surface functionalization.  E 

The effect of changing the concentration of PLL-g-PEG solution used for blocking on the activated cell. 

F Effect of theoretical cell number on the efficiency of cell activation IVIG functionalized sensor surface. 
 

Based on the parameters identified for accuracy, we analyzed the effect of blocking solutions on the 

relative number of activated cells per well on an IVIG-coated surface (Fig15). We found that multiple 

blocking solutions can be applied, including I-block (Fig15A-B), RPMI + 10% FCS (RF) (Fig15C), and 

PLL-g-PEG (Fig15D-E), all of which effectively block non-specific cell activation. However, it is 

important to note that the kinetic profile of cell activation (Fig13E) is also influenced by the blocking 

solution used. Before testing antigen-bound antibodies, we tested whether TLR ligands could trigger 

similar cell activation as seen with the IVIG coat. In a one-hour measurement with both THP-1 cells 

and peripheral blood-derived leukocytes, we observed minimal activation from the ligands alone 

compared to the activation on the IVIG coat (Fig16). However, we are still investigating whether TLR 

ligands affect the kinetic profile of activation on the IVIG coat. To test antigen-bound antibodies, we 

coupled biotinylated rheumatoid arthritis (RA) diagnostic peptides to neutravidin on the sensor surface. 

After serum treatment (with sera previously analyzed in ELISA), we probed the immune complexes 

generated on the sensor with THP-1 and blood-derived leukocytes (Fig17). As shown in Figure 18, 

incubation of the citrullinated 741 CSX multiepitope peptide(Szarka et al., 2018) with positive serum 

triggered the most pronounced leukocyte activation (Fig18A,E), compared to the treatment with a 

negative serum sample (Fig18C,E) or the reaction of either serum with the arginine-containing form of 

the peptide (Fig18B,D). 
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Figure 16. Cell activation in the presence of TLR ligands. The activation of THP-1 cells (A) and 

peripheral blood derived Leukocytes (B) were tested in the presence in TLR ligands TLR ligands 

lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (Poly(I:C)), peptidoglycan (PGN) and  

bacterial flagellin were tested in solution, with and without IVIG coat on the sensor surface. 
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Figure 17.  Overview of the application of the Rheumatoid Arthritis (RA) diagnostic peptide to probe 

serum reactivity and the following activation of peripheral blood derived leukocytes. 
 

 

 

Figure 18.  Summary of leukocyte activation after sensor surface functionalization by the formation 

of immune complexes. Sensor heat maps of lateral inhomogeneous wavelength shift phenomena, where 

each red marker indicates the activation zone associated with each surface adhered leukocyte on a 

functionalized surface of an immune complex with A 741 CSX multiepitope peptide and RA positive 

serum; B 742 CSR multiepitope peptide and RA positive serum C 741 CSX multiepitope peptide and 

negative RA serum and D 742 CSR multiepitope peptide and RA negative serum and their corresponding 

frequency distributions of maximal wavelength shift signals associated with leukocyte activation. E 

Summary of maximum wavelength shifts associated with leukocyte activation for each immune complex 

treated surface. 
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Cell identification 
 

To identify leukocyte subpopulations from peripheral blood on the sensor surface a workflow to fix the 

cells directly after the measurement was developed in order to match each cell with their measured 

signals. A protocol that enables fluorescent staining followed by hematological staining was developed. 

With this we can identify monocytes (Fig19), B-cells(Fig20), T-cells(Fig21) and granulocytes(Fig22) 

on the sensor surface. Moreover, EPIC Cardio compatible protocols for histological stains (Janus Green, 

Acridine Orange, Oil Red O, Sudan Black and Nile Blue A) were also developed to gain further insight 

into potential differentiating factors.   

 

 
 

Figure 19.  Identification of monocytes on IVIG functionalized sensor surface. i)-vi) The observed 

phase contrast microscopic images in 38 HE filter set (ex.: BP 470/40 nm, em.: BP 525/50 nm), 43 HE 

filter set (ex.: BP 545/25 nm, em.: BP 605/70 nm), brightfield picture and the brightfield picture fitted 

with the sensor image. Cells were fixed with 4% PFA solution (diluted with 1x DPBS), blocked with 5% 

BSA solution and labelled 2.47 µg/mL anti-CD14-Alexa 488 (clone: 5A3B11B5) (Santa Cruz) 

monoclonal antibody solution diluted 1:80 with 1% BSA solution for 2 hours. The identified monocyte 

activation wavelength shift curves re shown as well. 
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Figure 20. Identification of B-lymphocytes on IVIG functionalized sensor surface. i)-vi) The observed 

phase contrast microscopic images in 43 HE filter set (ex.: BP 470/40 nm, em.: BP 525/50 nm), 43 HE 

filter set (ex.: BP 545/25 nm, em.: BP 605/70 nm), brightfield picture and the brightfield picture fitted 

with the sensor image. Cells were fixed with 4% PFA solution (diluted with 1x DPBS), blocked with 5% 

BSA solution and labelled 2.47 µg/mL anti-CD19-Alexa 546 (clone: F-3) (Santa Cruz) monoclonal 

antibody solution diluted 1:80 with 1% BSA solution for 2 hours. The identified B-cell activation 

wavelength shift curves are shown as well. 

