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Progress and Summary of Results 
 
Operation of the monitoring station in the Keszthely Basin of Lake Balaton yielded three more 
years of high-frequency data of meteorological variables, water temperature, turbidity, dissolved 
oxygen, and delayed fluorescence, elongating the time series database to 17 years (Fig. 1 shows 
the first 16). This is an exceptionally long high-frequency record in international comparison (cf. 
www.gleon.org). In certain periods additional physical variables such as wave height and flow 
velocities were recorded, too. Weekly manual control measurements and regular maintenance 
twice a week contributed to good data quality and coverage. 
 

 
 
Fig. 1. Algal biomass (Ba) from 2001 to 2016 measured by on-line delayed fluorescence (orange 
line), and manual sampling (black symbols) in the Keszthely Basin of Lake Balaton. 
 
 
Together with previous measurements, 8 years of data were available to analyze lake metabolism 
and other limnological topics. Raw data indicated that the monitoring site is a rather complex 
physical environment. Besides the expected intense resuspension, temporary stratification during 
the summer was often observed. Strong gradients of temperature and dissolved oxygen (DO) were 
typical. These circumstances left their fingerprint on the observed oxygen concentrations: about 
20% of days produced intricate DO patterns that were obviously not to be reproduced by any 
known model of lake metabolism. 
 
Metabolic Modeling 
 
Discrepancies of the observed DO time-series could not be unambiguously bound to any physical 
boundary condition observed at the monitoring site. Neither temporary stratification nor the 
existence or lack of strong currents were good predictors of deviations from the expected DO 
profile. By measuring at a single location, it was impossible to delineate the (dynamically changing) 
volume, from which the DO signal has originated. This shortcoming is currently addressed in a 
follow-up research project [NKFIH #120551], where satellite sensor pods were installed around the 
monitoring site  to detect the transfer time and direction of transient phenomena.  
 As systematic errors could not be reduced by expanding the monitoring program to basic 
hydrodynamic variables, these errors were treated statistically. A Bayesian representation of 
systematic deviations in form of an autoregressive random process (Reichert and Schuwirth 2013) 
was used during model calibrations (Honti et al. 2016, Istvánovics and Honti 2017). However, this 
alone was not sufficient to calibrate the metabolic model for a longer time-series. Common 
metabolic models are partially empirical in the sense that they rely on ecosystem parameters that 
change in time. This means that a single calibrated parameter set cannot represent periods that 
span over the characteristic changing time of the ecosystem. This problem is usually resolved by 
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calibrating the metabolic model for 1-3 days wide windows (e.g. Hanson et al. 2008, Staehr et al. 
2010, McNair et al. 2015), however this does not guarantee that the calibrated parameters follow 
credible ecological dynamics: productivity or respiration can jump over a wide domain on a day to 
day basis. To solve this problem, a sequential Bayesian learning algorithm was implemented in the 
metabolic model. Calibration took place in 3 days wide sliding windows (Fig. 2). The 3-days width 
was chosen to avoid parameter values that would provide a good fit to a single day of data at the 
price of longer-term instability and to ensure that fitting took place for a shorter time period than the 
typical generation times of phytoplankton (5 to 7 days). Posterior parameter distributions of the 
preceding window were used as priors, which meant that preceding parameter values were kept 
almost unchanged unless there was strong evidence in the data against them. The outcome of this 
sequential learning procedure was a good model fit to the observations coupled with credible, 
mostly gradually changing ecosystem parameters that properly reflected resilience of the 
ecosystem. This calibration (or 'inverse modelling') procedure was applied for data from Lake 
Balaton (Honti et al. 2016, Istvánovics and Honti 2017) and other lakes in Denmark Brazil and 
China (Honti et al. 2016, Staehr et al. 2016). 
 

 
Fig. 2. An example of model fit in a 3-day calibration window. Open circles: observed DO 
concentration, black line with gray band: model fit with 95% uncertainty interval, red line: saturated 
DO concentration, blue line: wind speed, yellow bands: photoperiod. 
 
 The stability and credibility of the model was enhanced by involving delayed fluorescence 
data (a proxy of phytoplankton biomass and photosynthesis; Istvánovics et al. 2005, Honti and 
Istvánovics 2011) in case of Lake Balaton (Honti et al. 2016, Istvánovics and Honti 2017). 
Bayesian inference supports the assimilation of external data in the form of parameter priors that 
represent uncertain information about the modelled system. Phytoplankton biomass was a 
modelled state variable with appropriate feedback links to metabolism. Initial values for the 
phytoplankton biomass was a parameter with a prior based on the observed values. Modelled daily 
mean phytoplankton biomass was part of the calibration as well, it was compared to the 
observations and deviations were penalized by the parameter likelihood function. This additional 
criterion compromised the good model fit negligibly, indicating that after excluding the 
unconstrained variation in algal biomass the model still contained enough degrees of freedom. 
 The operative applicability of Bayesian learning in modeling lake metabolism was tested on 
a system that is simpler than Lake Balaton. Two months of high-frequency temperature and DO 
data were obtained from City Park Lake (Városligeti-tó), Budapest, Hungary. An extremely simple 
metabolic model was developed for the purpose of short-term operative forecasting. 
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Meteorological variables were restricted to a qualitative light status (dark/cloudy/bright), and water 
temperature. The latter did not vary too much because to lake is fed by thermal water of nearly 
constant temperature. As the lake has a significant nutrient load (high oxygen production by 
photosynthesis), and a thick organic sediment (high oxygen consumption by respiration), diurnal 
DO fluctuations varied between moderate to large, which facilitated testing the predictive capability 
of the model under both high and low DO variability. The simplified model was moved in 3-hour 
steps, it was trained on the preceding 24 hours of observed data and forecasted the forthcoming 
24 hours in accordance with the Bayesian learning algorithm. The prediction of DO minima was 
reliable 6-12 hours in advance: the probability of not foreseeing a low DO event (DO<4 mg L-1) was 
no more than 3-4%. These results show, that the Bayesian learning technique can be used to 
compensate for structural model deficiencies by allowing the time-variability of model parameters. 
The tested operative forecast method could be used in cases when short-term water quality 
changes can cause economic or ecological harm. Such systems include intensively farmed 
fishponds or hyper/eutrophic urban lakes, where the 6-12 hours forecast time-horizon is ample to 
intervene by changing the flow routing or activating aerators. 
 
Error Propagation in Metabolic Modelling 

 
The practice of metabolic modeling based on free-water DO hasn't changed much since the 
pioneering work of Odum (1956). The metabolic equation – when lateral and vertical transport is 
neglected – is: 
 !"#

!$
= 𝑋 + 𝐺𝑃𝑃 − 𝑅 (1) 