 

 
 

Figure 21. Overview of the T-lymphocyte screening. A i-vi) Results of labelling with anti-CD3-Alexa 

405 (clone PC3/188A) (Santa Cruz) monoclonal antibody solution diluted 1:20 with 2% BSA solution 

(fixation with 4% PFA solution, blocking with 2% BSA solution) using fluorescent filter set 2 (ex: G 365 

nm, em: LP 420 nm). B Inhomogeneous lateral sensory heat maps of T lymphocyte adhesion on a surface 

functionalized with 10 µg/mL anti-CD3 (clone: SK7) monoclonal antibody solution and the phenomena 

observed after cell adhesion with labelling with additional anti-CD4 (clone: SK3) and anti-CD8 (RPA-



22 
 

T8) monoclonal antibodies. C Curves characterizing the activation of T lymphocytes stained with 

fluorescently conjugated monoclonal antibody solution and curve segments indicating the binding of 

secondary antibodies. 
 

 
 

Figure 22. Identification of granulocytes on RWG biosensors. Color brightfield phase contrast 

microscopy image of neutrophil (i-vi), eosinophil (i-vii) and basophil (i-ii) granulocytes identified by 

Wright-Giemsa hematological staining (20x objective, AxioCam ERc 5s). A Activation wavelength shift 

curves assigned to neutrophil granulocytes identified by staining on a 100 µg/mL IVIG functionalized 

sensor surface. B Activation wavelength shift curves assigned to eosinophil granulocytes identified by 

staining on a 100 µg/mL IVIG functionalized sensor surface. C Activation wavelength shift curves 

assigned to basophil granulocytes identified by staining on a 100 µg/mL IVIG functionalized sensor 

surface. 

 

Analysis process for clustering and shapelet distance-based analysis of time series data 

 

To discover subpopulations in the measured data in an unbiased manner, we performed a time series 

analysis using shapelet extraction and clustering. To achieve this, a multi-step data processing and 

clustering workflow was developed during the analysis process. 

At the beginning of the evaluation process, the data undergoes a preprocessing stage, where each 

time series is scaled to the interval (0,1) using MinMax normalization. After that, feature extraction is 

performed, where the signals are partitioned into an adjustable number of subsequences. These represent 

local patterns in the data (shapelets), which can be used to differentiate subpopulations by their 

characteristic underlying processes. After the signals are partitioned their subsequences are gathered 

into a joint shapelet matrix. 

After the shapelets are extracted, the shapelet-to-complete signal distances are calculated. The 

distances can be used to discover cluster-specific patterns since different signals, where cells undergo 

the same activation subprocess, will provide similar shapelets for the subprocess which results in lower 

distance values. This suggests that the shape distance data can be used to divide the signals into clusters. 

During the distance calculation, cell signals are compared to every shapelet in the matrix. The 

comparison is achieved by selecting the subsequences corresponding to a cell from the shapelet matrix 

and comparing it to all the subsequences in the matrix. We used Euclidean distance for distance 
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calculation. This process can be tested later with additional distance metrics (e.g. absolute, Minkowski, 

Canberra distance or Dynamic Time Warping). 

We then organized the distance data into a matrix form and performed signal clustering using the 

KMeans method. For this, we used the TimeSeriesKMeans algorithm from the TSLearn Python library, 

which is specifically optimized for time series data and can take local patterns into account through its 

shape distance-based approach. 

Since, in our case the number of subpopulations is unknown, we optimized the window ratio and 

cluster numbers using different clustering metrics. (The window ratio is given by the number of 

subsequences a signal is partitioned into.) For this, we chose the Silhouette score, the Calinski-Harabasz 

index, and the Davies-Bouldin index as metrics. The Silhouette score measures the ratio of the distance 

within each cluster to the distance between clusters, while the Calinski-Harabasz index analyzes the 

ratio of the variance between clusters, and the Davies-Bouldin index examines the ratio of the average 

distance between each cluster. 

To optimize the method, we used a grid search, during which the evaluation is run for every input 

variable combination. The optimization results in a separate vector for all metric values. Afterwards the 

optimal setting for the process is evaluated by finding the global optimum point in these vectors. 

For the clustering process, we combined data from 5 measurements, which contained more than 

5000 single-cell signals. During the optimization, we examined the efficiency of the clustering process 

as a function of the number of shapelets and the number of clusters. The window ratio was given by 

dividing the signal into N parts where 𝑁 ∈ [3, 5,10,20,30,40,50], and the cluster number K was given 

by dividing it into 𝐾 ∈ [3,4,5,6,7,8] clusters. 