The observed change of dissolved oxygen is split amongst the unknown quantities of gas 
exchange with the atmosphere (X, here positive for flux from air into the water), gross primary 
production (GPP) and community respiration (R). As there are no periods when only one of these 
processes would be active, there is no way to solve this equation unambiguously. To tackle this 
problem, a sequential inference is usually performed. First X is estimated based on empirical 
models of piston velocity and the saturation deficit as the driving gradient of gas exchange. Then 
the remaining change of DO is attributed to net ecosystem production (NEP = GPP–R). From 
nighttime NEP the parameters of R are estimated and assumed to describe the daytime respiration 
as well. Having sorted out all but one of the right hand side components, the rest of DO change is 
attributed to GPP. 
 The algorithm of this calculation is obvious when the metabolic components are calculated 
manually, by e.g. the classical bookkeeping method (Odum 1956, Staehr et al. 2010, McNair 
2015). However, the essence is the same when an inverse modelling technique is used: assuming 
a certain gas-exchange model or fixing certain model parameter values, or telling the model that 
GPP must be zero during darkness are all helping to reduce the degrees of freedom of the 
problem. While this technique (reducing degrees of freedom by making assumptions on certain 
quantities) is mathematically viable, it has some side-effects on the results, which have not been 
fully recognized and acknowledged in studies of lake metabolism. 
 Errors are inevitable during the reduction of degrees of freedom. Any estimate, regardless if 
it is on a parameter value or a mechanism, contains errors. Uncertainty partially stems from 
insufficient representation of the study system, that is from assumptions on certain mechanisms or 
fixed parameter values. Besides, uncertainty derives from the imported information: limnological 
studies tend to report single values or equations without mentioning the corresponding uncertainty. 
The latter is nicely illustrated by for example of empirical models of piston velocity that are based 
on meteorological boundary conditions. Epistemic uncertainty (stemming from the lack of 
knowledge) can be found in the sheer diversity of these models and the range occupied by their 
predictions for the same conditions (Dugan et al. 2016). While the individual models might be valid 
for the systems where they were developed, case-specific mechanisms may render them nearly 
useless in other systems. Besides this, metabolic calculations usually neglect the uncertainty 
belonging to the specific models. Cole and Caraco (1998) show that popular piston velocity models 
usually have an uncertainty of 20-30% based on the observations in the pilot system, yet this is not 
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considered anywhere during metabolism modeling. In summary, the estimate of X is likely to 
contain an error that is comparable to its magnitude.  
 The estimation errors propagate through the calculations, and as the basic model (eq. (1)) 
is linear, they produce artificial linear correlations between X and NEP, and GPP and R (Honti and 
Istvánovics, submitted). Systematic errors of X (e.g. a systematic over- or underestimation) can 
either reduce or increase the correlation between NEP and X. Reduced correlation occurs when 
the estimated variance of X is less than the true variance. In contrast to this, random errors always 
strengthen the correlation. The same phenomenon applies to the stage when GPP is extracted 
from NEP by estimating R, yet relationships between errors and the correlation are more 
complicated due to the involvement of estimation errors of both X and R. In summary, the typical 
error levels of data about X and R suggest that a significant part of the correlation between X and 
NEP, and GPP and R could be caused by artefacts. Therefore, the limnological and ecological 
interpretation of such correlations should be preferably avoided unless independent, supporting 
information is available for decreasing the estimation uncertainties. Most importantly, strong 
correlation between X and NEP, as well as the near-zero value of NEP means that the CO2 
balance of lakes cannot be properly estimated from the free water dissolved oxygen method alone 
as has been done recently in a series of climate-change related studies (Cole et al. 2007, Tranvik 
et al. 2009). A possible solution is to independently measure gas exchange at least sporadically to 
choose a gas exchange model that matches the conditions of the examined lake relatively well, or 
to develop a lake-specific gas exchange function.  
 The error propagation problem and the linked spurious correlations and linearity are not 
limited to metabolic studies. Error propagation affects all modeling problems where observed 
dynamics is decomposed into sub-processes that are weakly or not at all observable. When the 
model is built on sums or differences of sub-processes, error propagation will change the linear 
correlation between them. Potentially affected models can be – just from limnology – the growth 
and mortality of phytoplankton, or the settling and resuspension of sediments. In these cases, 
similarly to the metabolic decomposition of the DO signal, an overall stock is monitored without 
having hints of the in- and outward fluxes. 
 
Metabolism and Environmental Boundary Conditions 
 
On the basis of the Bayesian metabolic model (trained by sequential learning) a simpler, empirical 
multivariate model of GPP and R was set up using data from 2009 to 2015 (Istvánovics and Honti 
2017). Water temperature, underwater light intensity, and phytoplankton biomass are the inputs of 
the nonlinear model. A generic function that, depending on its parameter values, could resemble a 
saturation mechanism (sigmoid) or an optimality function was used to formulate contribution of 
input factors to GPP and R. Contributions were multiplied and scaled with a maximal possible 
magnitude. Surprisingly, such a simple model structure could simulate the complex dynamics of 
GPP and R with a rather high fidelity (r2 reached 0.6 for R and 0.8 for GPP, n=891). The success 
of this tool means that metabolic components can be estimated without the tedious and error-
prone DO observations and metabolic modeling. This was validated by testing the empirical model 
on the modelled data from 2016, which were not used in the original regression. Thus, the 
complicated Bayesian modeling exercise can be avoided, at least in the case of the Keszthely 
Basin of Lake Balaton. This means that the best available estimate for GPP and R can be derived 
from simple observational data on environmental conditions and phytoplankton biomass. The 
multivariate empirical model revealed general patterns in the relationship of metabolism and the 
environment. GPP showed less temperature-dependence than R. R showed "temperature-
saturation" at higher values than GPP, suggesting that a potential warming during climate change 
may shift NEP slightly towards the negative domain, e.g. making the lake more heterotrophic. 
Underwater light had surprisingly low effect on lake metabolism. Despite the general turbidity of the 
water column, there was mostly enough light, because each species present in such an 
environment must tolerate low light conditions. Consequently, the linear light-dependence function 



6 
 

that worked in many lakes (Hanson et al 2008) would not be applicable to Lake Balaton – and 
probably many lakes at this latitude.  

According to the newly revealed issues with error propagation, it is unknown how the 
results of the empirical model relate to reality. Successful validation of the multivariate model, 
however, suggests that the error component is system-specific and stable. If gas exchange could 
reliably be measured and estimated from meteorology data in the future, it would be possible to 
correct for the presently unknown error component of metabolic rates. 
 The values of annual NEP showed little excursion from zero during the 8 years covered by 
observations. There was a seasonal rhythm though: NEP started in negative in the spring, grew to 
positive during the summer and returned to negative in the autumn. This pattern fits to the 
ecological expectations. After the collapse of the early spring diatom bloom (which we can't 
measure because installation of the monitoring site is permitted only after 1 April), heterotrophs are 
more abundant and keep NEP negative. After this 'clear water phase' autotrophs take over and 
form the usual summer algal blooms, which convert NEP to positive. With the autumn cooling the 
blooms fall out and the heterotrophic activity again recycles the accumulated organic matter, which 
pushes NEP back to negative. On the recommended annual scale NEP did not show any 
interesting features in Lake Balaton. It was obvious without DO measurements that the lake can't 
be clearly heterotrophic, because there is no sustained external source of organic matter that could 
fuel that (Hoellein et al. 2013). Clear autotrophy could be excluded as well, because most available 
organic matter is rapidly recycled in shallow, well oxygenated Lake Balaton, resulting in low 
sediment organic carbon content (Máté 1987). This outcome is typical for many lakes around the 
world (Hoellein et al. 2013; Solomon et al. 2015). Therefore, NEP is not the most informative 
indicator of lake metabolism. From a methodological point of view, GPP/R ratios are somewhat 
less sensitive to error propagation than NEP, because the errors of GPP and R partially cancel out, 
yet the dimensionless nature of GPP/R is more appropriate as it is not tempting to interpret its 
value as a proper oxygen flux. From an information-oriented perspective, other, more direct 
metabolic indicators, such as the gross or net growth rate of phytoplankton or the dynamics of 
nighttime oxygen consumption could be better proxies for lake metabolism. 
 High-resolution measurements of delayed fluorescence and weekly manual chlorophyll 
measurements show that phytoplankton blooms still reach 60-100 µg Chl-a L-3 in certain years in 
the Keszthely Basin of Lake Balaton. This indicates that further reduction of external nutrient load 
might be required; for example, operation of the Kis-Balaton system should not lose its focus on 
water quality management of Lake Balaton.  
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Title page graphics: scheme of the artificial ecosystem used to study error propagation in 
metabolic modeling. 