The results of the optimization process are illustrated in Figure 23. From the perspective of the 

interpretation of the metrics, for Silhouette score and Calinski-Harabasz index the maximum values, and 

for the Davies-Bouldin index the minimum value indicate optimal clustering. Knowing these and based 

on Figures 2, it can be concluded that the values 4-5 indicate the optimal value for the cluster number, 

since in this interval all metrics are in the optimal region. Based on Figure 1, a local minimum valley is 

found in the parameter diagonal for the Davies-Bouldin index, which takes the global minimum between 

the values 20-30. Similarly, a local maximum line can be found in the case of the Silhouette score and 

the Calinski-Harabasz index, which decreases towards the lower sequence number. These metrics 

assume an optimum value between 30-40, which suggests that the optimal value would between the 20-

40 interval. While these results show our data processing approach successfully cluster similar activation 

patterns together (Fig23B-C), parameters and processing algorithm strategies are to be further optimized 

and explored. Furthermore, to match the clusters with phenotypic data we are currently optimizing the 

data evaluation pipeline to automatically match the data from 4 fluorescent and the color brightfield 

phase contrast microscopy channels to provide to complete the analysis. We filed a provisional patent 

on the classification and profiling of single cells based on their kinetic activation profile in optical 

biosensor measurements. 
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Figure 23. Shapelet based clustering of RWG based leukocyte activation signals. A Shows the grid optimization 

metric values as a function of the window ratio, the number of segments the total activation signal partitioned 

into, and the number of clusters. Window Ratio indicates the subsequence rate, here window ratio of 20 was used 

with a cluster number of 5 in (B) and (C). B t-distributed stochastic neighbor embedding representation of the 

clustering based on shapelet occurrences. C Representative single cells activation kinetics in each cluster.  

 

 

Summary 

 

We determined various biophysical parameters during immunoglobulin-triggered activation of 

THP-1 monocytes and leukocytes. Our findings revealed that while tools like CCMP and FluidFM, 

along with the Holomonitor, are useful for long-term measurements (e.g., to follow cell differentiation), 

they have significant disadvantages. Specifically, the signal-to-noise ratio achieved with these tools is 

not optimal, and while motility and cell area can be measured, they may not fully capture the complexity 

of the activation process. 

Data from RWG-based single-cell measurements indicated that cell activity and interaction with 

the surface constantly change during activation. This explains the considerable variation observed in 

adhesion force-based measurements and highlights the importance of real-time monitoring of cell 

activation. 

In CCMP-based measurements, we showed that activation occurs only in viable cells. We also 

tested the differences between IgG- and TLR ligand-triggered activation and found that they are 

distinguishable. Without the immunoglobulin coat, cells do not activate on the biosensor. This finding 
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allows for the testing of antigens with various chemical compositions, as cells did not activate under the 

conditions tested. For functional serology, RWG-based measurements are the most useful because they 

allow us to: 1) follow single-cell activation kinetics in real time; 2) reliably fix and stain single cells; 

and 3) measure single cells in 12 separate wells with remarkable time resolution. 

We also tested cell activation on immune complexes generated on the sensor using rheumatoid 

arthritis-specific diagnostic peptides. In the presence of antigen-specific antibodies, the immune 

complexes triggered cell activation similar to the IgG-triggered activation observed with citrulline-

containing peptides. To investigate the activation signals of leukocytes, we applied two different staining 

procedures. First, classical hematological stains identified single cells, which were useful for identifying 

granulocyte subpopulations. We also used fluorescent dye-conjugated lineage-specific antibodies to 

identify lymphocyte subpopulations. 

For THP-1 cells, activation kinetics followed predictable patterns, including rise-and-fall dynamics 

to either baseline or steady-state levels. In contrast, primary leukocytes exhibited more diverse activation 

kinetics, requiring clustering-based approaches to identify activation subtypes. Preliminary tests with 

TLR ligands and complement activation on the sensor surface emphasized the complexity of leukocyte 

activation, underlining the need for refining single-cell resolution methods to capture subgroup-specific 

activation characteristics. By integrating advanced biophysical techniques with robust data processing 

workflows, we demonstrated the potential of optical biosensors to provide high-resolution, information-

dense data for studying leukocyte activation. This approach could be invaluable for profiling humoral 

immune response antibody effector functions in personalized fashion, aiding in the study of infectious 

and autoimmune diseases, and assessing the efficacy of immunotherapeutic reagents. 

 

Seven MSc students successfully defended their theses under our shared supervision with Róbert 

Horváth. Bence Joó worked on the initial setup of blocking and buffer testing in the EPIC Cardio and 

Holomonitor systems. Tamás Hajdu investigated the correlation between Cardio and CCMP and 

established a measurement protocol. Szabolcs Novák worked on the comparison of CCMP and 

FluidFM, while Igor Sallai worked on the EPIC Cardio measurements and the development of cell fixing 

and staining procedures. Dávid Visnyei studied polyacrylamide gels and examined cell activation on 

these surfaces. Péter Joó studied the short- and long-term effects of TLR ligands. Zsolt Janka worked 

on immune complex generation for EPIC Cardio and Holomonitor techniques. Bálint Béres and his 

students worked on the development of the data processing platform. Péter Joó, Igor Sallai, and Szabolcs 

Novák are currently PhD students in our laboratory. 
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